Ruthenium and iridium dipyridylamine catalysts for the efficient synthesis of

γ -valerolactone by transfer hydrogenation of Levulinic acid.

Shengdong Wang,^α Vincent Dorcet,^βThierry Roisnel,^β Christian Bruneau,^α Cédric Fischmeister^α* ^α Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Organometallics: Materials and Catalysis Centre, Campus de Beaulieu, F-35042 Rennes Cedex, France Cedric.fischmeister@univ-rennes1.fr

^β Centre de Diffractométrie X

Institut des Sciences Chimiques de Rennes UMR 6226 CNRS, Université de Rennes 1, F-35042 Rennes Cedex, France

Supporting Information

Table of Contents

Page S2	General Information		
	Ligand syntheses		
Page S3	Syntheses of ruthenium complexes, Scheme S1		
Page S5	Syntheses of iridium complexes, Scheme S2		
Page S6	General Experimental Procedure for transfer hydrogenation of Levulinic acid		
	Base screening, Table S1		
Page S7	Recycling of Ir1		
	General procedures for the reductive amination of LA		
	Synthesis of pyrrolidinone derivatives		
Page S8	Figure S1 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of compound 2		
	Figure S2 ¹³ C {1H} NMR (100 MHz, J mod, CDCl ₃) of compound 2		
Page S9	Figure S3 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of compound 3		
	Figure S4 ¹³ C {1H} NMR (100 MHz, J mod, CDCl ₃) of compound 3		
Page S10	Figure S5 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of Ru1		
	Figure S6 ¹³ C {1H} NMR (100 MHz, J mod, CDCl ₃) of Ru1		
Page S11	Figure S7 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of Ru2		
	Figure S8 ¹³ C {1H} NMR (100 MHz, J mod, CDCl ₃) of Ru2		
Page S12	Figure S9 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of Ru3		
	Figure S10 13 C {1H} NMR (100 MHz, J mod, CDCl ₃) of Ru3		
Page S13	Figure S11 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of Ir1		
	Figure S12 ^{13}C {1H} NMR (100 MHz, J mod, CDCl ₃) of Ir1		
Page S14	Figure S13 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of Ir2		
	Figure S14 13 C {1H} NMR (100 MHz, J mod, CDCl ₃) of Ir2		
Page S15	Figure S15 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of Ir3		
	Figure S16 ¹³ C {1H} NMR (100 MHz, J mod, CDCl ₃) of Ir3		
Page S16	Figure S17 ¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of 1-Benzyl-5-methylpyrrolidin-2-one		
	Figure S18 ¹³ C {1H} NMR (100 MHz, CDCl ₃) of 1-Benzyl-5-methylpyrrolidin-2-one		
Page S17	References		

General Information:

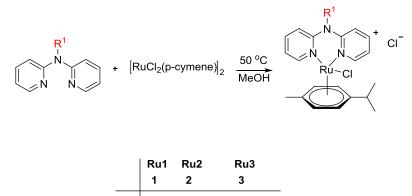
Levulinic acid (98%), formic acid (98%) and 2,2'-dipyridylamine (98%) were purchased from Sigma-Aldrich. Solvents (methanol, diethyl ether) were HPLC grade and used as received. ¹H NMR spectra were recorded on a Bruker Avance (400 MHz) spectrometer and reported in ppm with reference to CHCl₃ (7.26ppm). Data are reported as follows: s=singlet, d=doublet, t= triplet, q= quartet, m= multiplet. Coupling constants are reported in Hz. ¹³C NMR spectra were recorded at 100 MHz on the same spectrometer and reported in ppm with reference to CDCl₃ (77.16 ppm).

Ligand syntheses

Synthesis of known (2,2'-dipyridyl)benzylamine) 2^1

2-Bromopyridine (0.32 g, 2 mmol), benzylamine (0.11 g, 1 mmol), $Pd_2(dba)_3$ (0.023 g, 2.5 mol%), BINAP (0.025 g, 4 mol%), tBuOK (0.17 g, 1.5 mmol) and 10 ml of toluene were combined in a Schlenk tube under an argon atmosphere. The mixture was stirred at 80 °C for 24 h. After cooling to room temperature, the crude reaction mixture was filtrated over Celite. Purification by column chromatography on silica gel (petroleum ether:ethyl acetate = 1/3, v/v). The target product was obtained as a white solid (0.25 g, 96%). NMR data were consistent with reported data.²

¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, ³J_{H-H} = 4.8 Hz, 2H, pyr NCH), 7.53-7.49 (m, 2H, CH), 7.35 (d, ³J_{H-H} = 7.6 Hz, 2H, CH), 7.28-7.22 (m, 2H, CH), 7.20-7.14 (m, 3H, CH), 6.87-6.82 (m, 2H, CH), 5.51 (s, 2H, NCH₂).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 157.2, 148.3, 139.4, 137.4, 128.4, 127.1, 126.7, 117.3, 114.7, 51.5.


Synthesis of known (2,2'-dipyridyl)methylbenzylamine 3

2-Bromopyridine (0.32 g, 2 mmol), 1-phenylethylamine (0.12 g, 1 mmol), $Pd_2(dba)_3$ (0.023 g, 2.5 mol%), BINAP (0.025 g, 4 mol%), tBuOK (0.17 g, 1.5 mmol) and 10 ml of toluene were combined in a Schlenk tube under an argon atmosphere. The reaction mixture was stirred for 24 h at 80 °C. The crude reaction mixture was allowed to cool down to r. t. and filtrated over Celite. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate = 1/3, v/v). The target product was obtained as a yellow solid (0.25 g, 91%). NMR data were consistent with reported data.³

¹H NMR (400 MHz, CDCl₃): δ 8.35 (dd, ³J_{H-H} = 7.2 Hz, ⁴J_{H-H} = 1.2 Hz, 2H, pyr NCH), 7.46-7.38

(m, 4H, CH), 7.28-7.22 (m, 2H, CH), 7.20-7.15 (m, 2H, CH), 6.86-6.84 (m, 2H, CH), 6.66 (d, ${}^{3}J_{H-H} = 8.4$ Hz, 2H, CH), 6.53 (q, ${}^{3}J_{H-H} = 7.2$ Hz, NCH), 1.67 (d, ${}^{3}J_{H-H} = 7.2$ Hz, 3H, CH₃).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 157.2, 148.5, 143.3, 137.3, 128.2, 127.5, 126.6, 117.7, 117.0, 54.3, 18.1.

Syntheses of ruthenium complexes

R¹ H Benzyl 1-phenylethyl

Scheme S1. Synthesis of ruthenium compounds Ru1-Ru3.

Synthesis of known **Ru1:** [(dpa)(*p*-cymene)**RuCl**]Cl⁴

1 (0.068 g, 0.4 mmol) was added to a suspension of $[RuCl_2(p-cymene)]_2$ (0.034 g, 0.2 mmol) in methanol (5 mL). The mixture was stirred for 12 h at 50 °C. After evaporation to dryness, the residue was washed with diethylether (3 × 2 mL) to give the expected product **Ru1** 0.085 g(yield: 89%) as a yellow solid. NMR data were consistent with reported data.⁴

¹H NMR (400 MHz, CDCl₃): δ 12.82 (s, 1H, NH), 8.42-8.41 (d, J = 6.0 Hz, 2H, pyr NCH), 8.12 (d, J = 8.4 Hz, 2H, CH), 7.75-7.68 (m, 2H, CH), 7.05-6.99 (m, 2H, CH), 5.41 (d, ³J_{H-H} = 6.0 Hz, 2H, *p*-cymene CH), 5.27 (d, ³J_{H-H} = 6.0 Hz, 2H, p-cymene CH), 2.76-2.73 (hept, ³J_{H-H} = 6.8 Hz, 1H, iPr CH), 1.94 (s, 3H, CH₃), 1.22 (d, ³J_{H-H} = 6.8 Hz, 6H, iPr CH₃).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 154.5, 152.6, 139.8, 119.3, 116.3, 106.6, 99.6, 84.6, 84.5, 30.8, 22.4, 18.2.

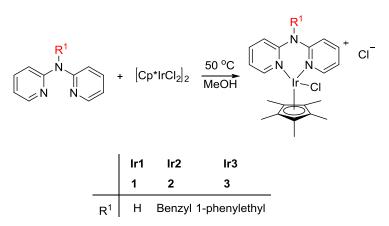
Synthesis of Ru2: [(bdpa)(p-cymene)RuCl]Cl

Using the same procedure as for the synthesis of **Ru1**, **Ru2** was obtained as a yellow powder (0.081 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (m, 2H, pyr NCH), 7.76 - 7.71 (m, 2H, CH), 7.38-7.32 (m, 7H, CH), 7.16-7.13 (m, 2H, CH), 5.93 (s, 2H, benzyl, CH₂), 5.89 (d, ³J_{H-H} = 6.0 Hz,

2H, p-cymene CH), 5.80 (d, ³J_{H-H} = 6.0 Hz, 2H, p-cymene, CH), 2.78-2.75 (hept, 1H, ³J_{H-H} = 7.6 Hz, iPr CH), 1.81 (s, 3H, CH₃), 1.23 (d, ³J_{H-H} = 7.6 Hz, 6H, iPr CH₃).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 156.4, 153.5, 140.3, 134.8, 129.2, 127.9, 126.8, 120.4, 116.2, 105.8, 100.8, 86.4, 84.2, 57.4, 30.7, 22.6, 18.0.

Elemental Analysis: Calculated for C₂₇H₂₉N₃Cl₂Ru·H₂O (%) : C, 55.38, H, 5.34, N, 7.18. Found: C, 55.45, H, 5.14, N, 7.14.

HRMS (ESI): m/z Calculated for C₂₇H₂₉N₃ClRu: 532.1088; m/z measured: 532.1087


Synthesis of Ru3: [(mbdpa)(p-cymene)RuCl]Cl

Using the same procedure as for the synthesis of **Ru1**, **Ru3** was obtained as a yellow powder (0.076 g, Yield: 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, ³J_{H-H} = 5.2 Hz, 1H, pyr NCH), 8.64 (d, ³J_{H-H} = 5.6 Hz, 1H, py CH), 7.75 (m 1H, CH), 7.63 (m, 1H, pyr CH), 7.37-7.16 (m, 9H, CH), 6.63 (m 1H, CH), 6.12 (d, ³J_{H-H} = 6.0 Hz, 1H, *p*-cymene CH), 5.95 (d, ³J_{H-H} = 6.0 Hz, 1H, *p*-cymene CH), 5.86 (d, ³J_{H-H} = 5.6 Hz, 1H, *p*-cymene CH), 5.82 (d, ³J_{H-H} = 5.6 Hz, 1H, *p*-cymene CH), 2.73-2.67(hept, ³J_{H-H} = 6.8 Hz, 1H, iPr CH), 2.09 (s, 1.5H, CH₃), 2.11 (s, 1.5H, CH₃), 1.82 (s, 3H, CH₃), 1.29 (d, ³J_{H-H} = 6.8 Hz, 3H, CH₃), 1.27 (d, ³J_{H-H} = 6.8 Hz, 3H, CH₃). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 158.0, 154.2, 154.1, 152.9, 140.5, 139.7, 138.8, 129.1, 127.7, 126.9, 120.8, 120.7, 118.9, 117.3, 103.9, 103.0, 88.6, 87.4, 83.1, 82.3, 61.9, 30.5, 23.2, 22.1, 21.8,18.2.

Elemental Analysis: C₂₈H₃₁N₃Cl₂Ru (%) : C, 57.83, H, 5.37, N, 7.23. Found: C, 57.68, H, 5.28, N, 7.05.

HRMS (ESI): m/z Calculated for C₂₈H₃₁N₃ClRu: 546.1250; m/z measured: 546.1251

Syntheses of Iridium complexes

Scheme S2. Synthesis of ruthenium compounds Ir1-Ir3.

Synthesis of known Ir1: [(dpa)Cp*IrCl]Cl

1 (0.019 g, 0.12 mmol) was added to a suspension of $[Cp*IrCl_2]_2$ (0.045 g, 0.056 mmol) in methanol (5 mL). The mixture was stirred for 12 h at 50 °C. After evaporation to dryness, the residue was washed with diethyl ether (3 × 2 mL) to give the expected product **Ir1** (0.056 g, yield: 89%) as a yellow powder. NMR data were consistent with reported data.⁵

¹H NMR (400 MHz, CDCl₃) δ 12.79 (s, 1H, NH), 8.26-8.20 (m, 4H, pyr NCH), 7.74- 7.69 (m, 2H, py CH), 7.03-6.99 (m, 2H, py CH), 1.42 (s, 15H, Cp* CH₃).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 153.2, 150.6, 140.2, 120.3, 116.5, 87.8, 8.65.

Elemental Analysis: C₂₀H₂₄N₃Cl₂Ir (%) : C, 42.18, H, 4.25, N, 7.38. Found: C, 41.70, H, 4.25, N, 7.16.

HRMS (ESI): m/z Calculated for C₂₀H₂₄N₃ClIr: 534.1288; m/z measured: 534.1280

Synthesis of Ir2: [(bdpa)Cp*IrCl]Cl

Using the same procedure as for the synthesis of **Ir1**, **Ir2** was obtained as a yellow powder (0.06 g, 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, ³J_{H-H} = 7.2 Hz, 1H, py CH), 7.82-7.77 (m, 2H, CH), 7.38-7.35 (m, 5H, CH), 7.28-7.27 (m, 2H, CH), 7.22 - 7.18 (m, 2H, CH), 5.88 (s, 2H, NCH₂), 1.50 (s, 15H, Cp* CH₃).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 154.7, 152.3, 141.4, 133.9, 129.3, 128.1, 126.4, 121.8, 116.2, 88.7, 57.4, 8.9.

HRMS (ESI): m/z Calculated for C₂₇H₃₀N₃ClIr: 624.1752; m/z measured: 624.1760

Accurate elemental analyses could not be obtained. We assume that the high hydrophilicity of this

compound is responsible for this issue. X-ray quality crystals failed to provide accurate elemental analyses

Synthesis of Ir3: [(bmdpa)Cp*IrCl]Cl

Using the same procedure as for the synthesis of **Ir1**, **Ir3** was obtained as a yellow powder (0.092 g, Yield: 86 %). ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, ³J_{H-H} = 6.0 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, py CH), 8.50 (dd, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 1.6 Hz, 1H, py CH), 7.88-7.84 (m, 1H, CH), 7.71-7.67 (m, 1H, CH), 7.48 (d, ³J_{H-H} = 8.4 Hz, 1H, py CH), 7.49 - 7.30 (m, 6H, CH), 7.21-7.17 (m, 2H, CH), 6.37 (q, ³J_{H-H} = 6.8 Hz, 1H, CH), 1.96 (d, ³J_{H-H} = 6.8 Hz, 3H, CH₃), 1.60 (s, 15H, Cp* CH₃).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 156.4, 153.6, 152.8, 152.1, 141.8, 139.9, 139.0, 129.2, 128.0, 126.7, 122.4, 121.9, 119.5, 117.2, 88.7, 61.6, 22.1, 9.2.

HRMS (ESI): m/z Calculated for C₂₈H₃₂N₃ClIr: 638.1914; m/z measured: 638.1907

Accurate elemental analyses could not be obtained. We assume that the high hydrophilicity of this compound is responsible for this issue. X-ray quality crystals failed to provide accurate elemental analyses.

General Experimental Procedure for transfer hydrogenation of Levulinic acid

LA (2 mmol), FA (2-8 mmol), Et₃N (0-4 mmol), catalyst (0.05-0.1 mol%) were added to a Schlenk tube with a Teflon screw cap. The mixture of substrates and catalyst was heated to the desired temperature in less than 15 min. The crude mixtures were analyzed by ¹H NMR using anisole as internal standard. Volatile compounds were removed under vacuum and the crude product was purified by column chromatography using petroleum ether / ethyl acetate (3/1; v/v) as eluent.

Base screening

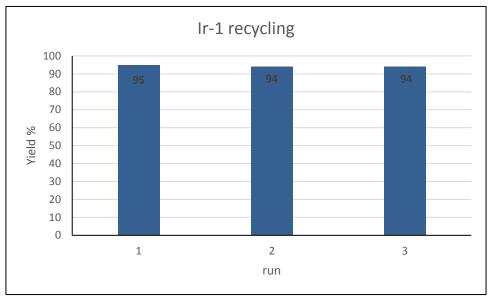
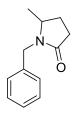

Entry	Base	LA Conv. (%) ^b	GVL Yield(%) ^b
1	iPr ₂ NH	30	30
2	HCOONa	75	43
3	K_2CO_3	73	61
4	K ₃ PO ₄	92	41
5	Et ₃ N	82	82

Table S1 Tranfer hydrogenation of LA by different base.^a

^a conditions: LA (0.232 g, 2 mmol), Base (0.5 eq), FA (2 eq), **Ru1** 0.1 mol %, 150 ° C, 16 h.

^bdetermined by ¹H NMR

Recycling of Ir-1



Recycling of Ir-1(0.1 mol%, 120 °C, LA:FA:Et₃N = 1:4:2)

General procedure for the reductive amination of LA

Benzylamine (4-8 mmol), catalyst (0.05-0.1 mol%), levulinic acid (2-4 mmol), formic acid (4-8 mmol) and a magnetic stirring bar were placed in a Schlenk tube. The mixture was stirred at 120-150 °C for 16 h. After cooling to room temperature, the reaction was basified with saturated NaOH solution, and extracted with DCM (10×3 mL). The organic layers were washed with brine and dried over Na₂SO₄. After removing DCM in vacuuo, the product was purified by flash column chromatography using petroleum ether and ethyl acetate with 1% triethylamine as eluent.

Analytic data of 1-Benzyl-5-methylpyrrolidin-2-one.

1-Benzyl-5-methylpyrrolidin-2-one: Yellow oil;

NMR data were consistent with reported data⁶

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.33-7.22 (m, 5H), 4.96 (d, ${}^{2}J_{H-H} = 15.2$ Hz, 1H), 3.98 (d, ${}^{2}J_{H-H} = 14.8$ Hz,1H), 3.52 (m, 1H), 2.50-2.40 (m, 2H), 2.16-2.14 (m, 1H), 1.60-1.58 (m, 1H), 1.15 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H); ${}^{13}C$ {¹H} NMR (100 MHz, CDCl₃) δ (ppm): 175.0, 137.0, 128.7, 128.1, 127.5, 52.9, 44.0, 30.4, 26.8, 19.7.

NMR spectra

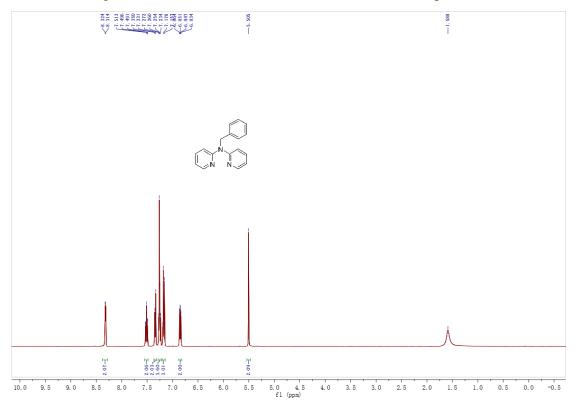
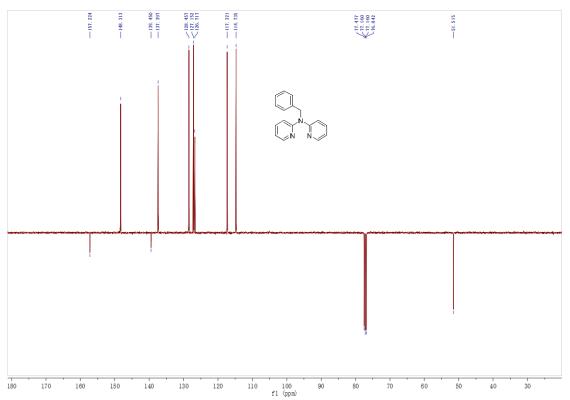



Figure S1¹H NMR (CDCl₃, 400 MHz, 298 K) of compound 2

Figure S2 ¹³C {1H} NMR (100 MHz, J mod, CDCl₃) of compound 2

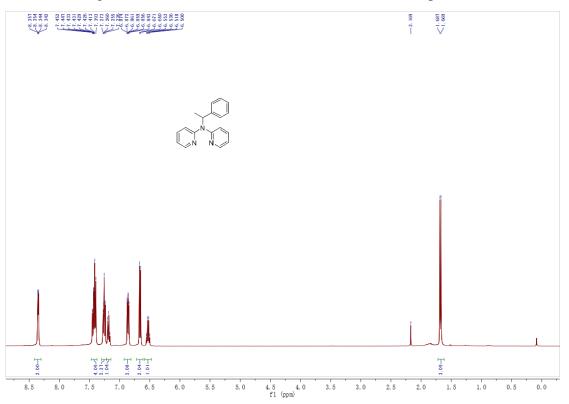
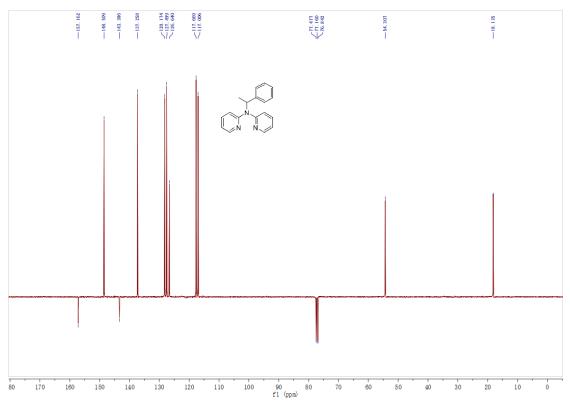



Figure S3 ¹H NMR (CDCl₃, 400 MHz, 298 K) of compound **3**

Figure S4 ¹³C {1H} NMR (100 MHz, J mod, CDCl₃) of compound **3**

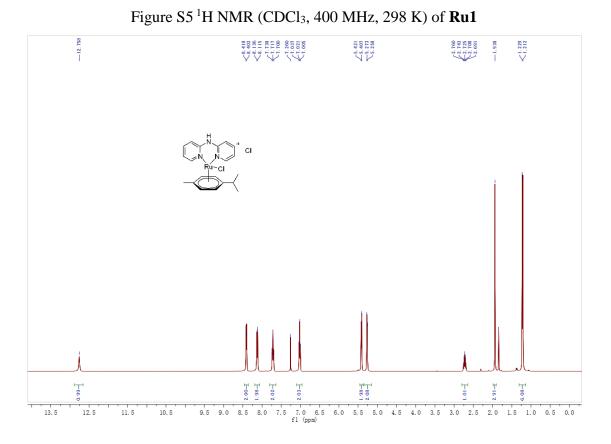
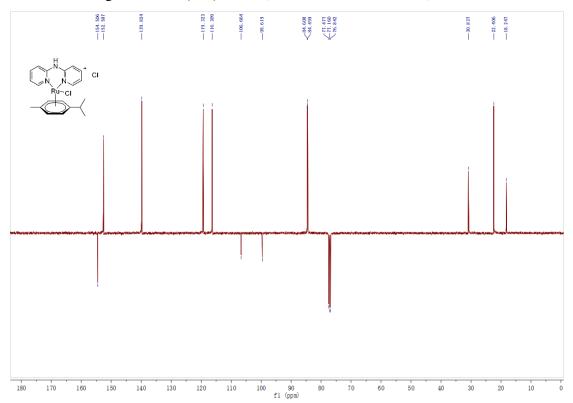
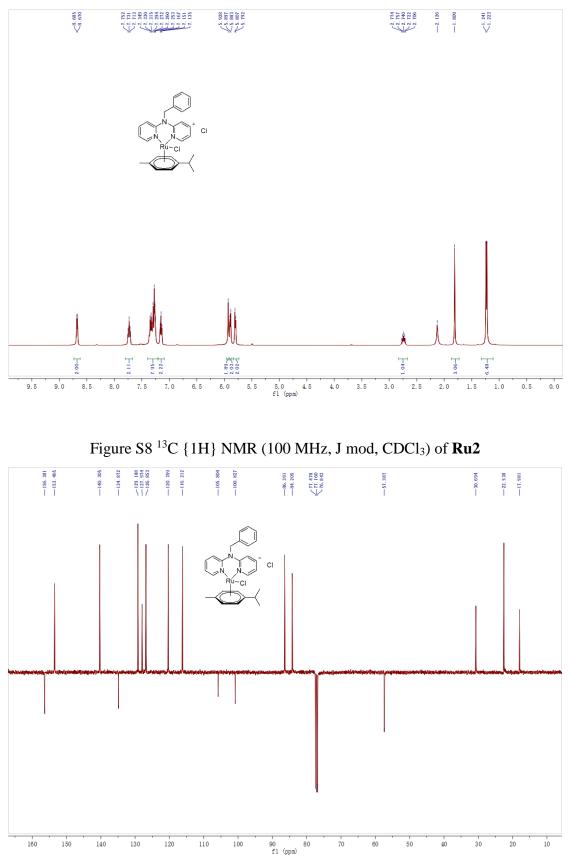




Figure S6¹³C {1H} NMR (100 MHz, J mod, CDCl₃) of Ru1

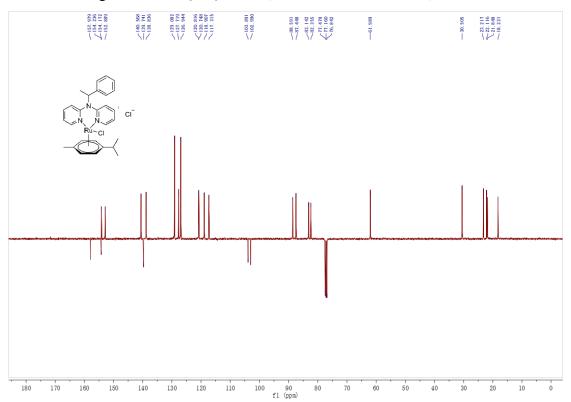


Figure S7 ¹H NMR (CDCl₃, 400 MHz, 298 K) of Ru2

Figure S9¹H NMR (CDCl₃, 400 MHz, 298 K) of **Ru3**

Figure S10 ¹³C {1H} NMR (100 MHz, J mod, CDCl₃) of Ru3

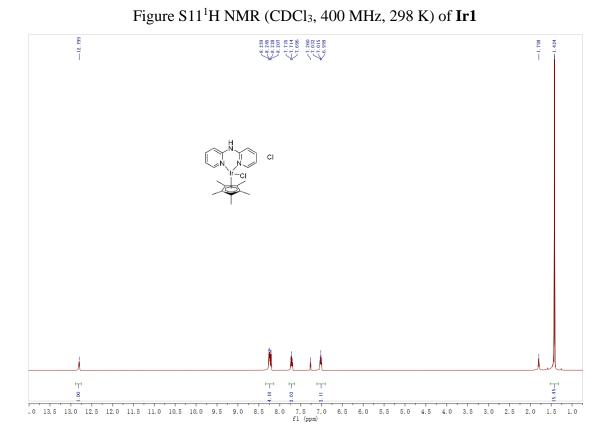
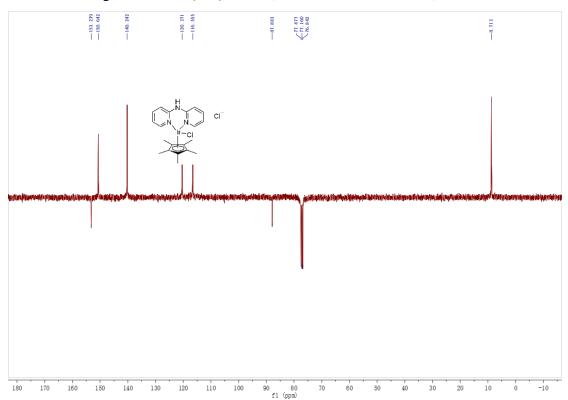



Figure S12 ^{13}C {1H} NMR (100 MHz, J mod, CDCl₃) of Ir1

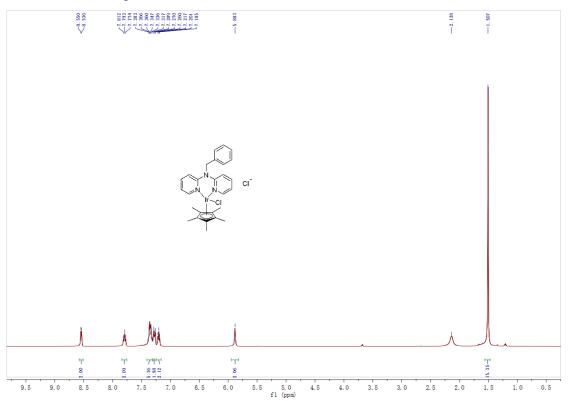
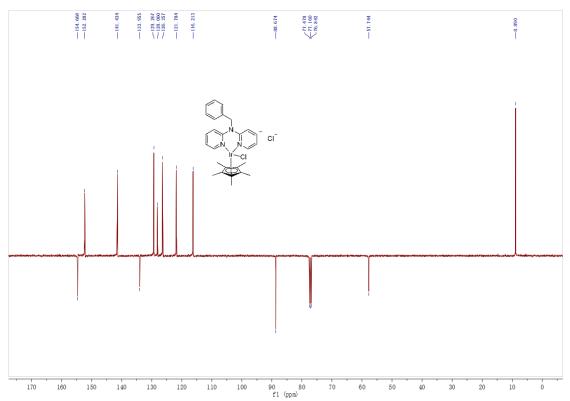



Figure S13 ¹H NMR (CDCl₃, 400 MHz, 298 K) of Ir2

Figure S14 ^{13}C {1H} NMR (100 MHz, J mod, CDCl₃) of Ir2

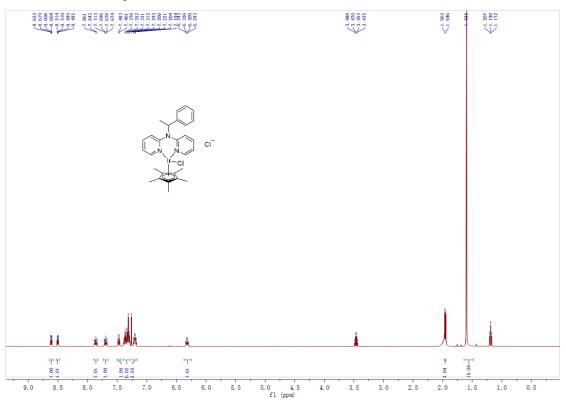
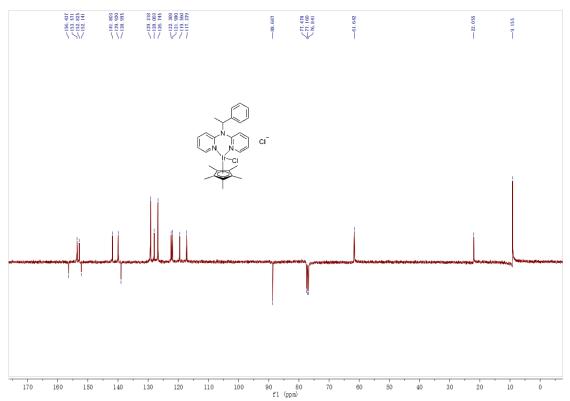



Figure S15¹H NMR (CDCl₃, 400 MHz, 298 K) of Ir3

Figure S16 13 C {1H} NMR (100 MHz, J mod, CDCl₃) of Ir3

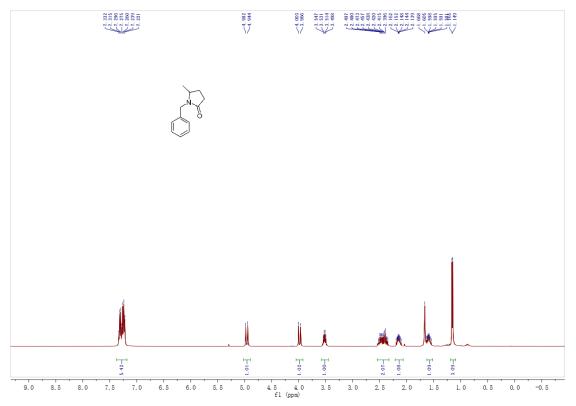
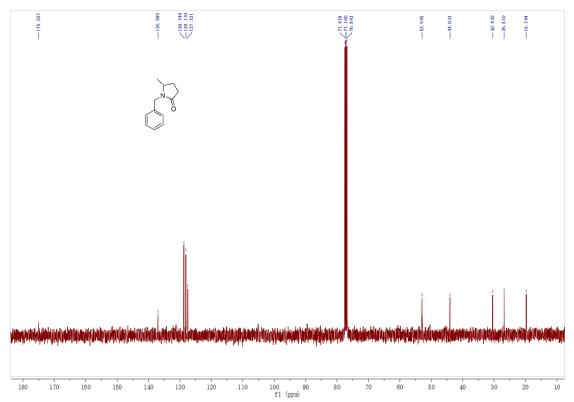



Figure S17¹H NMR (CDCl₃, 400 MHz, 298 K) of 1-Benzyl-5-methylpyrrolidin-2-one

Figure S18 ¹³C {1H} NMR (100 MHz, CDCl₃) of 1-Benzyl-5-methylpyrrolidin-2-one

References

- (1) Bolm, C.; Frison, J.-C.; Le Paih, J.; Moessner, C. Tetrahedron Lett. 2004, 45, 5019-5021.
- (2) Fakih, S.; Tung W. C.; Eierhoff, D.; Mock, C.; Krebs, B. Z. Anorg. Allg. Chem. 2005, 631, 1397-1402.
- (3) Schareina, T.; Hillebrand, G.; Fuhrmann, H.; Kempe, R.; *Eur. J. Inorg. Chem.* 2001, 2421-2426.
- (4) Romain, C.; Gaillard, S.; Elmkaddem, M. K.; Toupet, L.; Fischmeister, C.; Thomas, C. M.; Renaud, J.- L. *Organometallics*, **2010**, *29*, 1992-1995.
- (5) Bucci, A.; Memendez Rodriguez, A.; Bellachioma, G.; Zuccaccia, C.; Poater, A.; Cavallo,
- L.; Macchioni, A. ACS Catal, 2016, 6, 4559-4563.
- (6) Wei, Y; Wang, C.; Jiang, X.; Xue, D.; Liu Z.-T.; Xiao, J. Green Chem. 2014, 16, 1093-1096.