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ABSTRACT  

Three volatile organic compounds (benzene, cyclohexane, dichloromethane) were adsorbed onto 

activated carbon fiber cloth. 
1
H (MAS and PFG) NMR techniques were carried out and the 

signals were analyzed in terms of peak surface areas and shifts. These techniques were shown to 

be very useful for determining i) the intrinsic quantification of adsorbed molecules (VOC and/or 

water) in the porosity of the materials; the adsorption capacities ranged from 0.2 to 4 mol.kg
-1

, ii) 

the mechanisms of interactions between adsorbed organic molecules and the carbon walls; 
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 2

illustrations of positions of the molecule inside the pore volume are proposed; the proton-wall 

distance was less than 0.15 nm, iii) the diffusivities; surface diffusion coefficients (DS) were 

estimated at ≈ 4.10
-12

 m
2
.s

-1
 for cyclohexane, ≈ 1.10

-11
 m

2
.s

-1
 for benzene and ≈ 4.10

-11
 m

2
.s

-1
 for 

dichloromethane. 

KEYWORDS 

Solid NMR, Activated carbon, Volatile Organic Compound, Adsorption mechanisms, Diffusion 

coefficients 

 

INTRODUCTION 

In both industrialized and developing countries, volatile organic compound (VOC) emissions 

are among the causes of atmospheric pollution. They act as chemical precursors of pollutants like 

tropospheric ozone and can also directly impact human health. One of the main VOC treatment 

processes is adsorption onto active carbon (grains or fiber cloths). The high porosity of these 

materials enables high retention rates and a very wide range of gas flow rates (100 to 10,000 

m
3
/h) for a large diversity of organic molecules. In this context, knowledge of adsorbent supports 

and analyses of physical and chemical phenomena involved in the adsorption process are of 

utmost importance. These studies use several characterization methods and techniques. In 

general, porous volumes, specific surface areas, and pore size distributions can be deduced from 

the adsorption isotherm curves of nitrogen, as well as gases such as helium or CO2
1
. These 

isotherms are described by means of the BET model
2
 or, more recently, a model based on density 

functional theory
3,4

 calculations. From a chemical point of view, Boehm's method leads to the 

characterization and quantification of surface functional groups
5
. Calorimetric measurements 
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(microcalorimetry
6,7,8,9

, differential scanning calorimetry
10,11,12

) provide energetic values of 

adsorption interactions, in particular enthalpies and Gibbs energies. Isotherm, kinetic and 

breakthrough curves result from experimental data obtained through indirect measurements. 

Adsorbed quantities are deduced from the difference between non-adsorbed compound 

concentrations (remaining in the reactor atmosphere) and initial concentrations. Quantitative 

analyses of organics in the gas phase are performed by gas chromatography separation (the case 

of multicomponent adsorption)
13

. The detection and quantification of organics use spectroscopic 

or flame ionization detection (FID) methods
14,15

. From these experimental data, diffusion 

coefficient values are obtained by indirect means such as parametric correlations and adjustments 

in adsorption kinetic models
16

. 

Earlier nuclear magnetic resonance (NMR) investigations of organic compounds adsorbed onto 

active carbons and non-carbon lattices were conducted in the late 1980s
17,18

. Due to significant 

technical progress, NMR now appears as an additional analytical tool to enhance studies of 

adsorbed compounds onto host porous active carbons
19

. Most notably, NMR methods provide a 

dual benefit: non-destructivity and direct measurements of the adsorbed phase inside porous 

materials. Several studies have been carried out on non-carbon materials (MCM-41, zeolites, 

silicates). Pore size distributions have been characterized
20

. Furthermore, using pulsed field 

gradient (PFG) NMR methods, information concerning the diffusion and adsorbed phase 

behavior inside the porosity has been obtained onto mesoporous
21,22

 and nanoporous 

adsorbents
23

. NMR techniques applied to carbon materials revealed two specific features. First, a 

shift of a few ppm towards strong fields was observed for all NMR signals compared to the 

signal for pure organic compounds. Second, large peak broadness of the order of 10 ppm was 

noted. Complex signals are produced in the case of multicomponent adsorption or for carbons 
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 4

presenting a strong dependence of the chemical shift vs. adsorption sites. In such a case, line 

broadening and overlapping signals hide the spectrum deconvolution
,24

. Nevertheless, fruitful 

studies using 
1
H, 

13
C, 

19
F, and 

11
B NMR probes have been published

25,26,27
. Assuming a 

relationship between the peak shifts and the adsorption cavity porous diameter, resulting from 

the shielding effect at the carbon surface, authors have principally investigated the adsorbate 

behavior in the porosity. Furthermore, in order to improve the spectrum deconvolution,   
2
H and 

31
P magic-angle spinning (MAS) NMR techniques have been used to describe multicomponent 

adsorption phenomena onto activated carbon
28,29

 and to evaluate the effects of carbon substrates 

activation
30

.
 
The combination of PFG and MAS condition was also carried out, providing 

diffusion results for liquid crystal confined into microporous glasses
31

. 

Studies using 
1
H MAS NMR in porous carbon have been conducted

32
. Nevertheless, 

conclusive results remain scarce in the literature for the characterization of the adsorption of 

organic molecules using NMR methods (quantification of the adsorbed compounds, 

determination of the diffusion coefficients, characterization of the adsorbed phase for 

multicomponent adsorption, etc.).  

The present work focused on the use of 
1
H NMR to study the mechanisms of volatile organic 

compounds adsorbed onto activated carbons. Both 
1
H MAS NMR and PFG NMR were used to 

observe and discuss spectral features according to the adsorbate/adsorbent characteristics. In 

addition, 
1
H PFG NMR gave selective access to the diffusion coefficients of adsorbed molecules 

at the micrometer scale
33,34

.  

 

MATERIALS AND METHODS 

NMR experiments 
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 5

1
H MAS NMR was employed to average out chemical shift anisotropies, homonuclear proton-

proton dipolar coupling and reduce the effect of magnetic susceptibility inhomogeneities. 
1
H 

MAS NMR enables the isotropic chemical shifts of adsorbed compounds to be extracted and 

provides information about their interaction with the carbon surface. Quantitative measurements 

were carried out using the areas of each peak, taking into account the number of hydrogen atoms, 

and using a calibration with known quantities of adamantane (C10H16). 
1
H NMR spectra were 

obtained using a BRUKER AV300 (7T) spectrometer with a 4 mm MAS probe. Complementary 

experiments were performed using a 900 MHz BRUKER spectrometer equipped with a 1.3 mm 

MAS probe in order to evaluate the influence of H-H dipolar coupling on the proton linewidth.  

On the other hand, 
1
H PFG NMR was used to estimate the self-diffusion coefficients (D), also 

called the diffusivity, of adsorbed molecules. This technique is based on an echo NMR 

experiment carried out with a spatial encoding of nuclei. After a diffusion time (∆), the 

magnitude of the sample’s signal is measured. Diffusivities are deduced from the correlation 

between this magnitude and the gradient value
35,36

. Correlatively, the mean squared molecular 

displacement (r) during the diffusion time (∆) is given by the Einstein equation
37

.  

� = √2. Δ. �		(1) 
Then, then a molecular velocity vm can be deduced: 

� = �Δ		(2) 

Measurements were performed using a PFGSTE (Pulsed Field Gradient Stimulated Echo) 

experiment on a BRUKER AV300 spectrometer equipped with a PFG BRUKER probe (30 T/m). 

 

 

Thermogravimetric analyses (TGA)  
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 6

Thermogravimetric measurements were carried out by means of a TA Instrument SDT Q600 

analyzer. A loaded sample of THC515 was analyzed at atmospheric pressure under flow of 

nitrogen. Mass variation was followed versus temperature until 250°C. At this temperature, for 

all samples, the mass reached a minimum, which indicated a total desorption of the VOC. 

Actived carbon 

A commercial microporous active carbon, reference THC515, produced by Dacarb (Asnières-

sur-Seine, France) was used. This sorbent is an activated carbon fiber cloth (ACFC). It is 

particularly suitable for polluted gas treatments. Compared to granular activated carbons, they 

have larger external surface areas directly linked to nanopores. This specificity leads to a 

decrease of the intra-particular mass transfer resistance and then to a 2 to 20 times faster 

adsorption kinetics. Moreover, fast adsorption/desorption cycles using the Joule effect could be 

easily implemented
38

. BET analysis gave a specific surface area of 1768 m
2
.g

-1
 for THC515. 

According to the Horvath-Kawazoe (HK) model or the non-linear Density Functional Theory 

(DFT), the pore width distribution was centered on sizes of 0.46 nm and 0.49 nm, respectively 

(Figure 1). Determination of surface functional groups were performed by Boehm'method 

previously showing  weak concentrations (about 0.154 meq/g for basic group and 0.231 for acid 

groups)
39

. 

 

Sample preparation 

ACFCs with adsorbed organic compounds were prepared in 2.0 L glass sealed reactors. Three 

VOCs were chosen to have a wide range of molecular structures and physical and chemical 

properties: benzene, cyclohexane and dichloromethane (DCM). Briefly, 100 mg of THC515 was 

placed in the batch reactor in a central position and a known volume (a few µL) of liquid VOC 
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 7

was injected using a syringe. The adsorption lasted for 48 hours, previously shown to be 

sufficient to reach equilibrium. The carbon samples were not dried, i.e. directly put into the 

vessels from the atmosphere, without any drying operation. 

 

RESULTS AND DISCUSSION 

MAS effects 

Figure 2 presents the 
1
H NMR spectra of benzene, DCM and cyclohexane. A comparison of 

static and MAS spectra shows the effect of magic-angle spinning on the proton NMR signal. In 

these three cases, the static peaks exhibit a large magnitude with a correlated much lower full 

width at half maximum (FWHM) between -4 and -8 ppm. These values are consistent with those 

of -10 to -6 previously obtained for H2 in a microporous carbon
24

. 

In most cases, static NMR linewidths hinder a quantitative analysis of NMR spectra but, as 

illustrated in Figure 2, magic-angle spinning conditions enhance the detection and enable a clear 

distinction of VOC signals in the case of multicomponent adsorption. For instance, Figures 2(b) 

and 2(c) illustrate the value of MAS for spectral analysis. Figure 2(b) represents the NMR 

spectra of the adsorption of a mixture of cyclohexane/benzene. The MAS signal clearly reveals 

two separate peaks corresponding to each of the adsorbed molecules. The spectrum in Figure 

2(c) was obtained from DCM adsorbed onto a wet host carbon. Water molecules, present in most 

experiments, and VOC are easily distinguishable and can be quantified. It should also be noted 

that the spectrum reveals two adsorbed populations of water molecules. This dual peak will be 

explained below. 

 

Signal broadness interpretation 
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 8

The proton NMR signals of VOCs adsorbed onto carbon exhibit some characteristic features of 

solid state NMR spectra: relatively short attenuation times and a static linewidth of a few kHz (2-

4 kHz). The 
1
H static NMR linewidth can be explained by different mechanisms: i) homogenous 

broadening arising from 
1
H-

1
H dipolar interactions, chemical shift anisotropy and a contribution 

of the T2 relaxation time, ii) inhomogeneous broadening corresponding to a distribution of 

chemical shifts. 

However, the observed 
1
H NMR linewidth remains relatively small for a real solid state NMR 

case dominated by homonuclear proton-proton dipolar interactions. One must keep in mind that a 

proton-proton dipolar interaction for two nuclei separated by one Angstrom gives rise to a 

dipolar coupling constant of 120 kHz. The linewidth measured (a few kHz) can probably be 

explained by two factors: i) a relatively fast and isotropic reorientation of the adsorbed 

molecules, giving rise to a motional averaging of the dipolar interactions, and ii) the dilution of 

the molecules on the surface, limiting the possibilities of intermolecular dipolar interactions. 

Furthermore, the values of T2 obtained under MAS conditions (about 2 ms in all cases) suggest 

that the 
1
H homogeneous linewidth is only 35 Hz, confirming that the majority of the additional 

broadening observed in Figures 2(a), 2(b) and 2(c) is a result of a distribution of chemical shifts 

and, therefore, of chemical environments.  

 

Anisotropy effects 

FWHMs decrease from about 8 ppm of chemical shift in the static case to approximately 1 

ppm under MAS conditions (preserving the integrated intensities), confirming the results for 

comparable spinning rates in a mesoporous carbon
32

. A spinning rate of 10 kHz is high enough 
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 9

to average out the spectra anisotropies. A higher spinning rate (12 kHz, 15 kHz) has no impact 

on the spectra (no evidence for spinning sidebands or modification of lineshapes).  

In addition, a hypothetical broad signal was carefully searched for. Such a signal can be 

generated by a part of the adsorbed molecules exhibiting large dipolar coupling
31,32

. For this 

specific purpose, high field 
1
H NMR recordings correlated with very high MAS frequencies were 

carried out with the aim of detecting such interaction effects. 15 kHz, 30 kHz and 45 kHz MAS 

signals were recorded on a cyclohexane/THC515 sample using a 900 MHz spectrometer 

confirming the absence of remaining homonuclear dipolar broadening. The three spectra gave 

the same integration values. 

Therefore, it can be considered that the entire signal was contained in the main NMR peak of 

the spectra and that MAS frequencies of 10 to 12 kHz were sufficient to average out all the 

anisotropies fully and reveal completely the signal of all the adsorbed molecules. 

Two remarks can be made: i) classic peak integration methods can lead to quantitative 

measurements (this point was confirmed by a set of thermogravimetric analyses (TGA) whose 

results differ by less than 10% relative error from NMR integrations), ii) in terms of 

diffusometry, classic static PFG measurements can be envisaged. 

The relevance of MAS NMR spectroscopy for the quantitative and qualitative analysis of the 

adsorbed organic compounds in either mono- or multicomponent adsorption was thus confirmed. 

 

Magnetic inhomogeneities (distribution effects) 

The consistent MAS width revealed that the average value of anisotropic bands was not 

unique, but rather varied from one adsorption site to another. The origin of such fluctuations was 

explained by the magnetic inhomogeneities in the lattice and a given distribution model was 
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 10

proposed. In order to confirm this point, transversal relaxation times (T2) were measured. The 

NMR signal relaxation time is a direct consequence of the defocalization of the set of resonant 

nuclei. This defocalization is due to two main factors: i) molecular interactions and ii) 

inhomogeneities of the NMR fields. The latter directly results from the microscopic irregularity 

of the host lattice and lead to the distribution effect observed on the spectra. The relaxation time 

of the signal without those inhomogeneities is commonly called the “true T2” while the real 

relaxation time measured is called “T2*”. The presence of inhomogeneities could be observed 

through a significant difference between T2* and T2. The classic Spin-Echo measurement 

method of T2 was used
40

. This pulse sequence leads to the spins refocusing, and does not impact 

the precession speed, allowing the impact of the magnetic inhomogeneities to be artificially 

compensated. T2 measurements were carried out on three samples. In all cases, a significant 

difference (of the order of 1.5 ms) was observed between T2 and T2
*
. Such a discrepancy 

confirms the large contribution of magnetic inhomogeneities to the observed band width. 

Overall, the linewidth measured (a few kHz) can be explained by two factors: a relatively fast 

and isotropic reorientation of the adsorbed molecules, giving rise to a motional averaging of the 

dipolar interactions, and the dilution of the molecules on the surface limiting the possibilities of 

intermolecular dipolar interactions. Furthermore, the values of T2 obtained under MAS 

conditions (about 2 ms in every case) suggest that the 
1
H homogeneous linewidth is only 35 Hz, 

confirming that the majority of the additional broadening observed in Figures 2(a), 2(b) and 2(c) 

is a result of a distribution of chemical shifts and, therefore, of chemical environments. 

 

Distribution effects on NMR signals 
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 11

Figures 3 and 4 illustrate the 
1
H NMR spectra of cyclohexane and DCM adsorbed on THC515, 

for adsorbed loadings between 0.2 and 4 mol.kg
-1

. Three features can be noted. Firstly, a 

significant translation of all signals towards small ppm values was observed, with respect to the 

chemical shifts of the same molecule in liquid form. Interestingly, this difference clearly changes 

from one compound to another. Chemical shifts were decreased by 7 ppm for cyclohexane, 10 

ppm for DCM, and 6 ppm for water. This shift was 5.5 ppm for benzene (Figure 2). Secondly, 

these shifts were dependent on the adsorbed amounts. For the three VOCs, higher amounts were 

associated with an enlargement towards high ppm values, which induced a shift of approximately 

1 ppm of the MAS averaged signal. This phenomenon was already obtained on mesoporous and 

microporous carbons
32,24

.  Thirdly, for increasing loadings of VOCs, the initial adsorbed water 

signal vanished while a new peak located a few ppm away appeared. The origin of lineshape 

modifications can be related to the population of various sites presenting unequal interactions 

with the molecules. The magnetic field experienced by the nucleus corresponded to the applied 

NMR, slightly impacted by the shielding effect produced by the magnetic susceptibility at the 

carbon surface
41,42,43

. A classic interpretation of this phenomenon can be provided. The induced 

field is caused by the ring currents
 
generated by the π electrons of the graphite layers. Since it 

goes against the excitation (Lenz’s law), the actual field experienced by the absorbed nucleus 

above the graphitic plane is lower than the original NMR field
44

. For the storage of hydrogen in 

porous carbons, a phenomenological model to interpret chemical shift corrections (∆δ) in 

graphitic cavities has been proposed
24

. According to this approach, the impact of a graphitic 

plane on the chemical shift at the vicinity of the surface is described by Equation (3): 

∆� = �
�� 						(3) 
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 12

where (d) is the distance to the plane and (a) is a constant depending on the magnetic moment 

of the adsorbent layer. Such a surface is highly anisotropic and gives rise to a strong 

modification of the adsorbed molecule chemical shift tensor. 

Its correction to the applied field is given by Equation (4) proposed by Carrington
45

. 

∆� = − ��4� .
��. ��
√2.��

. 1�� 				(4) 

where e is the elementary charge, me the electron mass, R the ring current radius and �� the 

magnetic constant. Finally, taking into account two parallel walls in a slit pore of width w gives: 

∆� = �		 � 1�� +
1

(! − �)�"		(5) 

Considering a proton located in the middle of the cavity: 

∆� = 16	�!� 				(6) 
At a microscopic level, theoretical calculations show the most energetically favorable position 

for benzene adsorbed on a graphene sheet. These studies depict a molecular plane strictly parallel 

to the graphene layer and give an equilibrium separation of 0.36 nm between the benzene and 

graphitic planes
46,47,48

. Therefore, in a pore thinner than 0.72 nm in the case of monolayer 

adsorption, the molecule is considered to be at the center of the cavity. 

According to the textural characterization, a narrow pore distribution was observed for 

THC515, with micropore sizes centered at 0.45 nm. On the basis of this value, using Equation 

(4), the a value was calculated at – 0.031 ppm.nm
3
. This approach, despite its phenomenological 

character, allows the shift dependence of the molecules with respect to the pore diameter to be 

calculated. 

However, several observations can be made from Figures 5 and 6. Figure 5 shows that slit-

shaped pores with widths between 0.43 and 0.49 nm are involved in benzene adsorption 
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 13

phenomena. This interval perfectly matches the BET pore size distribution peak of THC515 

(shown in Figure 1 using the Horvath-Kawazoe model). The observed experimental shifts, 

between -4 and -7 ppm, can be converted into a pore size by applying Equation (5). Figure 5 

shows that the 
1
H spectra are related to pore sizes between 0.43 and 0.49 nm. 

Furthermore, the NMR peak enlargement towards high values of ppm proves that small 

cavities are favored during the adsorption process. However, a limitation occurred for ultra-

micropores, with a diameter less than 0.4 nm. The minimum shift values observed for C6H6 were 

of the order of -7 ppm. Therefore, there is no experimental evidence for the occupation of pores 

smaller than 0.4 nm. The 10 ppm case of DCM results from geometrical factors. For a given pore 

size, a proton from DCM will be located closer than C6H6, leading to a strong 
1
H shift. Figure 7 

shows the shift of non-centered protons. Independently of slit size, it appears that for a 

wall/proton distance less than 0.15 nm, the shift was clearly higher than 10 ppm. Consequently, 

it may also be anticipated that for micropores thinner than 0.5 to 0.6 nm, multilayer adsorption 

was unlikely. The conformations of cyclohexane suggested higher fluctuations of chemical 

shifts. The spectra gave a value of 7 ppm, which was less than the shift measured for 

dichloromethane. The steric congestion of cyclohexane may explain its adsorption in larger pores 

than benzene or dichloromethane molecules (Figure 7). 

 

VOC adsorption and water desorption mechanisms  

The adsorption competition of water/VOC was well described by MAS NMR. Figure 3(a) 

shows the water peak of spectra recorded with increasing amounts of adsorbed dichloromethane. 

Water is gradually desorbed from the micropores revealing a preferential adsorption of VOC in 

micropores. Such a phenomenon was also observed onto micro/macroporous carbon by Gun’ko 
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et al. (2008) for a water/benzene mixture
19

. Interestingly, the initial water peak magnitude 

continuously decreased and was gradually replaced by another one with a chemical shift of -0.5 

ppm and increasing intensity. The -0.5 ppm chemical shift of the new peak remained much lower 

than that of liquid water, revealing a weaker but still significant influence of the graphitic 

network. Thus, the presence of adsorbed water inside the microporosity was still assumed, with a 

decrease in the wall/H2O molecule interaction. In other terms, migration of H2O towards larger 

micropores and/or mesopores was revealed. In addition, the very flat component appearing in 

Figure 3(d)/curve (d) could be attributed to residual extra-porous adsorbed water. PFG 

measurements in the next section of this work completed and confirmed this competition 

behavior involving water and VOC(s). 

 

Measurement of self-diffusion constants  

PFG recordings were conducted on wet THC515 with three VOCs for various diffusion time ∆ 

values (from 40 ms to 180 ms). Measurements were limited to 180 ms due to the T2 relaxation 

effect. Over this period, the signal/noise ratio was too weak. Figure 8 shows the cylcohexane 

Ψ/Ψ° ratio evolution for increasing gradient intensities for ∆ = 80 ms. Experimental and fitted 

model curves are presented. The commonly used model equation is: 

Ψ
Ψ� =&'(. exp ,−	γ�. G�. δ�. �0,(. (Δ − δ3)2(

	(6) 

 Equation (6) involves many groups of molecules with self-diffusion Ds,i. pi is the fraction of 

molecules in group i, γ the proton gyromagnetic ratio, G the applied magnetic field gradient and 

δ the pulse duration.  

In porous systems, the diffusivity is generally given by
49

: 
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�0 = '340. �0,340 + '5. �0,5 

Where pads and Ds,ads are respectively the fraction and the self-diffusion constant of adsorbed 

molecules, and pv and Ds,v respectively the fraction and the self-diffusion of molecules in the 

vapor phase in equilibrium with the adsorbed one. 

The agreement between the model and measurements was obtained using a single diffusivity 

value. Consequently, a single dominant diffusion phenomenon was implied. According to the 

wall/nucleus distance previously evaluated, and the unique peak obtained in MAS spectra, the 

dominant diffusion mechanism was expected to be surface diffusion. Consequently, pv can be 

considered negligible. 

Three diffusion mechanisms are involved in porous structures and their respective 

predominance depends on both pore size and the molecule free mean path (FMP)
50

. But, it 

should be noted that FMP must be distinguished from the molecular displacements below 

deduced from PFG experiments. FMP corresponds to the mean distance covered by a molecule 

between two collisions with another molecule. If the pore diameter is larger than the FMP, 

collisions with walls are not influential and a molecular diffusion process is predominant. If the 

FMP increases or the pore size is smaller, the host frame presence appears in the diffusion 

process. The contribution of wall collisions becomes significant and Knudsen’s diffusion 

mechanism is then effective. Lastly, if the FMP is of the same order as the pore diameter, the 

wall/molecule interaction is dominant and the surface diffusion mechanism is expected
44

.
  

Modeling has provided orders of magnitude of Ds for these diffusion processes
51,52,53

. In 

nanopores (< 2 nm), surface diffusion is largely dominant with Ds values lower than 10
-8

 m
2
.s

-1
. 

For cyclohexane, a Ds of the order of 4.10
-12

 m
2
.s

-1
 was measured. Ds ≈ 1.10

-11
 m

2
.s

-1
 and Ds ≈ 

4.10
-11

 m
2
.s

-1
 were obtained for benzene and DCM, respectively. Those values were in agreement 
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with those of 10
-10

 m
2
.s

-1
 to 5.10

-9
 m

2
.s

-1
 in studies carried out for cyclohexane onto actived 

carbon micro-meso hierarchical pore systems
54

 and hexane in MCM-41 mesoporous silicas
55

. In 

addition, they confirmed the cyclohexane MAS results. In fact, the lower diffusivity of 

cyclohexane corroborated the previous assumption of its reduced mobility in porosity as this 

molecule has a more complex and voluminous structure. 

Diffusivities Ds and corresponding molecular velocities are reported in Figure 8. A slight 

decrease in these parameters is observed with the observation time. This feature is explained by a 

short ∆ time with respect to the time interval between two redirections of diffusing molecules in 

the host frame. The phenomenon is illustrated considering the molecule displacement in Figure 

9. This schematic presentation demonstrates that with a short ∆, the measured molecular 

displacement doesn’t take account of the redirection phenomenon and, as a result, provides vm 

and Ds values greater than the macroscopic one. Using a sufficiently long ∆, the mean number of 

redirections per time unit becomes constant, and the limit values of Ds and vm are reached. 

Interestingly, in the latter conditions, the NMR diffusion coefficient value leads to the diffusivity 

that could be observed at a macroscopic scale. 

 

Confirmation of water behavior  

Two sets of recording were carried out on wet THC515. The first sample contained only 

adsorbed water (4 mol.kg
-1

) while the second was loaded with a water/cyclohexane mixture. 

Adsorbed water concentration was also of the order of 4 mol.kg
-1

 and cyclohexane was doubly 

deuterated C6D12. Consequently, only adsorbed water molecules were analyzed by NMR. The 
1
H 

MAS spectra of these samples are shown in the inset of Figure 10. The change in water molecule 

behavior was thus highlighted. 
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The Ds values from PFG measurements were of the order of 5.10
-13

 m
2
.s

-1
 for the first sample 

(water only) and 10
-11

 m
2
.s

-1
 for the second (water/deuterated cyclohexane). The ratio of 50 

between the two Ds values remained constant despites ∆ variations. Figure 10 represents the 

molecular velocities values and their constant ratio. It reveals a six times higher water mobility in 

the presence of VOC. The results obtained using MAS NMR were thus confirmed. A lower 

interaction with the host frame induced both a lower peak shift towards strong fields and a 

greater mobility. Nevertheless, these Ds values verified that surface diffusion was occurring, 

excluding the assumption of extra-porous water and confirming the dual presence of water and 

VOC in micropores. 

 

CONCLUSION 

The possibility of using 
1
H NMR as a tool for the detection, identification and quantification of 

VOCs adsorbed onto wet ultra-microporous activated carbon has been assessed. Under static 

conditions, water, cyclohexane, benzene and DCM gave rise to very wide signals (several tens of 

ppm) significantly shifted towards low ppm values (5 to 10 ppm) compared to the chemical 

shifts of the liquid solutions of these compounds. The origin of the spectral width of the recorded 

peaks could be attributed to the combination of very low transversal relaxation time values, 

strong chemical shift anisotropy effects and homonuclear dipolar interactions. The latter 

averaged under MAS conditions gave spectral bandwidths as small as 1 ppm, thus allowing the 

separation and identification of each VOC signal. Furthermore, resorting to a semi-empirical 

model enabled the averaged chemical shifts to be linked to the magnetic effects of the carbon 

walls and therefore to the resonating proton/pore wall distance. Thus, despite the short signal 

attenuation time, PFG studies could be carried out for diffusion times reaching 40 ms. This study 
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showed diffusion coefficients tending towards a constant value, revealing the macroscopic aspect 

of the diffusion phenomenon. These results suggest the possibility of obtaining exploitable 

values in the current kinetic models of mass transfer in porous materials. The use of various 

techniques of solid state NMR, including Magic Angle Spinning, Pulsed Field Gradient and even 

Magnetic Resonance Imaging, applied to the study of small molecule interactions with carbon 

surfaces constitutes a rapidly growing field of research. So far, NMR studies focusing on the 

application for supercapacitors are the most advanced
56

,
57

,
58

,
59

 (ref, x, y, z, t) but, as shown in 

this paper, we believe this combination of NMR techniques constitutes also a very promising 

tool for studying the VOC adsorption onto activated carbons. 
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List of figures 

Figure 1. THC515 pore width distribution (HK method). Inset: scanning electronic 

microscopy (SEM) pictures of THC515. 

Figure 2. Static and MAS (9 kHz) spectra on THC515: (a) benzene (2.0 mol.kg
-1

); (b) 

mixture of benzene (2.0 mol.kg
-1

)/cyclohexane (1.2 mol.kg
-1

); (c) dichloromethane (DCM) (2.5 

mol.kg
-1

)/water (2.3 mol.kg
-1

). 

Figure 3. (3a) 
1
H MAS spectra (spinning rate 9 kHz). Spectra of cyclohexane adsorbed onto 

non-dried THC515 for various loadings; (a) 0.2 mol.kg
-1

, (b) 0.7 mol.kg
-1

, (c) 2.5 mol.kg
-1

, (d) 

4.0 mol.kg
-1

. Fig. (3b) represents high ppm values of the spectra, containing the water molecule 

signals. 

Figure 4. MAS 9 kHz spectra of DCM adsorbed onto non-dried THC515 for various 

loadings; (a) 0.1 mol.kg
-1

, (b) 0.4 mol.kg
-1

, (c) 1.7 mol.kg
-1

, (d) 3.3 mol.kg
-1

. Figure (4b) 

represents the DCM (dichloromethane) parts of these spectra. 

Figure 5. Correlation between the pore width and the NMR shift according to Equation (3). 

Figure 6. Correlation between the wall/nucleus distance in different porous cavities according to 

(3); (a) 0.5 nm; (b) 0.44 nm; (c) 0.40 nm. 

Figure 7. Illustrations of H/wall distance for benzene, DCM and cyclohexane molecules, 

respectively. 

Figure 8. NMR echo intensity with respect to the gradient for ∆ = 80 ms. Inset: diffusivity 

Ds and molecular velocity with respect to the diffusion time ∆.. 
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Figure 9. Illustration of the evolution of the real displacement / measured displacement 

ratio with various values of diffusion times. 

Figure 10. Measured H2O Molecular velocities vm1 (only H20 loaded) and vm2 (mixture 

H20/C6D12 loaded) with respect to the observation time ∆. Inset : MAS 9 kHz spectra of THC515 

loaded with H20 and a mixture of H2O/C6D12 (dashed line). 
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Figure 1. THC515 pore width distribution (HK method). Inset: scanning electronic microscopy 

(SEM) pictures of THC515. 
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Figure 2. Static and MAS (9 kHz) spectra on THC515: (a) benzene (2.0 mol.kg
-1

); (b) mixture of 

benzene (2.0 mol.kg
-1

)/cyclohexane (1.2 mol.kg
-1

); (c) dichloromethane (DCM) (2.5 mol.kg
-

1
)/water (2.3 mol.kg

-1
). 
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Figure 3. (3a) 
1
H MAS spectra (spinning rate 9 kHz). Spectra of cyclohexane adsorbed onto 

non-dried THC515 for various loadings; (a) 0.2 mol.kg
-1

, (b) 0.7 mol.kg
-1

, (c) 2.5 mol.kg
-1

, (d) 

4.0 mol.kg
-1

. Fig. (3b) represents high ppm values of the spectra, containing the water molecule 

signals. 
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Figure 4. MAS 9 kHz spectra of DCM adsorbed onto non-dried THC515 for various loadings; 

(a) 0.1 mol.kg
-1

, (b) 0.4 mol.kg
-1

, (c) 1.7 mol.kg
-1

, (d) 3.3 mol.kg
-1

. Figure (4b) represents the 

DCM (dichloromethane) parts of these spectra. 
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Figure 5. Correlation between the pore width and the NMR shift according to Equation (3). 
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Figure 6. Correlation between the pore wall/nucleus distance in different porous cavities 

according to Equation (3). (a) 0.5 nm; (b) 0.44 nm; (c) 0.40 nm. 
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Figure 7. Illustrations of H/wall distance for benzene, DCM and cyclohexane molecules, 

respectively. 
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Figure 8. NMR echo intensity with respect to the gradient for ∆ = 80 ms. Inset: diffusivity Ds 

and molecular velocity with respect to the diffusion time ∆. 
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Figure 9. Illustration of the evolution of the real displacement / measured displacement ratio 

with various values of diffusion times. 
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Figure 10.  Measured H2O Molecular velocities vm1 (only H20 loaded) and vm2 (mixture 

H20/C6D12 loaded) with respect to the observation time ∆. Inset : MAS 9 kHz spectra of THC515 

loaded with H20 and a mixture of H2O/C6D12 (dashed line).  
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