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Human exposure to bisphenol A (BPA) could favor obesity and related metabolic disorders such as hepatic steatosis. Investigations in rodents have shown that these deleterious effects are observed not only when BPA is administered during the adult life but also with different protocols of perinatal exposure. Whether perinatal BPA exposure could pose a risk in human is currently unknown, and thus appropriate in vitro models could be important to tackle this major issue.

Accordingly, we determined whether long-term BPA treatment could induce steatosis in human HepaRG cells by using a protocol mimicking perinatal exposure. To this end, the kinetics of expression of seven proteins differentially expressed during liver development was determined during a 4-week period of cell culture required for proliferation and differentiation. By analogy with data reported in rodents and humans, our results indicated that the period of cell culture around day 15 and day 18 after seeding could be considered as the "natal" period. Consequently, HepaRG cells were treated for 3 weeks with BPA (from 0.2 to 2000 nM), with a treatment starting during the proliferating period. BPA was able to induce steatosis with a non-monotonic dose response profile, with significant effects on neutral lipids and triglycerides observed for the 2 nM concentration. However, the expression of many enzymes involved in lipid and carbohydrate homeostasis was unchanged in exposed HepaRG cells. The expression of other potential BPA targets and enzymes involved in BPA biotransformation was also determined, giving answers as well as new questions regarding the mechanisms of action of BPA. Hence, HepaRG cells provide a valuable model that can prove useful for the toxicological assessment of endocrine disruptors on hepatic metabolisms, in particular in the developing liver.

A c c e p t e d m a n u s c r i p t

INTRODUCTION

Human exposure to the synthetic chemical bisphenol A (BPA) is suspected to favor obesity and related metabolic disorders such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) [START_REF] Trasande | Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents[END_REF][START_REF] Khalil | Bisphenol A and cardiometabolic risk factors in obese children[END_REF][START_REF] Oppeneer | Bisphenol A exposure and associations with obesity among adults: a critical review[END_REF][START_REF] Rancière | Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence[END_REF]. NAFLD refers to a large spectrum of hepatic lesions including fatty liver (also referred to as hepatic steatosis), nonalcoholic steatohepatitis and cirrhosis. Actually, similarly to many other environmental contaminants, BPA might exert more harmful effects when exposure occurs during the perinatal period, or in the early postnatal years [START_REF] Calkins | Fetal origins of adult disease[END_REF][START_REF] Rochester | Bisphenol A and human health: a review of the literature[END_REF][START_REF] Wei | Perinatal exposure to bisphenol A exacerbates nonalcoholic steatohepatitis-like phenotype in male rat offspring fed on a high-fat diet[END_REF].

Although BPA-induced steatosis is likely a secondary consequence of higher body weight and associated metabolic disorders such as insulin resistance, other mechanism(s) could be involved as well. Indeed, several studies have demonstrated that BPA is able to induce lipid accumulation in rat and human hepatoma cells [START_REF] Huc | Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells[END_REF][START_REF] Grasselli | Direct effects of Bisphenol A on lipid homeostasis in rat hepatoma cells[END_REF][START_REF] Héliès-Toussaint | Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study[END_REF][START_REF] Peyre | Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in nonalcoholic fatty liver disease[END_REF]. However, investigations in human hepatoma cells were performed so far solely with the HepG2 cell line, which does not have a complete repertoire of xenobiotic metabolizing enzymes (XMEs), in particular regarding some cytochromes P450 (CYPs) and UDP-glucuronosyl transferases (UGTs) [START_REF] Hewitt | Phase I and II enzyme characterization of two sources of HepG2 cell lines[END_REF]Westerink and Schoonen, 2007a;Westerink and Schoonen, 2007b;[START_REF] Gerets | Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins[END_REF]. Moreover, the duration of BPA treatment in the experiments carried out in HepG2 was relatively short (i.e. 3 or 4 days) [START_REF] Huc | Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells[END_REF][START_REF] Héliès-Toussaint | Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study[END_REF][START_REF] Peyre | Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in nonalcoholic fatty liver disease[END_REF].

During the last decade, the human hepatoma HepaRG cell line has increasingly been used in the field of toxicology [START_REF] Jossé | Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies[END_REF][START_REF] Dumont | Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines[END_REF][START_REF] Anthérieu | Optimization of the HepaRG cell model for drug metabolism and toxicity studies[END_REF][START_REF] Andersson | The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human[END_REF]. Indeed, after differentiation, HepaRG cells express most of the XMEs present in the liver as well as key nuclear receptors regulating their expression including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and constitutive androstane receptor (CAR) [START_REF] Aninat | Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells[END_REF]Legendre et al., 2007;[START_REF] Anthérieu | Optimization of the HepaRG cell model for drug metabolism and toxicity studies[END_REF]. The HepaRG cell line, which presents hepatic bipotent progenitor features, is able to enter into a differentiation program towards biliary-like and hepatocytelike cells [START_REF] Gripon | Infection of a human hepatoma cell line by hepatitis B virus[END_REF][START_REF] Parent | Origin and characterization of a human bipotent liver progenitor cell line[END_REF]. The standard culture protocol allowing to obtain well-differentiated hepatocyte-like cells from the progenitor cells includes 2 weeks of proliferation followed by 2 weeks of differentiation, which is improved by the supplementation of the culture medium with 2% dimethyl sulfoxide (DMSO) [START_REF] Gripon | Infection of a human hepatoma cell line by hepatitis B virus[END_REF][START_REF] Cerec | Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor[END_REF].

A c c e p t e d m a n u s c r i p t

Taking all these data into consideration, we determined whether long-term BPA treatment could induce lipid accumulation in HepaRG cells, using a protocol enabling to mimic a perinatal exposure.

To this end, we first determined over the 4-week period of cell culture the kinetics of expression of proteins that are known to be differentially expressed during liver development. The kinetics of expression of eight enzymes involved in BPA metabolism was also assessed. In a second step, HepaRG cells were treated for 3 weeks with different concentrations of BPA ranging from 0.2 to 2000 nM, with the BPA treatment starting during the proliferating period.

A c c e p t e d m a n u s c r i p t

MATERIALS AND METHODS

Chemicals

BPA, DMSO and insulin were purchased from Sigma Aldrich (Saint-Quentin-Fallavier, France).

William's E medium was obtained from Eurobio laboratories (Les Ulis, France). Fetal Bovine Serum (FBS) was purchased from Lonza (Levallois-Perret, France). Glutamine, penicillin and streptomycin were obtained from Thermo Fisher Scientific (Cergy Pontoise, France). Hydrocortisone hemisuccinate was purchased from Upjohn Pharmacia (Guancourt, France).

Cell Culture and Treatments

HepaRG cells were cultured according to the standard protocol described by [START_REF] Aninat | Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells[END_REF] but with some adaptations related to the daily change of the culture medium. Briefly, HepaRG cells were seeded at a density of 2.6 10 4 cells/cm 2 and were first incubated for one week in a William's E medium without phenol red and supplemented with 10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine, 5 µg/ml insulin and 50 µM hydrocortisone hemisuccinate. After this first week, cells were exposed every day for 3 weeks with different concentrations of BPA (0.2, 2, 20, 200 and 2000 nM). Hence, because of this daily treatment, the William's E medium was supplemented with 5% FBS during this 3-week period. BPA was solubilized in DMSO, which was used at a final concentration of 0.01% for the first week of treatment (i.e. week 2 after seeding). Cells were thereafter cultured during the next two weeks of treatment (i.e. weeks 3 and 4 after seeding) in the presence of 1% DMSO in order to improve hepatocyte differentiation. In addition, experiments were carried out in untreated HepaRG cells cultured during a similar period of 4 weeks in order to determine the kinetics of expression of different genes of interest. For these experiments, the respective concentrations of FBS and DMSO added in the cultures were the same as those used for the BPA protocol treatment.

Measurement of Neutral Lipids and Triglycerides

The HCS LipidTOX TM green neutral lipid stain detection kit (Invitrogen, Eugene, Oregon, USA) was used in order to measure neutral lipids, according to the manufacturer's instructions. Briefly, control and treated cells were rinsed with phosphate buffered saline (PBS) and then fixed for 30 minutes in the dark with PBS containing 4% paraformaldehyde and 2.5 µg/ml of the nuclear dye Hoechst 3342, which was used to detect and count the HepaRG cells. Cells were rinsed three times with PBS and A c c e p t e d m a n u s c r i p t then incubated for 30 minutes in the dark with the LipidTOX TM stain. The PBS medium was then renewed and the 96-well plates were scanned with an Arrayscan VTI (Cellomics; Thermo Fisher Scientific, Villebon sur Yvette, France). At least 7500 cells were analyzed per well. Cellular triglycerides were measured with a colorimetric kit purchased from Biovision (Milpitas, CA), using the manufacturer's recommendations. The amount of cellular triglycerides was normalized to that of total proteins determined by the bicinchoninic acid (BCA) method.

Isolation of RNA and Real-Time Quantitative PCR Analysis

Total RNA was extracted from ca. 10 6 HepaRG cells with the SV total RNA isolation system purchased from Promega (Charbonnières-les-Bains, France). This RNA isolation kit includes a DNase treatment step. RNA was reverse-transcribed into cDNA using the High-Capacity cDNA Archive kit purchased from Life technologies (Saint-Aubin, France). Real-time quantitative PCR (RT-qPCR) was then performed using the SYBR Green PCR Master Mix on an Applied Biosystems 7900HT Fast Real-Time PCR System (Applied Biosystem, Woolston, UK). Expression of the human TATA box binding protein (TBP) was used as reference, and the 2 -ΔΔCt method was used to express the relative expression of each selected gene. Sequences of the primers used in this study are available on request.

Statistical Analysis

All results were expressed as mean ± standard error of mean (SEM). Comparisons between the different conditions were performed with one-way analysis of variance (ANOVA). When ANOVA provided significant differences, individual means were compared with the post-hoc Dunnett's test.

A c c e p t e d m a n u s c r i p t

RESULTS

Kinetics of Expression of Enzymes Differentially Expressed during Liver Development

The main goal of this study was to set up a cellular model of perinatal BPA exposure by using the HepaRG cell line. To this end, we first determined over the 4-week period of cell culture after seeding the kinetics of expression of seven different proteins known to be differentially expressed during liver development: pyruvate kinase muscle isoform (PKM), aldolase A (ALDOA), albumin (ALB), aldolase B (ALDOB) as well as the cytochromes P450 3A7 (CYP3A7), CYP2E1 and CYP3A4.

Indeed, the differential expression of these proteins has been extensively determined during liver development in rodents but also in humans [START_REF] Imamura | Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies[END_REF][START_REF] Liao | Changes in rat 1-fetoprotein and albumin mRNA levels during fetal and neonatal development[END_REF][START_REF] Numazaki | Expression of aldolase isozyme mRNAs in fetal rat liver[END_REF][START_REF] Lacroix | Expression of CYP3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth[END_REF][START_REF] Rich | Expression and inducibility of P450 enzymes during liver ontogeny[END_REF][START_REF] Lee | Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse[END_REF]. Notably, the expression of PKM2, ALDOA and CYP3A7 (Cyp3a16 in mouse) is specific to the fetal liver, whereas the expression of ALB, ALDOB, CYP2E1 and CYP3A4 (Cyp3a1/2 in rat and Cyp3a11 in mouse) increases during the perinatal period, or early after birth. In this study, the highest expression of PKM2, ALDOA and CYP3A7 was observed during the 2 weeks of proliferation, whereas the strongest expression of ALB, ALDOB, CYP2E1 and CYP3A4 was found during the differentiation stage (i.e. weeks 3 and 4 after seeding) (Fig. 1). Hence, by analogy with the in vivo situation reported in rodents and humans [START_REF] Liao | Changes in rat 1-fetoprotein and albumin mRNA levels during fetal and neonatal development[END_REF][START_REF] Lacroix | Expression of CYP3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth[END_REF][START_REF] Rich | Expression and inducibility of P450 enzymes during liver ontogeny[END_REF][START_REF] Hart | Three patterns of cytochrome P450 gene expression during liver maturation in mice[END_REF], the period of cell culture around day 15 and day 18 after seeding could be considered as the "natal" period.

Kinetics of Expression of Enzymes Involved in BPA Metabolism

The expression of the main enzymes involved in BPA metabolism was also determined over the 4week period of cell culture after seeding. In human liver, BPA is mainly metabolized to BPAglucuronide by the UDP-glucuronosyltransferase 2B15 (UGT2B15) and to a lesser extent to BPAsulfate by the sulfotransferases 1A1 (SULT1A1) and 1A3/4 (SULT1A3/4) (Fig. 2) [START_REF] Hanioka | Human UDP-glucuronosyltransferase isoforms involved in bisphenol A glucuronidation[END_REF][START_REF] Quesnot | Modulation of metabolizing enzymes by bisphenol A in human and animal models[END_REF][START_REF] Nahar | In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus[END_REF][START_REF] Thayer | Pharmacokinetics of bisphenol A in humans following a single oral administration[END_REF][START_REF] Yalcin | Bisphenol a sulfonation is impaired in metabolic and liver disease[END_REF]. Notably, BPAglucuronide and BPA-sulfate can be converted back to BPA by -glucuronidase (GUSB) and steroid sulfatase (STS), respectively (Fig. 2) [START_REF] Nahar | Fetal liver bisphenol A concentrations and biotransformation gene expression reveal variable exposure and altered capacity for metabolism in humans[END_REF][START_REF] Nahar | In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus[END_REF]. A minor fraction of BPA can also by metabolized to catechol-BPA by several CYPs including CYP2C9, CYP2C18 and CYP2C19 (Fig. 2) [START_REF] Niwa | Metabolism and interaction of bisphenol A in human hepatic cytochrome P450 and steroidogenic CYP17[END_REF][START_REF] Ye | In-vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A?[END_REF]. In the present study, the expression of UGT2B15, STS, CYP2C9, CYP2C18 and CYP2C19 progressively increased during the A c c e p t e d m a n u s c r i p t differentiation process and reached a plateau around day 25 after seeding (Fig. 3). In contrast, the expression of SULT1A1 and GUSB was maximal between day 11 and day 13 and plateaued afterward (Fig. 3). Lastly, expression of SULT1A3/4 was maximal around day 13 and decreased later on (Fig. 3). Among these eight enzymes, GUSB, UGT2B15, CYP2C9 and CYP2C19 showed the highest expression in HepaRG cells (Fig. 4).

Effects of BPA on Neutral Lipids, Triglycerides and Expression of Lipid-Responsive Genes

HepaRG cells were treated daily with different concentrations of BPA (from 0.2 to 2000 nM) between day 7 and day 28 after seeding in order to determine whether chronic BPA exposure could induce steatosis in our cellular model. Our results showed that BPA significantly enhanced cellular neutral lipids and triglycerides at the 2 nM concentration (Fig. 5). Interestingly, a non-monotonic dose response (NMDR) was observed for triglycerides and to a lesser extent for neutral lipids (Fig. 5). We also determined the mRNA levels of apolipoprotein A4 (APOA4), since we recently found that APOA4 expression was a sensitive marker of lipid accumulation in HepaRG cells incubated with fatty acids [START_REF] Michaut | A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen[END_REF]. In the present study, APOA4 expression was also modulated by BPA in a non-monotonic manner with a significant increase observed at the 2 nM concentration (Fig. 5). In contrast, BPA was not found to modify the expression of several proteins that coat lipid droplets, namely perilipin 1 (PLIN 1), perilipin 2 (PLIN2 also known as ADFP and ADRP) and perilipin 3 (also referred to as TIP47) (Fig. 5 and data not shown). These results were in keeping with our previous data showing that, compared with APOA4, expression of PLIN1 and PLIN 2 was significantly lower in fatty acid-loaded HepaRG cells [START_REF] Michaut | A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen[END_REF].

Effects of BPA on the Expression of Genes Involved in Carbohydrate and Lipid Homeostasis

In order to determine the mechanism whereby BPA could induce lipid accumulation in HepaRG cells, we further assessed the expression of different genes involved in carbohydrate and lipid homeostasis: ATP citrate lyase (ACLY), acetyl-CoA carboxylase alpha (ACACA), fatty acid synthase (FASN), thyroid hormone responsive protein (THRSP, also known as SPOT14), patatin-like phospholipase domain containing 3 (PNPLA3), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), peroxisome proliferator-activated receptor gamma (PPARG), solute carrier family 2 member 2 (SLC2A2, also known as GLUT2), pyruvate dehydrogenase kinase 4 (PDK4), carnitine palmitoyltransferase 1A (CPT1A), apolipoprotein B (APOB) and microsomal triglyceride transfer protein (MTTP). However, A c c e p t e d m a n u s c r i p t the expression of these different genes was not significantly modified by BPA treatment (data not shown).

Effects of BPA on the Expression of Genes Involved in Oxidative Stress

Because steatosis can be associated with oxidative stress [START_REF] Begriche | Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease[END_REF][START_REF] Tariq | Are oxidative stress mechanisms the common denominator in the progression from hepatic steatosis towards non-alcoholic steatohepatitis (NASH)?[END_REF], we also assessed the mRNA expression of the following genes: heme oxygenase 1 (HMOX1), NAD(P)H dehydrogenase quinone 1 (NQO1), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1), heat shock 70kDa protein 1A (HSPA1A, also known as HSP70-1A), glutathione S-transferase alpha 1/2 (GSTA1/2), GSTA3 and tribbles pseudokinase 3 (TRIB3). TRIB3 was investigated because its mRNA expression can be markedly enhanced in different conditions of stress, including when the cellular stores of the antioxidant glutathione are reduced [START_REF] Ord | Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions[END_REF][START_REF] Aubert | Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice[END_REF][START_REF] Michaut | A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen[END_REF]. The expression of these genes was however unchanged (data not shown), thus indicating that BPA did not induce significant oxidative stress in our experimental conditions.

Expression of ERR, PXR and their Targets Genes

BPA is able to activate different nuclear receptors such as estrogen receptor (ER), estrogen related receptor  (ERR), glucocorticoid receptor (GR), AhR and PXR but BPA binding affinity varies greatly from one receptor to another [START_REF] Takayanagi | Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor  (ERR) with high constitutive activity[END_REF][START_REF] Krüger | Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor[END_REF][START_REF] Vandenberg | Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption[END_REF][START_REF] Riu | Characterization of novel ligands of ERα, Erβ, and PPARγ: the case of halogenated bisphenol A and their conjugated metabolites[END_REF][START_REF] Rubin | Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects[END_REF][START_REF] Sui | Bisphenol A and its analogues activate human pregnane X receptor[END_REF][START_REF] Peyre | Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in nonalcoholic fatty liver disease[END_REF][START_REF] Rezg | Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives[END_REF]. Notably, BPA strongly binds to human ERR with a binding affinity constant (Kd) of ca. 5 nM, while its affinity for ER and ER was reported to be 80-and 100-fold lower, respectively [START_REF] Takayanagi | Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor  (ERR) with high constitutive activity[END_REF][START_REF] Okada | Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogenrelated receptor-[END_REF]. Hence, it has been postulated that ERR activation could significantly mediate some toxic effects induced by BPA in different experimental models [START_REF] Héliès-Toussaint | Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study[END_REF][START_REF] Tohmé | Estrogen-related receptor γ is an in vivo receptor of bisphenol A[END_REF][START_REF] Song | Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRγ signals[END_REF]. Importantly, ERR is able to regulate different key metabolic processes such as gluconeogenesis, fatty acid oxidation and oxidative phosphorylation [START_REF] Alaynick | ERR directs and maintains the transition to oxidative metabolism in the postnatal heart[END_REF][START_REF] Eichner | miR-378 * mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway[END_REF][START_REF] Kim | Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis[END_REF]. Taking these data into consideration, we assessed the effects of BPA on the expression of three ERRtarget genes, namely phosphoenolpyruvate carboxykinase 1 (PCK1), succinate dehydrogenase complex subunit D (SDHD) and estrogen-related receptor alpha (ESRRA) [START_REF] Alaynick | ERR directs and maintains the transition to oxidative metabolism in the postnatal heart[END_REF][START_REF] Eichner | miR-378 * mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway[END_REF][START_REF] Kim | Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis[END_REF]. However, the expression of these genes was unchanged in treated HepaRG cells, whatever the BPA concentration (Fig. 6A). In addition, BPA did not alter the expression of PDK4 (data not shown), another target A c c e p t e d m a n u s c r i p t gene of ERR [START_REF] Lee | Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRγ[END_REF][START_REF] Poidatz | Estrogen-related receptor gamma modulates energy metabolism target genes in human trophoblast[END_REF]. Altogether, these data suggested that BPA did not activate ERRin HepaRG cells in our experimental conditions, despite additional investigations showing that the mRNA levels of ERR(ESRRG) increased sharply during HepaRG proliferation/differentiation, to rapidly reach a plateau around day 13 after seeding (Fig. 6A).

BPA is also an effective agonist of human PXR [START_REF] Sui | Bisphenol A and its analogues activate human pregnane X receptor[END_REF][START_REF] Kuzbari | Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: implications for toxicity testing paradigms[END_REF], as many other xenobiotics [START_REF] Zhang | PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics[END_REF][START_REF] Tolson | Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR[END_REF]. Notably, PXR regulates not only the expression of numerous XMEs such as CYPs, UGTs and SULTs [START_REF] Zhang | PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics[END_REF][START_REF] Tolson | Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR[END_REF], but also that of enzymes and other proteins involved in carbohydrate and lipid homeostasis [START_REF] Moreau | Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response[END_REF][START_REF] Wada | PXR and CAR in energy metabolism[END_REF][START_REF] Gao | Targeting xenobiotic receptors PXR and CAR for metabolic diseases[END_REF][START_REF] Koutsounas | Pregnane X receptor (PXR) at the crossroads of human metabolism and disease[END_REF][START_REF] Li | SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver[END_REF]. Accordingly, we assessed the effects of BPA on the expression of different PXR target genes, namely CYP3A4, CYP2C9 and the CD36 molecule (CD36, also known as FAT) [START_REF] Zhang | PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics[END_REF][START_REF] Tolson | Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR[END_REF]. However, the mRNA levels of these genes were not modified in HepaRG cells treated with the different concentrations of BPA (Fig. 6B). Contrasting with ESRRG expression, the mRNA levels of PXR (NR1l2) increased progressively during the proliferation and differentiation stages of HepaRG, and plateaued around day 25 after seeding (Fig. 6B).

Effects of BPA on the Expression of Genes Involved in its Own Biotransformation

Numerous studies carried out in different in vitro and in vivo models have reported that BPA is able to modulate the expression and/or the activity of numerous XMEs including CYPs, UGTs and SULTs [START_REF] Hanioka | Interaction of bisphenol A with rat hepatic cytochrome P450 enzymes[END_REF][START_REF] Nahar | Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver[END_REF][START_REF] Quesnot | Modulation of metabolizing enzymes by bisphenol A in human and animal models[END_REF]. Hence, in a last series of investigations we wished to determine whether BPA altered in HepaRG cells the expression of the main enzymes involved in its own biotransformation, namely UGT2B15, GUSB, SULT1A1, SULT1A3/4, STS, CYP2C9, CYP2C18 and CYP2C19 (Fig. 2). However, the expression of these enzymes was unchanged in treated HepaRG cells, whatever the BPA concentration (data not shown). It is noteworthy that in addition to CYP2C9 (see above), other BPA metabolizing enzymes such as CYP2C19 and SULT1A1 are also PXR targets [START_REF] Tolson | Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR[END_REF]. Thus, the lack of BPA effects on CYP2C19 and SULT1A1 expression was fully consistent with our finding that PXR was not activated in treated HepaRG cells.

A c c e p t e d m a n u s c r i p t

DISCUSSION

There is an increasing concern regarding the potential harmful effects of human BPA exposure on carbohydrate and lipid homeostasis. Indeed, BPA is greatly suspected to favor obesity, insulin resistance, type 2 diabetes and liver steatosis [START_REF] Trasande | Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents[END_REF][START_REF] Khalil | Bisphenol A and cardiometabolic risk factors in obese children[END_REF][START_REF] Oppeneer | Bisphenol A exposure and associations with obesity among adults: a critical review[END_REF][START_REF] Rancière | Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence[END_REF]. Regarding BPA-induced steatosis, different hypotheses can be put forward including the indirect metabolic effects of obesity and insulin resistance [START_REF] Marmugi | Low doses of bisphenol A induce gene expression A c c e p t e d m a n u s c r i p t related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver[END_REF][START_REF] Polyzos | The emerging role of endocrine disruptors in pathogenesis of insulin resistance: a concept implicating nonalcoholic fatty liver disease[END_REF], or direct effects of BPA on lipid homeostasis in hepatocytes [START_REF] Huc | Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells[END_REF][START_REF] Grasselli | Direct effects of Bisphenol A on lipid homeostasis in rat hepatoma cells[END_REF][START_REF] Peyre | Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in nonalcoholic fatty liver disease[END_REF][START_REF] Héliès-Toussaint | Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study[END_REF]. However, despite a wealth of experimental studies, the mechanisms whereby BPA is able to alter carbohydrate and lipid homeostasis are still poorly understood. Notably, BPA-induced adverse effects could be more important when BPA exposure occurs during the perinatal period, or in the early postnatal years [START_REF] Calkins | Fetal origins of adult disease[END_REF][START_REF] Rochester | Bisphenol A and human health: a review of the literature[END_REF].

Taking all these elements into consideration, a first aim of the present study was to determine whether BPA could induce steatosis in HepaRG cells using a model of perinatal exposure. To this end, we first assessed the expression of several genes known to be differentially expressed during liver development such as PKM, ALDOA, ALDOB, ALB, and three different CYPs [START_REF] Liao | Changes in rat 1-fetoprotein and albumin mRNA levels during fetal and neonatal development[END_REF][START_REF] Lacroix | Expression of CYP3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth[END_REF][START_REF] Rich | Expression and inducibility of P450 enzymes during liver ontogeny[END_REF][START_REF] Hart | Three patterns of cytochrome P450 gene expression during liver maturation in mice[END_REF]. According to the different profiles of gene expression, our results indicated that the period of HepaRG cell culture around day 15 and day 18 after seeding could be considered as the "natal" period (Fig. 1). Consequently, HepaRG cells were treated daily with different concentrations of BPA (ranging from 0.2 to 2000 nM) between day 7 and day 28 after seeding, in order to determine whether chronic BPA exposure could induce steatosis in our cell model. We found that BPA increased neutral lipids and triglycerides in treated cells in a NMDR manner, although these effects were statistically significant only for the 2 nM concentration (Fig. 5). Notably, this concentration is within the range of concentrations found in human serum in the context of environmental exposure (Alonso-Magdalena et al., 2010a;[START_REF] Vandenberg | Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A[END_REF]. The NMDR profile observed for neutral lipids and triglycerides was also observed for APOA4 expression (Fig. 5). Interestingly, a recent review of the literature reported that NMDR curves are rather common with BPA [START_REF] Vandenberg | Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study[END_REF]. It has been proposed that a NMDR profile can occur whenever two or more opposite monotonic dose response curves overlap [START_REF] Vandenberg | Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption[END_REF][START_REF] Vandenberg | Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study[END_REF]. Thus, depending of the concentrations, BPA might have contrary effects on triglyceride synthesis on the one hand and on triglyceride disposal on the other hand.

A c c e p t e d m a n u s c r i p t

Despite our attempt to decipher how BPA induced steatosis in HepaRG cells, none of our results gave us a starting hypothesis. Importantly, abnormal accumulation of triglycerides within hepatocytes can result from an unbalance between different metabolic fluxes including the entry of fatty acids via specific transporters (e.g. CD36), their esterification into triglycerides, their degradation by the peroxisomal and mitochondrial -oxidation pathways and their output from the cells after VLDL assembly [START_REF] Cohen | Human fatty liver disease: old questions and new insights[END_REF][START_REF] Begriche | Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease[END_REF]. In this study, the expression of several key factors involved in these metabolic processes was however found unchanged. In addition, we found no modification in the expression of different known targets of ERR and PXR, thus suggesting that these nuclear receptors are not involved in BPA-induced steatosis, either directly or indirectly. A microarray analysis could be helpful in order to determine whether the dysregulation of other genes might play a role in fat accumulation. It would be also interesting to study the metabolic fluxes linked to lipogenesis, -oxidation and VLDL output and the activity of key enzymes involved in these metabolic pathways.

As previously mentioned, the human hepatoma HepaRG cell line has increasingly been used in order to study drug metabolism and toxicity. Indeed, this cell line expresses most of the XMEs present in the liver as well as different key nuclear receptors regulating their expression [START_REF] Aninat | Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells[END_REF]Legendre et al., 2007;[START_REF] Jossé | Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies[END_REF][START_REF] Dumont | Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines[END_REF][START_REF] Andersson | The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human[END_REF][START_REF] Anthérieu | Optimization of the HepaRG cell model for drug metabolism and toxicity studies[END_REF]. In this study, we found that HepaRG cells expressed relatively high levels of different enzymes involved in BPA biotransformation (Fig. 2), in particular GUSB, UGT2B15, CYP2C9 and CYP2C19 (Fig. 4). Interestingly, the kinetics of expression of UGT2B15, CYP2C9 and CYP2C19 over a 32-day period of cell culture after seeding (Fig. 3) was almost similar to that of ALDOB (Fig. 1), with a progressive expression between day 6 and day 25 subsequently followed by a plateau. These data suggest that the developmental expression of these XME genes could be regulated by factors similar to those involved in ALDOB expression such as the liver-enriched transcription factor hepatocyte nuclear factor 1 (HNF-1) [START_REF] Tsutsumi | Developmental appearance of transcription factors that regulate liver-specific expression of the aldolase B gene[END_REF][START_REF] Ito | Developmental alteration of the chromatin state at promoter/replication origin region of the aldolase B locus precedes transcriptional activation in the liver[END_REF]. Our data regarding UGT2B15 and GUSB (Fig. 3) also suggest that their developmental expression could be very different, which might have important consequences on BPA biotransformation. For instance, the combination of relatively high expression of GUSB and low expression of UGT2B15 during early development could favor BPA accumulation and the occurrence of deleterious effects.

Taking all these data into consideration, the HepaRG cell line could be a valuable tool in order to gain further information regarding BPA biotransformation in human hepatocytes, in particular during the developmental period. Our results also underline the relevance of the HepaRG model in order to A c c e p t e d m a n u s c r i p t investigate the hepatic effects of endocrine disruptors that are expected to occur during the perinatal period. However, it should be kept in mind that the HepaRG cell line is derived from a female patient [START_REF] Gripon | Infection of a human hepatoma cell line by hepatitis B virus[END_REF]. This feature might be important because previous investigations carried out in rodents reported that perinatal exposure of BPA could induce differential effects on lipid and carbohydrate homeostasis between male and female offspring [START_REF] Miyawaki | Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice[END_REF][START_REF] Somm | Perinatal exposure to bisphenol a alters early adipogenesis in the rat[END_REF]Alonso-Magdalena et al., 2010b). Moreover, it is well-known that the expression and activity of different XMEs can significantly vary depending on the sex [START_REF] Mugford | Sex-dependent metabolism of xenobiotics[END_REF][START_REF] Waxman | Sex differences in the expression of hepatic drug metabolizing enzymes[END_REF]. Thus, one cannot exclude the possibility that our results might not have been similar with cells from a male donor. 
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 1 Figure 1. Kinetics of expression in HepaRG cells of seven different proteins known to be differentially expressed during liver development. The mRNA levels of each protein were determined

Figure 2 .

 2 Figure 2. Schematic representation of BPA metabolism in human according to the current literature.The correspondence of the different abbreviations and further information is given in the text.

Figure 3 .

 3 Figure 3. Kinetics of expression in HepaRG cells of eight different enzymes involved in BPA metabolism in human according to the current literature. The mRNA levels of each protein were determined over a 32-day period of cell culture after seeding. Expression of TBP was used as

Figure 4 .

 4 Figure 4. Comparative mRNA expression in HepaRG cells of eight different enzymes involved in BPA metabolism. The relative expression are shown for day 6 (D6), day 15 (D15) and day 32 (D32) after seeding. The relative expression of CYP2C18 at D6 was arbitrary set to 1. For proper comparison, the figure also shows the expression of CYP3A4, a prototypical XME that is highly expressed in human liver.

Figure 5 .

 5 Figure 5. BPA-induced steatosis in HepaRG cells. Cells were treated with different concentrations of BPA (from 0.2 to 2000 nM) during 3 consecutive weeks and different parameters linked to steatosis were subsequently assessed. A. Determination of neutral lipids with the LipidTOX TM stain. Results are means ± SEM for 3 independent cultures. The pictures (magnification x 200) are representative of the respective conditions. Cyclosporin A (CSA, 30 M) was used as a positive control to induce lipid accumulation, as recommended by LipidTOX TM manufacturer. *Significantly different from control HepaRG cells (P<0.05). B. Determination of cellular triglycerides with a colorimetric assay.

  Results are means ± SEM for 4 independent cultures. *Significantly different from control HepaRG cells (P<0.05). C. mRNA expression of APOA4, PLIN2 and PLIN3. Expression of TBP was used as reference. Results are means ± SEM for 3 independent cultures. *Significantly different from control HepaRG cells (P<0.05).

Figure 6 .

 6 Figure 6. Effects of BPA in HepaRG cells on the expression of known targets of ERR (ESRRG) and PXR (NR1l2) and kinetics of expression of these nuclear receptors over a 32-day period of cell culture after seeding. A. Expression of 3 different ESRRG target genes and kinetics of ESSRG expression. Results are means ± SEM for 3 independent cultures. *Significantly different from HepaRG cells at day 1 after seeding (P<0.05). B. Expression of 3 different PXR target genes and kinetics of PXR

  s c r i p t expression. Results are means ± SEM for 3 independent cultures. *Significantly different from HepaRG cells at day 1 after seeding (P<0.05).
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