

Synchronous Metastatic Clear-Cell Renal Cell Carcinoma: A Distinct Morphologic, Immunohistochemical, and Molecular Phenotype

Solène-Florence Kammerer-Jacquet, Angélique Brunot, Adélaide Pladys, Guillaume Bouzille, Julien Dagher, Sarah Médane, Benoit Peyronnet, Romain Mathieu, Grégory Verhoest, Karim Bensalah, et al.

▶ To cite this version:

Solène-Florence Kammerer-Jacquet, Angélique Brunot, Adélaide Pladys, Guillaume Bouzille, Julien Dagher, et al.. Synchronous Metastatic Clear-Cell Renal Cell Carcinoma: A Distinct Morphologic, Immunohistochemical, and Molecular Phenotype. Clinical Genitourinary Cancer, 2017, 15 (1), pp.e1-e7. 10.1016/j.clgc.2016.06.007. hal-01470708

HAL Id: hal-01470708 https://univ-rennes.hal.science/hal-01470708

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 TITLE PAGE

2	
3	Synchronous metastatic clear cell renal cell carcinoma: a distinct morphological,
4	immunohistochemical and molecular phenotype
5	
6	Short title: Synchronous metastatic renal cell carcinoma
7	
8	Solene-Florence Kammerer-Jacquet, MD ^{1,2} , Angelique Brunot, MBBS ³ , Adelaide Pladys ⁴ ,
9	Guillaume Bouzille, MD ⁵ , Julien Dagher, MBBS ¹ , Sarah Medane, MBBS ² , Benoit Peyronnet,
10	MD ⁷ , Romain Mathieu, MD, PhD ⁷ , Gregory Verhoest, MD, PhD ⁷ , Karim Bensalah, MD,
11	PhD ⁷ , Julien Edeline, MD ³ , Brigitte Laguerre, MD ³ , Alexandra Lespagnol, PhD ⁶ , Jean Mosser,
12	PharmD, PhD ⁶ , Frederic Dugay, PharmD, PhD ⁸ , Marc-Antoine Belaud-Rotureau, PharmD,
13	PhD ^{2,8} and Nathalie Rioux-Leclercq, MD, PhD ^{1,2}
14	
15	1- Department of Pathology, Unversity Hospital, 35000 Rennes, France
16	2- CNRS, UMR 6290 (IGDR), Rennes 1 University, 35000 Rennes, France
17	3- Department of Medical Oncology, CRLCC, 35000 Rennes, France
18	4- Department of Epidemiology, EHESP, 35000 Rennes, France
19	5- Department of Clinical Investigation, Unversity Hospital, 35000 Rennes, France
20	6- Department of Molecular Genetics, Unversity Hospital, 35000 Rennes, France
21	7- Department of Urology, Unversity Hospital, 35000 Rennes, France
22	8- Cytogenetic and Cellular Biology Laboratory, Unversity Hospital, 35000 Rennes, France
23	
24	
25	

26	Corresponding author:
27	Solene-Florence Kammerer-Jacquet
28	Service d'Anatomie Pathologique
29	CHU Pontchaillou
30	2 rue Henri Le Guilloux
31	35 033 Rennes Cedex 9, France
32	Telephone number: 0033 2 99 28 42 79
33	Fax number: 0033 2 99 28 42 84
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
43	
40 47	
-7 48	Word count of text: 3754 words
49	Word count of the abstract: 249 words
50	

51 ABSTRACT

_	\mathbf{a}
\mathcal{I}	_

53 Micro abstract

54 In order to compare synchronous and metachronous metastatic clear cell renal cell 55 carcinoma (ccRCC), we performed a pathological, immunohistochemical and molecular 56 study on primary tumors in a retrospective series of 48 consecutive patients with up to 57 ten years of follow-up. Synchronous metastatic ccRCC had a distinct phenotype that may 58 explain their worse prognosis.

59

Introduction: Clear cell renal cell carcinomas (ccRCC) are highly metastatic tumors with 60 61 metastases detected at diagnosis (synchronous) or during follow-up (metachronous). To date, 62 there have been no reports comparing primary ccRCC of synchronous and metachronous 63 metastatic patients, yet different in terms of prognosis. Determining whether there is a 64 phenotypic difference between these two groups could have important clinical implications. 65 Patients and Methods: In a retrospective consecutive cohort of 98 patients with ccRCC, 48 66 patients had metastases including 28 synchronous and 20 metachronous presentations with a 67 follow-up of 10 years. For each primary tumor in these metastatic patients, pathological criteria, expression of VEGF, PAR-3, CAIX and PD-L1 as detected by immunohistochemistry, 68 69 and complete VHL status were analyzed. Univariate analysis was performed and survival was assessed using Kaplan-Meier curves compared by log-rank test. 70 71 **Results:** Compared to primary ccRCC in metachronous metastatic patients, primary ccRCC in 72 synchronous metastatic patients were significantly associated with a poorer ECOG 73 performance (p=0.045), higher pT status (p=0.038), non-inactivated VHL gene (p=0.01), 74 sarcomatoid component (p=0.007), expression of PAR-3 (p=0.007), and overexpressions of VEGF (>50%) (p=0.017) and PD-L1 (p=0.019). Patients with synchronous metastases had a 75

76	worse cancer-specific survival than patients with metachronous metastases even from
77	metastatic diagnosis (median survival 16 months versus 46 months, respectively, p=0.01).
78	Conclusion: This long-term study is the first to support the notion that synchronous m-
79	ccRCC has a distinct phenotype. This is probably linked to the occurrence of oncogenic
80	events that could explain their worse prognosis. These particular metastatic patients could
81	benefit from specific therapy.
82	
83	Keywords: clear cell renal cell carcinoma; synchronous and metachronous metastases;
84	phenotype; clinical outcome
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	

101 **TEXT**

102

103 INTRODUCTION

104

105 Clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype of renal cell
106 carcinoma.¹ Tumor cells are characterized by inactivation of the *VHL* gene leading to HIF
107 stabilization, which induces the transcription of genes such as vascular endothelial growth
108 factor (*VEGF*).² As a consequence, the tumor microenvironment is highly vascularized.
109 Another critical component of the tumor microenvironment is the immune system as some
110 tumors have a high density of tumor infiltrating lymphocytes (TIL).³ Moreover, tumor cells
111 were shown to express programmed death ligand 1 (PD-L1) to escape the immune system.^{4, 5}

With approximately 40% of patients dying of metastases, ccRCC are highly aggressive
tumors.⁶ The most common sites of metastasis are the lungs, distant lymph nodes, liver,
bones, brain and adrenal gland. Twenty to 30% of patients are diagnosed with metastatic
disease (synchronous presentation) whereas 20% of patients with non-metastatic disease at
diagnosis will later develop metastases during follow-up (metachronous presentation).⁷
Metastases generally arise in the first six years after surgery.⁸

119

Synchronous and metachronous ccRCC have a different prognosis. Currently, one of the criteria of MSKCC and Heng risk criteria models for predicting survival in metastatic patients is a time from initial diagnosis (including original localized disease) to treatment of less than one year.⁹⁻¹¹ This risk factor includes synchronous metastatic patients. The difference in prognosis between the two groups of patients may be linked to their primary tumors having different phenotypes. To our knowledge, there are no reports comparing primary ccRCC in

ACCEPTED MANUSCRIPT
synchronous and metachronous metastatic patients. Determining whether there is a phenotypic
difference between these two groups could have important clinical implications.

129 This is the first study to conduct an in-depth analysis of primary ccRCC in correlation with

130 pathological criteria, VHL status and long-term clinical outcome with a view to seeking

131 differences depending on synchronous or metachronous metastatic status.

132

126

127

128

133 **MATERIALS AND METHODS**

134

135 Patients

136 Between 2002 and 2005, 98 consecutive patients were operated for sporadic ccRCC in the Department of Urology at Rennes University Hospital. Twenty-eight patients had 137 138 synchronous metastases at initial diagnosis and underwent nephrectomy in accordance with international guidelines.¹² They received no prior therapy. Twenty patients had a nephrectomy 139 140 before developing metastases which were detected during follow-up (first CT scan 6 months 141 after surgery) and defined as metachronous. Consequently, a total of 48 patients presented 142 metastases between 2002 and 2012 and were included in our study. Patient charts were 143 retrospectively reviewed to assess pretreatment ECOG performance status, methods of 144 detection (incidental or symptomatic), involved metastatic sites with retrieved first staging CT scan, MSKCC score, Heng criteria and therapies ^{9, 11}. The outcome was specific death which 145 146 we assessed with a 10-year follow-up. The study protocol was approved by the local advisory board and informed consent was obtained from each patient for the study. 147

148

149 **Tissue sample management**

150	Tumor samples were obtained from the processing of biological samples by the Rennes
151	Biological Resources Center-Health (CRB-Health) (BB-0033-00056). The research protocol
152	was conducted under French legal guidelines and fulfilled the requirements of the local
153	institutional ethics committee. All consecutive ccRCC and paired renal cortex samples were
154	analyzed. Immediately after macroscopic examination, small samples were collected from
155	surgical specimens, frozen in liquid nitrogen and stored at -80°C until DNA extraction.
156	Genomic DNA was extracted from 25 to 35 mg of frozen tissue sections using a QIAamp
157	DNA minikit (Qiagen, Courtaboeuf, France). DNA quantity and quality were estimated by
158	optical density (OD 260/280) measurement and 0.8% agarose gel electrophoresis using
159	standard protocols.
160	
161	Pathological analysis
162	After fresh tissue sampling, surgical specimens were formalin-fixed. Paraffin sections were
163	stained with hematoxylin and eosin-safran for light microscopy. All slides were reviewed by a
164	dedicated uropathologist (NRL). The macroscopic and histological parameters analyzed were:
165	tumor size, multifocality, nucleolar grade according to the International Society of Urological
166	Pathology (ISUP) grading system, sarcomatoid component, tumor necrosis, granular
167	component, lymphocyte infiltrate and microvessel invasion. ¹³ Sarcomatoid component was
168	defined as more than 10% involvement of the tumor. Tumor stage was defined by the latest
169	International Union Against Cancer classification (2009). ¹⁴

171 Immunohistochemistry

For each ccRCC case, a representative slide of the tumor with the highest nucleolar grade and
the corresponding paraffin block were selected. VEGF (anti-VEGF antibody, sc-152, dilution
1/100; Santa Cruz Biotechnology, Santa Cruz, CA, USA), CAIX (anti-CAIX antibody,

175 ab15086, dilution 1/1500, Abcam, Cambridge, UK), PAR-3 (anti-PAR-3, HPA0300443, dilution 1/50, Sigma-Aldrich, Saint Louis, USA) and PD-L1 (anti-PD-L1 antibody, clone 176 177 130021, dilution 1/200, R&D Systems, Minneapolis, MN, USA) expression was assessed by immunohistochemistry as previously described.¹⁵⁻¹⁷ The cut-off for positive cases was 85% of 178 tumor cells for CAIX as described in a previous study.^{16, 18} The percentage of tumor cells for 179 180 VEGF was reported. Only cytoplasmic PAR-3 expression in tumor cells was considered positive.¹⁷ PD-L1 was overexpressed when intensity of membranous or cytoplasmic staining 181 in tumor cells was moderate to strong as previously described.¹⁹ Regarding tumor infiltrating 182 183 lymphocytes, CD3 (anti-CD3 antibody, clone SP7, dilution 1/100; Thermo Scientific, 184 Waltham, MA, USA) and CD20 (anti-CD20 antibody, clone L26, dilution 1/25; Dako, Glostrup, Denmark) expression was assessed. The inflammatory extent was coded as one (few 185 sparse lymphocytes in the tumor) or two (marked dense lymphocytes or lymphoid nodules). 186 IHC scoring was independently assessed by two pathologists (SFKJ and NRL) blinded to the 187 clinical grouping of the specimens. Discordant cases were reevaluated collegially to reach a 188 189 consensus score.

190

191 *VHL* gene analysis

We determined the complete VHL status for each tumor by analyzing VHL gene mutation, 192 193 deletion and promoter methylation. VHL mutations were detected by sequencing using 194 denaturing high-performance liquid chromatography (DHPLC). All mutations were confirmed 195 in a second round of PCR and sequencing reactions. VHL gene deletions and promoter 196 methylation were detected by Multiplex Ligation-dependent Probe Amplification (MLPA) 197 analysis using the SALSA MLPA P016B VHL probe kit and the SALSA MS-MLPA kit, respectively.²⁰ As VHL is a tumor-suppressor gene, VHL gene impairments necessarily 198 199 involve biallelic alterations in tumor cells as two hits are required to be inactivated. Tumors

200	with two alterations of the VHL gene were defined as inactivated for that gene (in VHL). Those
201	with no or only one alteration were defined as non-inactivated VHL tumors (niVHL).

202

203 Statistical analysis

- χ^2 , Fisher's exact and Mann-Whitney tests were performed to compare qualitative and
- 205 quantitative parameters, respectively between the synchronous and metachronous metastatic
- 206 patient groups. Cancer-specific survival (CSS) was calculated from metastasis diagnosis to
- 207 death from cancer. The Kaplan-Meier method was used to represent CSS, and the resulting
- 208 curves were compared using log-rank tests. All p-values were 2-sided, and p-values less than
- 209 0.05 were considered statistically significant. All statistical analyses were performed using

210 Stata 11.1 (College Station, TX, USA) software.

211

212 **RESULTS**

213

214 **Patient and tumor characteristics**

215 The population characteristics and pathological parameters are summarized in Table 1. The 216 median age at diagnosis was 61 years (42-80). Twenty-three patients (47.9%) had an ECOG 217 performance status of 0. The mean tumor size was 9cm with tumors ranging from 2 to 18 cm. 218 In 6 cases (12.5%), nodal invasion was present. Twenty-eight patients (58.3%) had 219 synchronous metastases at diagnosis whereas 20 patients (41.7%) developed metastases after 220 initial diagnosis with a 32-month mean (6-78 months). The most common metastatic sites 221 were the lungs in 32 cases (66.7%), bones in 27 cases (56.3%), distant lymph nodes in 16 222 cases (33.3%) and liver in 7 cases (14.6%). Less common sites were the brain in three cases 223 (6.3%), soft tissue in four cases (8.3%), adrenal gland in five cases (10.4%), pancreas in two 224 cases (4.1%), peritoneum in one case (2.1%), contralateral kidney in two cases (4.1%) and

225 digestive organs in three cases (6.3%). Several sites were frequently involved in 32 cases (66.6%) whereas only one site was involved in 16 cases (33.3%). Before systemic treatment, 226 227 most patients had intermediate or high risk according to MSKCC or Heng models. When 228 eligible for systemic treatment, the patients received various therapies such as cytokines in 14 229 cases, sunitinib (first-line or second-line therapy) in 13 cases, sorafenib in two cases, hormone 230 therapy in three cases and standard chemotherapy in two cases. Eleven patients were referred 231 to supportive care specialists and eight patients were not treated in our center. With a follow-232 up of 10 years, 43 patients (89.6%) from our study died of their cancer. 233 Synchronous and metachronous m-ccRCC: a distinct phenotype 234 235 The synchronous and metachronous metastatic patient and tumor characteristics are 236 summarized and compared in Tables 2 and 3. Synchronous and metachronous m-ccRCC 237 shared the following features: aggressive tumors with symptomatic detection (75%), a median tumor size of 9cm (2-18 cm), a high nucleolar grade (grade 3-4 in 87.5%), tumor necrosis 238 239 (70.8%), granular component (72.9%), microvascular invasion (60.4%) and overexpression of 240 VEGF (79.2%). However, compared to metachronous m-ccRCC, synchronous m-ccRCC had 241 a poorer ECOG score (p=0.045), a worse risk group in both MSKCC and Heng models 242 (p=0.007 and p=0.010 respectively) and corresponded to even more aggressive tumors with 243 higher pT status (p=0.038) and sarcomatoid component (p=0.007). In the 244 immunohistochemistry analysis, they were associated with overexpression of VEGF with a 245 50% cut-off (p=0.017) as defined by a receiver operating characteristic (ROC) curve, expression of PAR-3 (p=0.007) and overexpression of PD-L1 (p=0.019). At the molecular 246 247 level, they were associated with a non-inactivated VHL gene (p=0.01). The pathological and 248 immunohistochemical phenotype of synchronous m-ccRCC is shown in Figure 1. 249

250	Worse clinical outcome with synchronous m-ccRCC
251	Patients with synchronous metastases had a worse CSS from the date of metastasis diagnosis
252	compared to patients with metachronous metastases without statistical differences between the
253	two groups in care management. They had a median survival of 16 months versus 46 months
254	for the patients with metachronous metastases (p=0.01), Figure 3. Five-year survival was 3.6%
255	for patients with synchronous metastases and 20% for patients with metachronous metastases.
256	
257	DISCUSSION
258	
259	To our knowledge, this is the first study to compare synchronous and metachronous primary
260	m-ccRCC. While our results may be seen to be limited in terms of sample size, we present a
261	highly detailed study at the pathological, immunohistochemical and molecular levels in a
262	retrospective series of consecutive ccRCC patients with a long-term clinical follow-up of up
263	to ten years. Due to the period of our study, treatments were quite heterogeneous without
264	statistical difference between the two groups. Besides, patients received no prior systemic
265	therapy before nephrectomy.
266	
267	Primary ccRCC in both synchronous and metachronous metastatic patients is characterized by
268	aggressive and disseminating tumors. However, we report a distinct pathological and
269	molecular phenotype of the primary tumors. In the m-ccRCC group, synchronous m-ccRCC
270	was particularly associated with a higher pT status, sarcomatoid component, cytoplasmic
271	expression of PAR-3, overexpression of VEGF and PD-L1 and a niVHL gene.

272

273 Sarcomatoid ccRCC may represent a completed epithelial-mesenchymal transition (EMT).²¹

274 Invasion of the basement membrane and extracellular matrix is an essential event in tumor

275	progression and considered a critical step during metastasis. ²² Partitioning-defective 3 (PAR-
276	3), a crucial component of partitioning-defective complex proteins, was recently described as
277	an independent prognostic factor in ccRCC. ^{17, 23} It is implicated in the development and
278	maintenance of cell polarity. As it modulates cell-cell communication and promotes
279	collective cell migration, PAR-3 may be involved in cancer cell EMT and metastasis
280	formation in ccRCC. ²³ Angiogenesis is also considered a crucial step in the progression of
281	cancer. VEGF expression is a key molecular mechanism underlying the initiation and
282	maintenance of the entire tumor process. ^{24, 25} Tumor progression is often paralleled by higher
283	levels of VEGF expression as cancer cells gradually acquire their malignant potential. ²⁵
284	
285	Interestingly, PD-L1 and the non-inactivated VHL gene were associated with the primary
286	ccRCC in synchronous metastatic patients. The interaction between PD-1, an inducible
287	inhibitory receptor expressed on lymphocytes and dendritic cells, and PD-L1 ligand,
288	expressed by tumor cells, results in down-regulation of the T-cell response. ²⁶ PD-L1
289	overexpression may reflect the ability of metastatic tumor cells to evade immune surveillance
290	during migration. VHL gene inactivation is likely considered as an initial event in the ccRCC
291	carcinogenic process. ² Non-inactivation of the VHL gene more commonly seen in
292	synchronous m-ccRCC may suggest early involvement of non-dependent VHL pathways such
293	as MAP kinase and PI3K-AKT-mTOR pathways that are also implicated in PD-L1
294	expression. ²⁷⁻²⁹

295

Compared to primary tumors of synchronous m-ccRCC, metachronous m-ccRCC probably
 acquire less oncogenic events. During the period between nephrectomy and symptomatic
 metastasis, initially dormant tumor cells acquire oncogenic events that are not predictable in
 primary tumors.³⁰ This explains the heterogeneity between primary tumors and metastasis

300	already described. ⁴ Our study emphasizes the need to assess metastatic sites rather than the
301	primary tumor to identify predictive biomarkers for targeted therapies.
302	
303	In our study, we confirmed the poor prognosis of synchronous metastatic patients. ⁹ As
304	expected, most of them had time from initial diagnosis to treatment of less than one year that
305	is a risk factor in both MSKCC and Heng models. In a recent publication by Beuselinck et al.,
306	synchronous m-ccRCC were particularly linked to poor sunitinib response. ³¹ This poor
307	prognosis may rely on advantageous oncogenic events acquired in their primary ccRCC such
308	as PD-L1 expression. If confirmed by further studies, these patients may be good candidates
309	for PD1/PDL1 immunotherapy.
310	
311	CONCLUSION
312	
313	In this long-term study of metastatic patients, we revealed that synchronous m-ccRCC had a
314	distinct phenotype which is likely explained by the occurrence of oncogenic events. Patients
315	with synchronous m-ccRCC have a worse prognosis and could benefit from specific therapy.
316	
317	Clinical practice points:
318	• Patients with synchronous metastatic clear cell renal cell carcinoma (ccRCC) are
319	already known to have a worse prognosis than patients with metachronous metastatic
320	ccRCC.
321	• For the first time, we compared synchronous and metachronous primary tumors at
322	pathological, immunohistochemical and molecular levels and found a different

323 phenotype of synchronous primary ccRCC.

- Patients with synchronous metastasis overexpressed PD-L1 and may be good
 candidates for PD1/PDL1 immunotherapy.
- 326

327 ACKNOWLEDGMENTS

- 328
- 329 The authors would like to acknowledge the Ligue Contre le Cancer, the CORECT, Rennes
- 330 Hospital and the French Institute of Cancer (INCa) for their financial aid.
- 331 The authors would also like to thank the Center of Biological Resources of Rennes Hospital
- 332 (BB-0033-00056, http://www.crbsante-rennes.com/) for managing patient samples as well as
- 333 Pascale Bellaud and Roselyne Viel from the Histopathology platform H2P2-BIOSIT, Faculty
- 334 of Medicine of Rennes for their technical support.
- 335

336 **DISCLOSURE**

- 337 The authors of this article have no relevant financial relationships with commercial interests
- 338 to disclose and no funding to declare.
- 339

340 **REFERENCES:**

- Murai M, Oya M. Renal cell carcinoma: etiology, incidence and epidemiology. *Curr Opin Urol.* 2004;14:229-233.
- Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. *Nat Genet*. 1994;7:85-90.
- 345 3. Kang MJ, Kim KM, Bae JS, et al. Tumor-infiltrating PD1-Positive Lymphocytes and
 346 FoxP3-Positive Regulatory T Cells Predict Distant Metastatic Relapse and Survival of
 347 Clear Cell Renal Cell Carcinoma. *Transl Oncol.* 2013;6:282-289.
- Callea M, Albiges L, Gupta M, et al. Differential Expression of PD-L1 between
 Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. *Cancer immunology research.* 2015;3:1158-1164.
- S. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. *Annals of oncology : official journal of the European Society for Medical Oncology / ESMO*. 2016;27:409-416.
- Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA
 Cancer J Clin. 2007;57:43-66.

356	7.	Ljungberg B, Campbell SC, Choi HY, et al. The epidemiology of renal cell carcinoma.
357		Eur Urol. 2011;60:615-621.
358	8.	Eggener SE, Yossepowitch O, Pettus JA, Snyder ME, Motzer RJ, Russo P. Renal cell
359		carcinoma recurrence after nephrectomy for localized disease: predicting survival
360		from time of recurrence. J Clin Oncol. 2006;24:3101-3106.
361	9.	Heng DY, Xie W, Regan MM, et al. Prognostic factors for overall survival in patients
362		with metastatic renal cell carcinoma treated with vascular endothelial growth factor-
363		targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27:5794-
364		5799.
365	10.	Motzer RJ, Bacik J, Mazumdar M. Prognostic factors for survival of patients with
366		stage IV renal cell carcinoma: memorial sloan-kettering cancer center experience. <i>Clin</i>
367		<i>Cancer Res.</i> 2004;10:6302S-6303S.
368	11.	Mekhail TM, Abou-Jawde RM, Boumerhi G, et al. Validation and extension of the
369		Memorial Sloan-Kettering prognostic factors model for survival in patients with
370	1.0	previously untreated metastatic renal cell carcinoma. <i>J Clin Oncol.</i> 2005;23:832-841.
371	12.	Heng DY, Wells JC, Rini BI, et al. Cytoreductive nephrectomy in patients with
372		synchronous metastases from renal cell carcinoma: results from the International
3/3	10	Metastatic Renal Cell Carcinoma Database Consortium. <i>Eur Urol.</i> 2014;66:/04-/10.
3/4	13.	Default B, Cheville JC, Martignoni G, et al. The International Society of Urological
3/3		Pathology (ISUP) grading system for renal cell carcinoma and other prognostic
3/0	14	parameters. The American Journal of surgical pathology. 2013;37:1490-1504.
3// 279	14.	Cancer 2010:116:2.2
370	15	Cancer. 2010,110.2-5.
379	13.	high VECE expression are associated with tumour aggressiveness and near survival of
300		repai cell carcinoma. Br. I. Cancar. 2009:101:1417-1424
387	16	Datard II Forgalot P. Karakiawicz PL at al Low CAIX expression and absence of
383	10.	VHL gene mutation are associated with tumor aggressiveness and poor survival of
384		clear cell renal cell carcinoma International journal of cancer Journal international
385		du cancer 2008:123:395-400
386	17.	Dagher I Dugay F Rioux-Leclerca N et al Cytoplasmic PAR-3 protein expression is
387		associated with adverse prognostic factors in clear cell renal cell carcinoma and
388		independently impacts survival. <i>Human pathology</i> , 2014:45:1639-1646.
389	18.	Bui MH, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent
390		predictor of survival in advanced renal clear cell carcinoma: implications for prognosis
391		and therapy. Clin Cancer Res. 2003;9:802-811.
392	19.	Choueiri TK, Figueroa DJ, Fay AP, et al. Correlation of PD-L1 Tumor Expression and
393		Treatment Outcomes in Patients with Renal Cell Carcinoma Receiving Sunitinib or
394		Pazopanib: Results from COMPARZ, a Randomized Controlled Trial. Clin Cancer
395		Res. 2015;21:1071-1077.
396	20.	Jeuken JW, Cornelissen SJ, Vriezen M, et al. MS-MLPA: an attractive alternative
397		laboratory assay for robust, reliable, and semiquantitative detection of MGMT
398		promoter hypermethylation in gliomas. Lab Invest. 2007;87:1055-1065.
399	21.	Bostrom AK, Moller C, Nilsson E, Elfving P, Axelson H, Johansson ME. Sarcomatoid
400		conversion of clear cell renal cell carcinoma in relation to epithelial-to-mesenchymal
401		transition. Human pathology. 2012;43:708-719.
402	22.	Mikami S, Oya M, Mizuno R, Kosaka T, Katsube K, Okada Y. Invasion and
403		metastasis of renal cell carcinoma. Med Mol Morphol. 2014;47:63-67.
404	23.	Dugay F, Le Goff X, Rioux-Leclerq N, et al. Overexpression of the polarity protein
405		PAR-3 in clear cell renal cell carcinoma is associated with poor prognosis.

406		International journal of cancer. Journal international du cancer. 2013;134:2051-
407	24	2000.
408	24.	Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. <i>Nature</i>
409	25	Medicine. 2003;9:009-070.
410	23.	Oisson AK, Diniberg A, Kreuger J, Claesson-weisn L. VEOF receptor signaling - In
411	26	Lilavaanu L. P. Shuch P. Zito C.P. et al. DD L 1 Expression in Clear Call Panel Call
412	20.	Carcinome: An Analysis of Nonbractomy and Sites of Matastasas, <i>Journal of Canaar</i>
413		2014.5.166 172
414	27	Callego GA Villaamil VM Grande E Cainzos IS Aparicio I M Crossing Paths in
415	41.	Human Renal Cell Carcinoma (bRCC) Int I Mol Sci. 2012:13:12710-12733
417	28	Atefi M Avramis F Lassen A et al Effects of MAPK and PI3K pathways on PD-11
418	20.	expression in melanoma <i>Clin Cancer Res</i> 2014:20:3446-3457
419	29.	Ritpraiak P. Azuma M. Intrinsic and extrinsic control of expression of the
420	_>.	immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma
421		Oral oncology. 2015:51:221-228.
422	30.	Wuttig D. Baier B. Fuessel S. et al. Gene signatures of pulmonary metastases of renal
423		cell carcinoma reflect the disease-free interval and the number of metastases per
424		patient. International journal of cancer. Journal international du cancer.
425		2009;125:474-482.
426	31.	Beuselinck B, Job S, Becht E, et al. Molecular Subtypes of Clear Cell Renal Cell
427		Carcinoma Are Associated with Sunitinib Response in the Metastatic Setting. Clin
428		Cancer Res. 2015.
429		

1 **TABLES**

2 Table 1. Summary of the clinical and histopathological characteristics of the 48

3 metastatic patients.

Variables	Number of patients (%)
Sex	
М	27 (56.3%)
F	21 (44.7%)
ECOG	
0	23 (47.9%)
1	25 (52.1%)
Age (years)	61 (42-80)
Mode of detection	
Incidental	12 (25%)
Symptomatic	36 (75%)
Tumour size (cm)	9 (2-18)
ISUP grade	
2	6 (12.5%)
3	18 (37.5%)
4	24 (50%)
Tumour stage (pT)	
1	5 (10.4%)
2	11 (22.9%)
3	28 (58.3%)
4	4 (8.3%)
Lymph node status (pN)	Ý.
0	42 (87.5%)
1-2	6 (12.5%)
Metastasis status (pM)	
0	20 (41.7%)
1	28 (58.3%)
MSKCC score	
Favorable prognosis	8 (16.7%)
Intermediate prognosis	27 (56.3%)
Poor prognosis	13 (27.0%)
Heng criteria	
Favorable prognosis	9 (18.7%)
Intermediate prognosis	19 (39.6%)
Poor prognosis	20 (41.7%)

5 Table 2. Clinical features and their association with synchronous or metachronous

6 **metastatic patients.**

Variables	Patients with	Patients with	p-value
	synchronous	metachronous	
	m-ccRCC (n=28)	m-ccRCC (n=20)	
Sex			p=0.559†
Male	17 (60.7%)	10 (50%)	
Female	11 (39.3%)	10 (50%)	
Age	62	59	p= 0.216‡
ECOG			p=0.045 †
0	10 (35.7%)	13 (65%)	
1	18 (64.3%)	7 (35%)	
Mode of detection		6	p=0.198†
Incidental	5 (17.9%)	7 (35%)	
Symptomatic	23 (82.1%)	13 (65%)	
Metastatic localization			
Lung	11 (39.3%)	5 (25%)	p=0.301†
Bone	10 (35.7%)	11 (55%)	p=0.184†
Distant lymph node	18 (64.3%)	15 (75%)	p=0.430†
Liver	25 (89.3%)	16 (80%)	p=0.429‡
Unique site	17 (60.7%)	14 (70%)	p=0.507†
MSKCC score			
Favorable prognosis	1 (3.6%)	7 (35%)	p=0.006‡
Intermediate prognosis	15 (53.6%)	12 (60%)	p=0.658†
Poor prognosis	12 (42.8%)	1 (5%)	p=0.007‡
Heng criteria			
Favorable prognosis	1 (3.6%)	8 (40%)	p=0.002‡
Poor prognosis	11 (39.3%)	8 (40%)	p=0.960†
Favorable prognosis	16 (57.1%)	4 (20%)	p=0.010†
Treatment			
Cytokines	8 (19.6%)	6 (30%)	p=0.914†
Sunitinib	5 (17.9%)	8 (40%)	p=0.086†
Others	5 (17.9%)	3 (15%)	p=0.793†
Supportive care	8 (19.6%)	3 (15%)	p=0.473‡
Unknown	4 (14.3%)	4 (20%)	p=0.703‡

7 † Pearson chi2 test, ‡ Fisher's exact test, § Mann-Whitney test

- 8
- 9

10 Table 3. Histological, immunohistochemical and molecular features and their

11	association	with s	ynchronous	or metachronous	m-ccRCC.
----	-------------	--------	------------	-----------------	----------

Variables	Patients with	Patients with	p-value
	synchronous	metachronous	
	m-ccRCC (n=28)	m-ccRCC (n=20)	
Histological criteria			
Tumour size (cm)	8.9	9.2	p=0.722‡
ISUP nucleolar grade 4	18 (64.3%)	6 (30%)	p=0.019 †
Tumour stage (T3-4)	22 (78.6%)	10 (50%)	p=0.038 †
Lymph node status (N1-2)	5 (17.9%)	1 (5%)	p=0.214§
Tumour necrosis	19 (67.9%)	15 (75%)	p=0.591†
Sarcomatoid component	15 (53.6%)	18 (90%)	p=0.007 †
Granular component	18 (64.3%)	17 (85%)	p=0.111†
Microvascular invasion	17 (60.7%)	12 (60%)	p=0.960†
Dense lymphocyte infiltrate	4 (14.3%)	1 (5%)	p=0.385‡
Immunohistochemical study			
VEGF≥50%	22 (78.6%)	9 (45%)	p=0.017 †
$CAIX \ge 85\%$	20 (71.4%)	14 (70%)	p=0.915†
Cytoplasmic PAR-3	23 (82.1%)	9 (45%)	p=0.007 †
PD-L1 Intensity 2+ 3+	21 (75%)	7 (35%)	p=0.019 †
VHL status			
Deletion	15 (53.6%)	16 (80%)	p=0.059†
Mutation	16 (57.2%)	16 (80%)	p=0.097†
Promoter methylation	2 (7.1%)	3 (15%)	p=0.636‡
Inactivation	12 (42.9%)	16 (80%)	p=0.010 †

† Pearson chi2 test, ‡ Fisher's exact test, § Mann-Whitney test 12

13

FIGURES

Figure 1. Pathological parameters associated with synchronous m-ccRCC

- A) Sarcomatoid component, HES x200
- B) Diffuse cytoplasmic expression of VEGFA, IHC x200
- C) Cytoplasmic and membranous expression of PAR-3, IHC x200
- D) PD-L1 overexpression with intense membranous staining, IHC x200

