

Tetrathiafulvalene-Tetracyanoquinodimethane Charge-Transfer Complexes Wired to Carbon Surfaces: Tuning of the Degree of Charge Transfer

Joanna Jalkh, Yann Leroux, Antoine Vacher, Dominique Lorcy, Philippe

Hapiot, Corinne Lagrost

► To cite this version:

Joanna Jalkh, Yann Leroux, Antoine Vacher, Dominique Lorcy, Philippe Hapiot, et al.. Tetrathiafulvalene-Tetracyanoquinodimethane Charge-Transfer Complexes Wired to Carbon Surfaces: Tuning of the Degree of Charge Transfer. Journal of Physical Chemistry C, 2016, 120 (49), pp.28021– 28030. 10.1021/acs.jpcc.6b09459. hal-01438122

HAL Id: hal-01438122 https://univ-rennes.hal.science/hal-01438122

Submitted on 10 Apr 2017 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE JOURNAL OF PHYSICAL CHEMISTRY

Article

Subscriber access provided by SCD Université de Rennes1 | SCD de l'Université de Rennes 1

Tetrathiafluvalene-Tetracyanoquinodimethane Charge-Transfer Complexes Wired to Carbon Surfaces: Tuning of the Degree of Charge Transfer.

Joanna Jalkh, Yann R Leroux, Antoine Vacher, Dominique Marie Lorcy, Philippe Hapiot, and Corinne Lagrost *J. Phys. Chem. C*, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.6b09459 • Publication Date (Web): 14 Nov 2016

Downloaded from http://pubs.acs.org on November 15, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Tetrathiafluvalene-Tetracyanoquinodimethane Charge-Transfer Complexes Wired to Carbon Surfaces: Tuning of the Degree of Charge Transfer Joanna Jalkh, Yann R. Leroux, Antoine Vacher, Dominique Lorcy, Philippe Hapiot, and

Corinne Lagrost*

Institut des Sciences Chimiques de Rennes, Equipe MaCSE, CNRS and Université de Rennes

1, UMR n°6226, Campus de Beaulieu, 35042 Rennes Cedex, France.

Abstract

TTF TCNQ Charge-transfer complexes involving (tetrathiafulvalene) and (tetracyanoquinodimethane) derivatives are engineered in a 2D arrangement onto a carbon surface through the exposure of immobilized TTF units to TCNO compounds. TTF molecules were immobilized as robust monolayers on carbon surfaces using the electrografting method followed by a click chemistry coupling. When the TTF monolayer is exposed to TCNQ, TCNQF₂ (2,5 difluoro-TCNQ) and TCNQF₄ (2,3,5,6 tetrafluoro-TCNQ), strong donoracceptor complexes are formed onto the surface. A considerable decrease of the electrochemical response accompanies the formation of the charge transfer complex. This observation is rationalized by the analysis of original crystal samples using an ultramicroelectrode cavity, confirming that charge-transfer complexes are electrochemically silent. A fine control of the degree of charge transfer with the judicious choice of different acceptors is evidenced through electrochemical and XPS measurements. Thus, donor-acceptor complexes of different nature are formed. A fully ionic charge-transfer complex is formed upon exposure of the TTF monolayer to the more oxidizing $TCNQF_4$, while a neutral complex is obtained after exposure to the less oxidizing TCNQ. Exposition of the TTF monolayers to the intermediate $TCNQF_2$ yields a mixture of neutral-ionic systems. These donor-acceptor interactions that fully mimic those described in the solid-state are rarely described in such a 2D arrangement, with systems being directly wired to an electrode.

1. INTRODUCTION

Organic charge transfer complexes are a class of molecular conductors that have been widely studied for their conducting and magnetic properties.^{1,2,3,4,5,6,7}The charge-transfer behavior between an electron donor and an electron acceptor is generally investigated in 3D solidphase systems, either organic crystals^{1,3,4,5} or more recently at the interface between two crystals⁸,⁹ or between a powder in contact with a single crystal.¹⁰ Charge-transfer complexes could be also processed as Langmuir-Blodgett films, where the donor-acceptor organization allows the formation of high quality monolayers films with appealing conducting and magnetic properties.¹¹ As illustrative example, a covalent TTF(tetrathiafulvalene)-TCNQ(tetracyanoquinodimethane) diad exhibits an extremely low HOMO-LUMO gap, leading to facile electron transfer with five stable redox states.¹² More rarely, these systems have been engineered as self-assembled monolayers (SAMs), ^{13,14,15,16,17,18,19,20} despite the great interest of the strategy for realizing integrated devices. Indeed, SAMs would permit to organize charge-transfer complexes in an optimized 2D film structure, hence promoting cooperative properties. As donor molecules, TTF and its derivatives are almost ubiquitous in the field because of a good chemical stability, an accessible synthesis of the building blocks and their remarkable donor properties.¹ The electron rich TTF molecules (and derivatives) could efficiently associate to electron-deficient acceptors like TCNQ derivatives to form charge transfer complexes.¹ These complexes have remarkable electronic properties that can serve to build high electrically conductive system²¹ or molecular rectifier.^{22,23}

Yet, a key question is to know how the special properties of TTF in solution or of TTFbased crystal solids are transferred to surface-confined species.²⁴ In this context, the formation of a donor-acceptor complex was examined for SAMs of TTF alkylthiols chemisorbed on gold surfaces in presence of different acceptors like TCNQ.^{13,15,16} However, cyclic voltammetry analyses have revealed a puzzling behavior of these SAMs since the immobilized TTFs lost their electroactivity after exposure to TCNQ.¹⁶ A clear decrease of the oxidation current upon addition of TCNQ was reported. Authors concluded that only "free" TTFs, *i.e.* TTFs that were not involved in the donor-acceptor interactions, could contribute to a detectable electrochemical response but the origin of the phenomenon remained unclear. Note that the formation of a charge-transfer complex between TTF derivatives and TCNQF₄, evidenced by micro-Raman spectroscopy, has led to a comparable decrease of the current response in presence of the acceptor but by using an ITO substrate.²⁵ The main difficulties for understanding these observations are the relative fragility of SAMs on gold and the dynamic nature of the layer that could easily reorganize when a functional group or other bulky constraints are introduced on the layer. For example, it is common to substitute an alkyl-functionality in a prepared SAM by simply soaking the modified surface in a solution containing a different alkyl-thiol.²⁶

Among possible surfaces for immobilizing a redox molecule, carbon materials are substrates of choice because they could be functionalized through a covalent link between the molecule and the substrate, allowing a particularly robust immobilization of the molecule.²⁷ Carbon substrates present also interests for preparing materials with new properties as recently exemplified with the modification of graphene layers by TTF derivatives.²⁸ The electrografting of aryldiazonium salts is a convenient approach for modifying carbon surfaces. The modification is based on the electrochemical production of transient reactive phenyl radicals at the vicinity of the carbon electrode surface that are able to attach on the carbon materials.²⁷ To control the structure and the vertical extension of the layer, we have recently proposed a two-step method based on a bulky protected precursor, 4- ((triisopropylsilyl)ethynyl) benzenediazonium tetrafluoroborate (TIPS–Eth-ArN₂⁺).²⁹ After removal of the TIPS group, a dense reactive ethynyl-terminated monolayer is obtained and

could be post-functionalized by using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition with a variety of organic molecules containing an azido group. Interestingly, the distance between functional groups is controlled by the size of the leaving protecting group.³⁰ In this work, we took benefit of this strategy for preparing well-organized, covalently attached TTF monolayers bridged with alkyl chain of different length (propyl, pentyl and decyl, i.e. C_3 , C_5 and C_{10} , respectively) on a carbon surface. Their charge transfer properties were carefully investigated upon exposure to a family of acceptors of increasing strength, TCNQ, TCNQF₂ and TCNQF₄, by combining cyclic voltammetry, measurements with cavity ultramicroelectrode (UMEC) and X-ray photoelectron spectroscopy (XPS). Remarkably, our results evidence the formation of charge transfer complexes of different nature at the interface as function of the acceptors strength.

1. EXPERIMENTAL SECTION

Chemicals. Unless specified, all compounds were commercially available reagents and were used as received. Tetrabutylammonium hexafluorophosphate (TBAPF₆) of electrochemical grade was purchased from Aldrich. 4-((triisopropylsilyl)ethynyl) benzenediazonium tetrafluoroborate (TIPS-Eth-ArN₂⁺) was prepared according to a previously described procedure.³¹ TCNQF₄ (2,5-difluoro-TCNQ) was prepared according to a published procedure.³² The synthesis of the azido TTFs with different alkyl chains was realized starting from the corresponding iodo-alkyl-TTF according to published procedures (see supporting information).³³

Electrochemical Measurements. Electrochemical modification and characterization were performed with an Autolab PGSTAT N302 potentiostat/galvanostat (EcoChemie B.V.) equipped with the GPES software. A conventional three-electrode system, comprising a 3 mm

diameter glassy carbon electrode as a working electrode, a platinum wire as the auxiliary electrode, and a SCE electrode as reference, was used. The surface concentration of active TTF centers were derived from the faradaic charge of the first monoelectronic oxidation according to the following equation $\Gamma = Q / FA$, where F is the Faraday constant, A is the surface of the glassy carbon electrode, Q the charge obtained from the integration of the area under the voltammetric peak.

For UMEC analyses,³⁴ the ultramicroelectrode was provided through the "UMEC Network of CNRS".³⁵ The microcavity of the ultra-microelectrode (approximately 17 μ m diameter cavity) was filled with a homogeneous mixture of the crystal under study and graphite powder in a 4:1 ratio. The voltammograms were recorded using a 1:1 v/v ethanol/water solution containing 0.1 mol L⁻¹ KPF₆ as electrolyte at a scan rate of 10 mV s⁻¹.

Electrode Modification. The electrochemical procedure used for the modification of the carbon electrodes (glassy carbon disk or pyrolized photoresist films (PPF) substrates) is presented in Scheme 1 and is based on the method described in reference 29. Briefly, the first step was the electrografting of the protected TIPS-Eth-ArN₂⁺ onto the carbon electrode from an acetonitrile solution containing 10^{-2} mol L⁻¹ TIPS-Eth-ArN₂⁺ and 10^{-1} mol L⁻¹ TBAPF₆ and using 5 cycles between 0.6 and -0.75 V (vs SCE) at a scan rate of 50 mV s⁻¹. The modified surfaces were then rinsed with acetone and stirred in THF for 20 min. TIPS deprotection was performed by immersing the modified electrodes in a stirred solution of 10^{-1} mol L⁻¹ TBAF (tetrabutylammonium fluoride) in THF for 20 min. N₃-C_n-TTF molecules were then coupled to the resulting H-Eth monolayers by a Huisgen 1,3-dipolar cycloaddition (click chemistry). For that, the H-Eth modified electrodes were immersed in a stirred 5 mL solution of TTF-(CH₂)_n-N₃ (n =3, 5, 10) (1 mg) in THF and CuSO₄ (2.5 mL, 10^{-2} mol L⁻¹ in 2.5 mL water containing 80 mg of NaHCO₃) was added dropwise to the solution. The reaction

mixture was left stirring under argon for 1 hr. The resulting electrodes were then stirred in a saturated EDTA solution for 10 min to remove any residual copper.

X-Ray Photoelectron Spectroscopy Measurements. X-ray photoelectron spectroscopy data have been collected using a Kratos Axis Nova spectrometer using the Al K α X-ray source working at 1486.6 eV and using a spot size of 0.7 x 0.3 mm². Survey spectra (0-1000 eV) were acquired with an analyzer pass energy of 80 eV (0.5 eV/step); high-resolution spectra used a pass energy of 20 eV (0.1 eV/step). Binding energies were referenced to C1s peak at 285 eV. The atomic percentage for surface composition was estimated using the integrated peak areas in the survey spectra; the peak areas were normalized by the manufacturer-supplied sensitivity factor. The core level spectra were peak-fitted using the CasaXPS software, Ltd., version 2.3.17).

Scheme 1. Functionalization of carbon surfaces by TTF-terminated monolayers

2. RESULTS AND DISCUSSION

Redox Behavior of a Glassy Carbon Electrode Modified with the alkyl-TTF layers. Three TTF derivatives with different alkyl-chain linkers (propyl (C_3), pentyl (C_5) and decyl (C_{10})) were immobilized on the carbon surface following a previously published procedure as depicted in Scheme 1.²⁹ The C_n -TTFs functionalized with azide groups were coupled to the reactive ethynyl monolayer by "click chemistry". Figure 1 shows the cyclic voltammetry in dichloromethane containing 0.2 mol L⁻¹ TBAPF₆ recorded after copious rinsing of the modified electrodes. For the three layers, two successive well-defined redox processes are observed and are characteristic to the reversible oxidation of the TTFs to their cations and to their dications, respectively (Table 1).¹ For the three modified surfaces, the intensity of the peak currents varies linearly as a function of the scan rates as expected for a surface-confined redox couple.³⁶ Moreover, the TTF layers present good electrochemical stability upon cycling, the cyclic voltammetry experiments could be repeated more than 10 times without any significant variation (See Figure S1 in the supplementary section). By integration of the faradaic oxidation current, surface concentrations were estimated to 5 (\pm 2) \times 10⁻¹⁰ mol.cm⁻² based on repeated measurements. Considering the roughness of a glassy carbon electrode (typically the roughness factor is 2-2.5 for a carefully polished electrode),³⁰ this value confirms that relatively dense monolayers of TTF are obtained. The surface concentration of an ideal close-packed monolayer of TTF was reported to be 3.6×10^{-10} mol cm⁻².¹³ However in our case, the maximum packing of the TTF units is imposed by the steric hindrance of the TIPS protective group, hence leading to a surface concentration equal to 2.3×10^{-10} mol cm⁻² for an ideal hexagonal compact arrangement.³⁰ The experimental value found is in a fairly good agreement with this theoretical value. The overall shape of the cyclic voltammetry differs from those previously reported for the oxidation of alkylthiol-TTF monolayers on gold (SAM).^{26,38,24} While the chemical stability and redox activity of the TTF are generally kept after immobilization in SAMs,^{26,37} their electrochemical characteristics are considerably modified. Notably, the peak shapes and widths are affected, depending on the oxidation states of TTF, on the organization of the TTF units in the layer and on the electrolyte media.^{26,38} These effects were ascribed to the interactions between the TTF moieties, and could be easily

identified by cyclic voltammetry.²⁶ Published studies have reported voltammograms with a first dissymmetric wide peak (full width at half maximum, FWHM, around 160-170 mV) and a much narrower second one (FWHM of 50-60 mV).^{26,38,24} These observations were explained by strong intermolecular interaction taking place within the monolayers upon the charging process.^{26,39} The small FWHM values for the second process (much narrower than the ideal 90 mV expected for non-interacting redox centers) have been ascribed to strong attractive interactions between the TTF²⁺ centers.^{26,39}

Table 1. Electrochemical Data from Cyclic Voltammetry for the Oxidation of Monolayers of TTF-C_n (n= 3, 5, 10)^a in CH₂Cl₂ Containing 0.2 mol L⁻¹ TBAPF₆

Monolayers	At 0.2 Vs ⁻¹	Redox process #1	Redox process #2
TTE C	E°' (V vs SCE)	0.50	0.83
11 Г- С3	FWHM (mV)	178	126
TTE C	E°' (V vs SCE)	0.49	0.82
11 F-C 5	FWHM (mV)	176	124
TTF-C ₁₀	E°' (V vs SCE)	0.50	0.84
	FWHM (mV)	186	122

^aAll the monolayers exhibit close surface concentrations

In our experiments, the second redox peak is also narrower than the first one, but shapes of the two processes are more comparable, with FWHM larger than those reported for the TTF SAMs on gold. All these observations correspond to weaker interactions between the TTF moieties. It is likely that the covalent grafting of our arylethynyl platform limits the reorganization and packing in the TTF monolayers.³⁰ The steric hindrance of the bulky protective TIPS group controls the distance between the anchorage sites of the TTF units and leaves space between them resulting in a sort of frozen arrangement.³⁰ This would allow an easier solvation process/counter-ion penetration in the monolayers, decreasing the strength of attraction between the TTF²⁺ units. Additionally, a shoulder-like system is observed at the second oxidation peak (located at the more positive potentials side) for the TTF linked

through the longest alkyl chains (TTF-C₅ and TTF-C₁₀) (Figure 1). This "extra" peak is even more visible for the TTF with the longest alkyl chain linker (C₁₀). The splitting of the oxidation/reduction peaks suggests the co-existence of "isolated" (lower potential) and "clustered" (higher potential) TTF²⁺ species, the formation of "clustered" species being facilitated by the flexibility introduced by longer alkyl chains as observed for alkyl-ferrocene layer.⁴⁰

Figure 1. Cyclic voltammograms recorded in dichloromethane (+ 0.2 mol L⁻¹ TBAPF₆) of TTF-terminated monolayers having bridging units of different chain lengths (C₃ (red) C₅ (blue) and C₁₀ (green)) at a glassy carbon electrode. Scan rate = 200 mV s⁻¹.

Acceptor-donor Complexes between TTF-C_n Monolayers and TCNQ Derivatives.

To examine the properties of charge-transfer complexes with the TTF layer on carbon, cyclic voltammograms of the TTF layers were recorded before and after immersion of the modified electrode in CH_2Cl_2 solutions of TCNQ, TCNQF₂ and TCNQF₄ with increasing concentrations and after extensive rinsing with clean CH_2Cl_2 . For the three layers, a considerable decrease of the oxidation peak currents is observed after exposure to the TCNQ derivatives solutions. Figure 2 shows some typical voltammograms obtained for the TTF-C₁₀ layer. Under our experimental conditions, the current intensities decrease monotonically with the increase of acceptors concentration to reach a constant value when the TCNQs

 concentrations are above 2 - 4 $\times 10^{-3}$ mol L⁻¹. From the maximum current decrease, we could estimate that roughly 40 to 60 % of the immobilized TTF units become electrochemically silent after exposure to the TCNQ derivatives solutions. The observation of the current drop is the least intense for the layer with the short linker, indicating that a more flexible layer favors the phenomenon. For example, using $TCNQF_4$ as an acceptor, 40 % of TTF units become electro-inactive for the TTF-C₃ layer after immersion in the acceptor solution while more than 55 % for TTF-C₅ and TTF-C₁₀ are silent under the same conditions. In all cases, it was not possible to recover the initial electro-activity of the layer even after repeated cycling in a blank CH₂Cl₂ solution; the cyclic voltammograms of the TTF layer remain unchanged. Finally, as a test experiment, a comparable monolayer, but functionalized with undecylferrocene units, was exposed to the same TCNQF₄ solutions. No modifications of the voltammograms were observed after exposure of the modified surface to TCNQF₄ (Figure S2). All these observations indicate that the interactions between TTF and the TCNQ derivatives are strong and specific of the TTF layers. Importantly, this effect does not depend on the strength of the acceptor which can be quantified through its formal reduction potential. The di- and tetra-fluoro analogues of TCNQ exhibit more positive formal potentials than TCNQ, i.e. E° = 0.53 V vs SCE, 0.39 V vs SCE and +0.17 V vs SCE for TCNQF₄, TCNQF₂ and TCNQ, respectively.

Figure 2. Cyclic voltammograms in dichloromethane (+ $0.2 \text{ mol } L^{-1} \text{ TBAPF}_6$) of a glassy carbon electrode modified with the TTF-C₁₀ monolayer, before (red curves) and after

exposure to a solution with increasing concentrations of TCNQ derivatives (A) TCNQ, (B) TCNQF₂, (C) TCNQF₄). S1 = 10^{-4} mol L⁻¹ (green), S2 = $5 \ 10^{-4}$ mol L⁻¹ (blue), S3 = 10^{-3} mol L⁻¹ (magenta) and S4 = $8 \ 10^{-3}$ mol L⁻¹ (black).

Similar current decreases were previously reported for self-assembled layer of thioalkyl TTFs onto a gold electrode surfaces in presence of acceptor molecules.¹⁶ Authors suggested that this current drop results from a donor-acceptor interaction between the TTF and the TCNQ.

To further support this hypothesis, a key question is about the expected electrochemical response of a charge transfer complex involving TTF and TCNQ derivatives. If these associations are commonly considered and described in the literature,^{1,5} there was no specific examinations about their electrochemical responses, particularly under a crystallized form that could be compared to a TTF layer. In that purpose, we prepared crystals of a charge transfer complex with TTF ($E^\circ = 0.33 V vs SCE$) and TCNQF₂ ($E^\circ = 0.39 V vs SCE$). Note that, in this case, the reduction potential of the acceptor is larger than the oxidation potential of the donor, which could lead to a fully ionic charge transfer as in the case of the TTF-C_n and TCNQF₄. The electrochemical activity of these crystals was investigated by means of the ultramicroelectrode cavity (UMEC) technique.^{34,35} The UMEC technique allows the electrochemical analysis of a very small amount of powder materials and is particularly relevant for electrochemical analysis of crystals. The cavity of the ultramicroelectrode was filled with crystals of TTF-TCNQF₂ charge transfer complex. As comparative experiments, the electrochemical signals of the oxidation of TTF crystals filling the same cavity were also recorded (See Figure S4 for experiments with pure TCNQF₂ crystals).

The Journal of Physical Chemistry

The electrochemical measurement was performed in 1:1 (v/v) ethanol/water mixture containing (+0.1 mol L⁻¹) KPF₆ as supporting salt to limit the dissolution of the crystal in the solution. As a remarkable feature, the electrochemical signals of the TTF oxidation (or of the TCNQF₂ reduction) that are clearly detected in the pure TTF crystals, disappear in the TTF-TCNQF₂ charge-transfer crystal (Figure 3).

Figure 3. Cyclic voltammetry with an UMEC recorded in a 1:1 ethanol/water solution (+ 0.1 mol L^{-1} KPF₆). Scan rate = 10 mV s⁻¹. (A) TTF-TCNQF₂ crystal observed in oxidation, (B) TTF-TCNQF₂ crystal observed in reduction. (C) For comparison, oxidation of a TTF crystal with same conditions showing the two successive reversible oxidation steps.

These observations confirm that the charge transfer complex displays no electroactivity in the potentials range where the oxidation of TTF is observed, clearly supporting the assumption that charge transfer between the immobilized TTF and the TCNQ derivatives suppress their electrochemical activity as described above. This absence of electroactivity of the complex could be due to the strong activation energy that would be required to break the TTF-TCNQF₂ association, making the oxidation of TTF more difficult. Indeed, a small signal around 0.2 V that could be ascribed to the TTF oxidation appears after scanning the potential scan with an expanded window (notably towards a more negative potentials excursion). Similar observations have been reported for TTF-TCNQ complexes as

The Journal of Physical Chemistry

compacted pellets.⁴¹ Large overpotentials were required to observe the electrochemical signature of TTF and TCNQ. Therefore, the remaining electrochemical activity observed with the TTF monolayers, after exposure to TCNQ derivatives solution, is probably due to the TTF units, which are not involved in the donor/acceptor interactions.

The ratio i_p/i_{pTTF} (where i_p and i_{pTTF} are the first oxidation peak currents recorded by cyclic voltammetry measured after and before immersion of the TTF-C_n layer in the TCNQ derivative solution, respectively) could be considered to quantify the efficiciency of the formation of the donor-acceptor complexes in the layer. The smallest i_p/i_{pTTF} corresponds to the strongest donor/acceptor interactions. It is noticeable that i_p/i_{pTTF} depends both on the acceptor redox potential, E°_{TCNQ} and on linker length (Figure S9). For the shortest and less flexible layer (TTF-C₃), comparable i_p/i_{pTTF} variations are observed for the three different acceptors with i_p/i_{pTTF} around 0.6 (Figure S9). In contrast, for the more flexible TTF-C₁₀ layer, i_p/i_{pTTF} varies considerably with the acceptor as the following trend: TCNQF₄ (0.38) < TCNQ (0.5) < TCNQF₂ (0.7). If the most efficient complexation is indeed observed with TCNQF₄ as acceptor, having the larger reduction potential, an inversion exists between TCNQ and TCNQF₂ suggesting that the redox potential is probably not the only relevant parameter to quantify the strength of such interaction(*vide inf*ra).

To further confirm this puzzling behavior, the blocking properties towards electronic transfer of the TTF-C₁₀ monolayers, before and after exposure to the different acceptors, were studied. In that purpose, we used a classical electrochemical probe, dopamine that was originally proposed by R. McCreery *et al.* Oxidation of dopamine to the corresponding *ortho*-quinone requires the adsorption of dopamine onto the carbon electrode substrate for a fast charge transfer kinetics and the coating of the carbon electrode surface with a dense and compact monolayer was demonstrated to inhibit the oxidation of dopamine.^{42,43,44} Thus, observation of electrochemical activity implies that dopamine is able to reach the electrode

surface. Examination of the electrochemical response of dopamine oxidation provides evidence about the presence of pinholes in a monolayer and, consequently about its compactness on a carbon substrate. Figure 4 displays the voltammograms of the dopamine oxidation on a glassy carbon electrode modified with the $TTF-C_{10}$ monolayer before and after exposure to the TCNQ derivatives.

Figure 4. Cyclic voltammetry of 10^{-3} M dopamine in 0.1 mol L⁻¹ H₂SO₄ solution on a GC electrode modified with TTF-C₁₀ monolayers before (black) and after exposure to TCNQ derivatives, TTF-TCNQF₂ (red), TTF-TCNQ (green), and TTF-TCNQF₄ (blue). Scan rate = 0.1 V s⁻¹.

A well-defined voltammogram is observed on carbon surfaces modified with TTF-C₁₀ (before exposure to acceptors), indicating the presence of pathways allowing the passage of dopamine through the TTF layer. After exposure to TCNQ derivatives, the oxidation of dopamine remains visible, but the peak-to-peak potential separations increase, the peak currents display a larger plateau-shape and their intensity are lowered. These observations show that the passage of dopamine through the TTF layer becomes more difficult, corresponding to a more blocking character of the layer after exposure to a TCNQ derivative.^{45,46} However, the magnitude of the variations in the dopamine oxidation signal are

different according to the different acceptors (Figure 4). It is especially remarkable that the same trend is deduced from the ratios i_p/i_{pTTF} that characterize the strength of the acceptordonor complexes and from the variations of the blocking character of the layer after exposure to the acceptor, i.e. TTF-TCNQF₄ > TTF-TCNQ > TTF-TCNQF₂. These results support the idea that intermolecular spaces between the TTF units exist within the monolayer (Figure 4, black line) and can be filled by the acceptors (Figure 4, green/red/blue lines). Indeed, considering that the molecular size of dopamine and TCNQ are comparable, the intermolecular space is large enough to permit the passage of TCNQ derivatives within the layer, promoting the formation of the charge transfer complexes. The TCNQ compounds that interact with the TTF layer literally close the intermolecular spaces and add rigidity in the structure of the monolayer, preventing dopamine from reaching the carbon surface. Depending on the strength of the donor-acceptor interactions, these spaces are more or less

well blocked (Figure 5). Thus, TCNQF₄ undergoes the most efficient charge transfer complexation and its interaction with the TTF- C_{10} monolayer leads to the largest blocking of the carbon surface towards dopamine (Figure 4, blue line).

Figure 5. Schematic representation of the blocking properties towards dopamine (DOPA) of the TTF-C₁₀ monolayer associated with A) TCNQF₄, B) TCNQ and C) TCNQF₂

XPS Analyses of Donor-Acceptor Complex At TTF-C₁₀ **Monolayers.** PPF (Pyrolyzed Photoresist Film) substrates functionalized with TTF-C₁₀ monolayers were analyzed by X-ray

Photoelectron spectroscopy (XPS), before and after exposure to the TCNQ derivatives, to gain a deeper understanding of the nature of the donor-acceptor complexation. The survey spectra exhibit substantial changes after the exposure of the TTF- C_{10} monolayers to the TCNQ derivatives, indicating modifications in surface compositions (Figure S6). Intense C1s peaks are detected at 285 eV due to the PPF substrate and to the TTF monolayers, whether complexed with TCNQ derivatives or not. N1s (at 400 eV) and S2p (at 164 eV) peaks that are fully characteristic to the organic monolayers are also observed. F1s peaks (at 688 eV) with significant atomic percentage could be identified for the TTF monolayers exposed to TCNQF₂ and TCNQF₄. Accordingly, the fluorine atomic percentage is larger with TCNQF₄ than with TCNQF₂. Trace levels of fluorine (< 1%) are also detected in the survey scans of TTF- C_{10} monolayers and TTF- C_{10} monolayers exposed to TCNQ (Table 2) probably due to a contamination at the samples during the deprotection step in the monolayer preparation.

Table 2. Surface Composition (% atom, \pm 20%) of TTF-C₁₀ Monolayers before and after Exposure to TCNQ, TCNQF₂ or TCNQF₄ Solutions

% atom	TTF	TTF-TCNQ	TTF-TCNQF ₂	TTF-TCNQF ₄
%C	79.7	86.8	82.8	82.3
%N	1.7	1.9	1.7	3.6
%F	0.9	0.6	2.9	3.5
% S	4.5	2.9	3.2	3.0
% O	13.2	7.8	9.4	7.6

The N1s core level spectra could be decomposed into several components that take into account the triazole groups (i.e. two peaks at 399.9 eV (\pm 0.5) (<u>N</u>-N=N) and at 401.1 (\pm 0.5) eV (N-<u>N</u>=N), with a ratio of 1:2) ⁴⁷ for the TTF-C₁₀ monolayers and the TCNQ derivatives for the exposed monolayers (Figure 6). An important feature is the appearance of a shoulder-like peak at lower binding energy (398.5 (\pm 0.5) eV) for the monolayers exposed to TCNQF₂ and TCNQF₄ (Figure 6). This could be ascribed to the presence of negatively charged TCNQF₂ or TCNQF₄ molecules.⁴⁸ The low binding energy contribution is more pronounced for the monolayers exposed to TCNQF₄, indicating that the monolayers are complexed with larger amount of negatively charged species. In sharp contrast, the TTF-C₁₀ monolayers exposed to TCNQ do not show this contribution and the decomposition gives a component at 400.4 (\pm 0.5) eV that is attributed to neutral TCNQ species (Figure 6).⁴⁸ This component also contributes to the N1s signal of TTF-C₁₀ monolayer exposed to TCNQF₂ while being only a minor component for TTF-C₁₀ monolayer exposed to TCNQF₄.

ACS Paragon Plus Environment

Figure 6. Peak-fitted high resolution core level spectra of N1s (left) and S2p (right) for PPF modified by TTF-C₁₀ monolayer, before (A) and after exposure to TCNQ (B), TCNQF₂ (C) and TCNQF₄ (D), respectively.

It is further interesting to focus on the signal corresponding to S2p for the four different samples. In all cases, the experimental signal exhibits the expected doublet structure due to spin orbit splitting that leads to S2p_{3/2} and S2p_{1/2} peaks (Figure 6). For the TTF-C₁₀ monolayers unexposed and exposed to TCNQ and TCNQF₂, the main doublet at 163.6 (\pm 0.5) eV (S2p_{3/2}) and 164.8 (\pm 0.5) eV (S2p_{1/2}) could be ascribed to the neutral TTF units (Figure 6).⁴⁹ Interestingly, the TTF-C₁₀ monolayers exposed to TCNQF₄, lead to a S2p doublet signal at 164.4 (\pm 0.5) eV (S2p_{3/2}) and at 165.6 (\pm 0.5) eV (S2p_{1/2}), hence significantly shifted to higher binding energy (Figure 6). This result agrees well with the reported position of

positively charged TTF molecules (TTF⁺),^{49,50} indicating that the TTF units are oxidized when exposed to $TCNQF_4$. The presence of negatively charged $TCNQF_4$ as evidenced in the N1s signal establishes that $TCNQF_4$ molecules symmetrically act as electron acceptor, showing the full charge transfer process between the immobilized TTF units and TCNQF₄. Contrariwise, the XPS analyses indicate that the immobilized TTF units form neutral donoracceptor complexes with TCNQ. A less clear-cut phenomenon could be deduced from the XPS studies in the case of TCNQF₂ because of the presence of a mixture of neutral and fully ionic charge-transfer complexes at the PPF surfaces. Remarkably, these behaviors are fully similar to those described in the solid-state. In the solid-state, depending on the oxidation potential value of the donor relatively to the reduction potential of the acceptor, complexes of different natures could be isolated: for instance, neutral charge-transfer complex if the potentials difference between acceptor and donor is less than -350 mV, while neutral-ionic transitions could be observed for potentials difference between 0 and -350 mV. ^{51,52} A fully ionic charge-transfer complex could form if the reduction potential of the acceptor is higher than the oxidation potential of the donor, leading to the formation of a salt with a ionicity degree equal to 1.^{53,54} In our work, the formation of a fully ionic charge-transfer complex could happen only with the TCNQF₄ acceptor, by considering the oxidation potential of the immobilized TTF units relatively to the reduction potential of TCNQF₄. Likewise, exposure of the TTF-C₁₀ monolayers to TCNQ could yield to neutral donor-acceptor complexes, while the potentials difference between TCNQF₂ and the immobilized TTF units falls in line with the coexistence of neutral and ionic charge-transfer complexes. The XPS measurements strongly support the formation of charge-transfer complexes organized as a 2D arrangement with variable degree of charge transfer. In the TTF- C_{10} monolayer exposed to TCNQF₄, the S2p signal clearly shows that all the TTF moieties are under the radical cation form, interacting with negatively charged TCNQF₄ as identified in the corresponding N1s spectrum.

The Journal of Physical Chemistry

These latter anionic species account for 80 % of the detected TCNQF₄, showing that an excess of neutral TCNQF₄ that are not strongly interacting with the immobilized TTF radical cations are also present in the layer (see table 3 and discussion below). In the TTF-C₁₀ monolayer exposed to TCNQF₂, S2p signal does not allow to quantify confidently the two kind of TTF species (neutral and radical cation species) because the XPS resolution cannot mitigate the strong overlapping of these two signals. However, analysis of the N1s signal shows that 40 % anionic and 60% neutral TCNQF₂ species co-exist in the layer, supporting the formation of mixed neutral and ionic complexes.

Because of the fluorine contamination of the samples, only the N/S ratio was further considered to study more quantitatively the surface composition of the immobilized complexes. It is noticeable that the experimental ratio agrees well the theoretical expected ones for the TTF-C₁₀ monolayers before exposure to any of the TCNQ compounds. Different theoretical ratios were calculated in Table 3 depending on the stoichiometry of the donoracceptor complex. From comparison with the experimentally estimated ratio, it could be proposed that the immobilized TTF units form a complex with TCNQ or TCNQF₂ with a stoichiometry corresponding to one or two TTF for one TCNQ/TCNQF₂ while the chargetransfer complex TTF-TCNQF₄ involves one TTF for one or two TCNQF₄. Obviously, some immobilized TTF units could be free of acceptor neighbors, especially in the case of TCNQ and TCNQF₂, as reflect the experimental N/S ratios which are lower than the theoretical ones, whatever the proposed stoichiometries. Similarly, the lower N/S ratio obtained for complexes with TCNQF₂ than that for complexes with TCNQ suggest that there are less TCNQF₂ molecules interacting with the TTF units.

Tab	le 3. Experimental	N/S Ratios Ev	aluated from	XPS Data and	Comparison	with the
The	oretical Ratios Calc	ulated for Diff	ferent Comple	ex Stoichiometr	ies TCNQ De	rivatives
ove	r TTF-C ₁₀					

N/S	TTF-C ₁₀	TCNQ/ TTF-C ₁₀	TCNQF ₂ / TTF-C ₁₀	TCNQF4/ TTF-C10
Experimental	0.38 (theor. 0.43)	0.66	0.53	1.20
1:1	-	1	1	1
1:2	-	0.71	0.71	0.71
2:1	-	1.57	1.57	1.57

It is worth outlining that these results fall in line with the different blocking behaviors toward dopamine of the TTF-C₁₀ monolayers exposed to the acceptors and with the decrease of the electrochemical activity of the layer. Thus, the strongest blocking behavior is observed for the TTF-C₁₀ exposed to TCNQF₄. If there is more than one TCNQF₄ compounds around the TTF units, the resulting steric hindrance prevents the dopamine from accessing the carbon surface. The decrease of electroactivity of the layer through the ratio ip/ip_{TTF} could be considered as a quantification of the strength of the association between the immobilized TTF and the different acceptors in relation with the 2D organization probably driven by the ionic, neutral or mixed nature of the charge-transfer complexes.

CONCLUSION

Alkyl-TTF molecules (TTF-C_n) could be immobilized as highly robust monolayers on carbon surfaces through an electrografting method combined to a click chemistry coupling of TTF- C_n -azide precursors. When the TTF monolayer is exposed to an acceptor like TCNQ, TCNQF₂ or TCNQF₄, donor-acceptor complexes are formed on the surface. The formation of the complexes lead to a considerable decrease of the voltammetric peak currents. UMEC measurements with original crystal samples unambiguously confirm that a strong reduction of electro-activity accompanies the formation of charge-transfer complexes. Interestingly, the Page 23 of 32

complexation could be modulated by varying the alkyl chain lengths of the bridge or by varying the strength of the acceptor, and the peak current decrease constitutes a convenient tool to monitor this modulation. The TTF units attached to the surface with the shortest and less flexible bridge (TTF-C₃) are hardly sensitive to the variation of the acceptor strength in sharp contrast to TTF-C₁₀ that also allow a more efficient complexation with a given acceptor. XPS measurements point to the formation of donor-acceptor complexes of different nature, according to the strength of the acceptor. Fully ionic charge-transfer complex is formed upon exposure of immobilized TTF to the more oxidizing TCNQF₄, while a neutral complex is obtained from exposure to the less oxidizing TCNQ. The TTF monolayers exposed to the intermediate TCNQF₂ yield neutral-ionic systems. Noticeably, these donor-acceptor interactions evidenced at the carbon surfaces fully mimic those described in the solid-state. This work gives a rare example of a system directly connected to an electrode surface incorporating donor-acceptor complexes with a fine control of the degree of charge transfer. The modulation of the acceptor' strength offers the possibility of crystal-like engineering at a conductive surface to afford integrated molecular conductors.

ACKNOWLEDGMENTS

J.J. thanks the Région Bretagne for financial support (461-ARED). The authors are grateful to Dr. D. Hauchard (Institut des Sciences Chimiques de Rennes) for his help in the UMEC experiments. Dr. O. Jeannin (Institut des Sciences Chimiques de Rennes) is thanked for the gift of TCNQF₄ compound. J. Hamon (Institut des Matériaux de Nantes, Nantes, France) is thanked for his help in the X-ray photoelectron spectra experiments. Dr M. Fourmigué (Institut des Sciences Chimiques de Rennes) is warmly acknowledged for fruitful discussions.

ASSOCIATED CONTENT

Supporting Information. Synthetic procedures and compounds characterization, additional electrochemical experiments for TTF layers and ferrocenyl layers, details about UMEC preparation and additional CVs of crystals, XPS survey spectra and high resolution core level fitted spectra.

AUTHOR INFORMATION

*E-mail: corinne.lagrost@univ-rennes1.fr. Phone +33 2 23 23 5940

REFERENCES

(1) Bendikov, M.; Wudl, F.; Perepichka, D. F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics, *Chem. Rev.* **2004**, *104*, 4891–4946.

(2) Yamada, J.-i.; Akutsu, H; Nishikawa; H.; Kikuchi, K. New Trends in the Synthesis of π -Electron Donors for Molecular Conductors and Superconductors, *Chem. Rev.* **2004**, *104*, 5057–5084.

(3) Geiser, U.; Schlueter, J. A. Conducting Organic Radical Cation Salts with Organic and Organometallic Anions, *Chem. Rev.* **2004**, *104*, 5203–5242.

(4) Fourmigué, M.; Batail, P. Activation of Hydrogen- and Halogen-Bonding Interactions in Tetrathiafulvalene-Based Crystalline Molecular Conductors, *Chem. Rev.* 2004, *104*, 5379–5418.

(5) Enoki, T.; Miyazaki, A. Magnetic TTF-Based Charge-Transfer Complexes. *Chem. Rev.*2004, *104*, 5449–5478.

(6) Coronado, E.; Day, P. Magnetic Molecular Conductors. *Chem. Rev.* 2004, *104*, 5419–5448.

(7) Jérôme, D. Organic Conductors: From Charge Density Wave TTF-TCNQ to Superconducting (TMTSF)₂PF₆. *Chem. Rev.* **2004**, *104*, 5565–5592.

(8) Alves, H; Molinari, A. S.; Xie, H.; Mopurgo, A. F. Metallic Conduction at Organic Charge-Transfer Interfaces. *Nat. Mat.* **2008**, *7*, 574-580.

(9)Takahashi, Y.; Hayakawa, K.; Takayama, K.; Yokokura, S.; Harada, J.; Hasegawa, H.; Inabe, T. Charge Conduction Properties at the Contact Interface between (Phtalocyaninato)nickel (II) and Electron Acceptor Single Crystal, *Chem. Mater.* **2014**, *26*, 993-998.

(10) Takahashi, Y.; Hayakawa, K.; Naito, T.; Inabe, T. What Happens at the Interface between TTF and TCNQ Crystals (TTF = Tetrathiafulvalene and TCNQ = 7,7,8,8-Tetracyanoquinodimethane)? J. Phys. Chem. C **2012**, 116, 700-703.

(11) Talham, D. R. Conducting and Magnetic Langmuir–Blodgett Films. *Chem. Rev.* 2004, 104, 5479-5502.

(12) Perepichka, D. F.; Bryce, M. R.; Pearson, C.; Petty, M.C.; McInnes, E. J. L.; Zhao, J.
P. A Covalent Tetrathiafulvalene–Tetracyanoquinodimethane Diad: Extremely Low HOMO– LUMO Gap, Thermoexcited Electron Transfer, and High-Quality Langmuir–Blodgett Films. *Angew. Chem. Int. Ed.* 2003, *42*, 4636-4639. (13) Yip, C. M.; Ward, M. D. Self-Assembled Monolayers with Charge-Transfer Groups: n-Mercaptoalkyl Tetrathiafulvalenecarboxylate on Gold. *Langmuir* **1994**, *10*, 549-556.

(14) Skulason, H.; Frisbie, C. D. Self-Assembled Monolayers with Charge-Transfer Functional Groups: Immobilization of the Electron Donor TMPD and the Electron Acceptor TCNQ, *Langmuir* **1998**, *14*, 5834-5840.

(15) Yuge, R.; Miyazaki, A.; Enoki , T.; Tamada, K.; Nakamura , F.; Hara. M. Fabrication of TTF–TCNQ Charge-Transfer Complex Self-Assembled Monolayers: Comparison between the Coadsorption Method and the Layer-by-Layer Adsorption Method. *J. Phys. Chem. B* **2002**, *106*, 6894-6901.

(16) Pacsial, E. J.; Alexander, D.; Alvarado, R. J.; Tomasulo, M.; Raymo, F. M. Donor/Acceptor Interactions in Self-Assembled Monolayers and Their Consequences on Interfacial Electron Transfer. *J. Phys. Chem. B* **2004**, *108*, 19307-19313.

(17) Howell, S.; Kuila, D.; Kasibhatla, B.; Kubiak, C. P.; Janes, D.; Reifenberger, R.
Molecular Electrostatics of Conjugated Self-assembled Monolayers on Au(111) Using Electrostatic Force Microscopy. *Langmuir* 2002, *18*, 5120-5125.

(18) Skulason, H.; Frisbie, C. D. Direct Detection by Atomic Force Microscopy of Single Bond Forces Associated with the Rupture of Discrete Charge-Transfer Complexes. *J. Am. Chem. Soc.* **2002**, *124*, 15125-15133.

(19) Kasibhatla, B. S. T.; Labonté, A. P.; Zahid, F.; Reifenberger, R. G.; Datta, S.; Kubiak,
C. P. Reversibly Altering Electronic Conduction through a Single Molecule by a Chemical Binding Event. *J. Phys. Chem. B* 2003, *107*, 12378-12383.

(20) Goeltz, J. C.; Kubiak, C. P. Mixed Valence Self-assembled Monolayers: Electrostatic Polarizabilities of the Mixed Valence States. *J. Phys. Chem. C* **2008**, *112*, 8114-8116.

(21) Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. Electron Transfer in a New Highly Conducting Donor-Acceptor Complex. *J. Am. Chem. Soc.* **1973**, *95*, 948-949.

(22) Aviram, A.; Ratner, M. A. Molecular Rectifier. Chem. Phys. Lett. 1974, 29, 277-283.

(23) Metzger, R. Unimolecular Electrical Rectifiers. Chem Rev 2003, 103, 3803-3834

(24) Yokota, Y.; Miyazaki, A.; Fukui, K. I.; Enoki, T.; Tamada, K.; Hara, M. Dynamic and Collective Electrochemical Responses of Tetrathiafulvalene Derivative Self-Assembled Monolayers. *J. Phys. Chem. B* **2006**, *110*, 20401-20408.

(25) Kim, J.-S.; Lee, S.-K.; Lee, H.-J.; Noh, D.-Y. A Charge-transfer Phenomenon between 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F₄TCNQ) and a Tetrathiafulvalene-based Self-assembled Monolayer Using an Indium-Tin Oxide Electrode. *Bull. Korean Chem. Soc.* **2010**, *31*, 1415-1418.

(26) Blanchard, P. Y.; Alévêque, O.; Boisard, S.; Gautier, C.; El-Ghayoury, A.; Le Derf, F.; Breton, T.; Levillain, E. Intermolecular Interactions in Self-assembled Monolayers of Tetrathiafulvalene Derivatives. *Phys. Chem. Chem. Phys.* **2011**, *13*, 2118-2120.

(27) Pinson, J.; Podvorica, F. Attachment of Organic Layers to Conductive or Semiconductive Surfaces by Reduction of Diazonium Salts. *Chem. Soc. Rev.* 2005, *34*, 429-439.

(28) Kaminska, I.; Barras, A.; Coffinier, Y.; Lisowski, W.; Roy, S.; Niedziolka-Jonsson, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Siriwardena, A.; et al. Preparation of a Responsive

Carbohydrate-Coated Biointerface Based on Graphene/Azido-Terminated Tetrathiafulvalene Nanohybrid Material. *Appl. Mater. Interfaces* **2012**, *4*, 5386-5393.

(29) Leroux, Y. R.; Fei, H.; Noël, J.-M.; Roux, C.; Hapiot, P. Efficient Covalent Modification of a Carbon Surface: Use of a Silyl Protecting Group To Form an Active Monolayer. *J. Am. Chem. Soc.* **2010**, *132*, 14039-14041.

(30) Leroux Y. R.; Hapiot, P. Nanostructured Monolayers on Carbon Substrates Prepared by Electrografting of Protected Aryldiazonium Salts. *Chem. Mater.* **2013**, *25*, 489-495.

(31) Anderson, S. Phenylene Ethynylene Pentamers for Organic Electroluminescence. *Chem. Eur. J.* **2001**, *7*, 4706-4714.

(32) Wheland, R. C. and Martin, E. L. Synthesis of Substituted 7,7,8,8-Tetracyanoquinodimethanes. *J. Org. Chem.* **1975**, 40, No.21, 3101-3109.

(33) Lorcy, D.; Shin, K.-S.; Guerro, M.; Simonet, J. π -Donor Layer Coverage onto Glassy Carbon by Electrochemical Means. Reduction of ω -Iodoalkyl-Tetrathiafulvalenes *Electrochimica Acta*, **2013**, *89*, 784-791.

(34) Cachet-Vivier, C.; Keddam, M.; Vivier, V.; Yu, L T. Development of Cavity Mmicroelectrode Devices and their Uses in Various Research Fields. *J. Electroanal. Chem.*2013, 688, 12-19.

(35) Microélectrode à cavité - Principe, Développement et Applications pour l'Etude de la Réactivité de Matériaux Insoluble; V. Vivier (Ed.), Publications de l'Université de Saint-Etienne: Saint-Etienne, 2009.

(36) Savéant, J.-M. *Elements of Molecular and Biomolecular Electrochemistry*; Wiley-Interscience, Hoboken, 2006.

(37) Yzambart, G.; Fabre, B.; Lorcy, D. Multiredox Tetrathiafulvalene - Modified Oxide-Free Hydrogen-Terminated Si(100) Surfaces. *Langmuir* **2012**, *28*, 3453-3459.

(38) Paxton, W. F.; Kleinman, S. L.; Basuray, A. N.; Stoddart, J. F.; Van Duyne, R. P. Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers *J. Phys. Chem. Lett.* **2011**, *2*, 1145-1149.

(39) Honeychurch, M. J.; Rechnitz, G. A. Voltammetry of Adsorbed Molecules. Part 1: Reversible Redox Systems. *Electroanalysis* **1998**, *10*, 285-293.

(40) Lee, L. Y. S.; Sutherland, T. C.; Rucareanu, S.; Lennox, R. B. Ferrocenylalkylthiolates as a Probe of Heterogeneity in Binary Self-Assembled Monolayers on Gold. *Langmuir* 2006, 22, 4438-4444.

(41) Jaeger, C. D.; Bard, A. J. Electrochemical Behavior of Tetrathiafulvalene-Tetracyanoquinodimethane Electrodes in Aqueous Media, *J. Am. Chem. Soc.* 1979, *101*, 1690-1699

(42) DuVall, S. H.; McCreery, R. L. Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes. *Anal. Chem.* **1999**, *71*, 4594-4602.

(43) DuVall, S. H.; McCreery, R. L. Self-catalysis by Catechols and Quinones during Heterogeneous Electron Transfer at Carbon Electrodes. *J. Am. Chem. Soc.* **2000**, *122*, 6759-6764.

(44) Lhenry, S.; Leroux, Y.R.; Hapiot, P. Use of Catechol As Selective Redox Mediator in Scanning Electrochemical Microscopy Investigations. *Anal. Chem.* **2012**, *84*, 7518-7524.

(45) Amatore, C.; Savéant, J.-M.; Tessier, D. Charge transfer at partially blocked surfaces:A model for the case of microscopic active and inactive sites. *J. Electroanal. Chem.* 1983, 147, 39-51.

(46) Compton, R.G.; Menshykau, D. Electrodes Modified with Electroinactive Layers: Distinguishing Through-Film Transport from Pinhole (Pore) Diffusion. *Langmuir* **2009**, 25, 2519-2529.

(47) Qin, G.; Santos, C.; Zhang, W.; Li, Y.; Kumar, A.; Erasquin, U. J.; Liu, K.; Muradov,
P.; Trautner, B. W.; Cai, C. Biofunctionalization on Alkylated Silicon Substrate Surfaces via
"Click" Chemistry. J. Am. Chem. Soc. 2010, 132, 16432-16441.

(48) Tengstedt, C.; Unge, M.; de Jong, M. P.; Stafström, S.; Salaneck, W. R.; Fahlman, M. Coulomb Interactions in Rubidium-Doped Tetracyanoethylene: A Model System for Organometallic Magnets. *Phys. Rev. B* **2004**, *69*, 165208.

(49) Bellitto, C.; Bonamico, M.; Fares, V.; Imperatori, P.; Patrizio, S. Tetrathiafulvalenium salts of planar Pt, Pd, and Cu 1,2-dithio-oxalato-S,S[',"] anions. Synthesis, Chemistry and Molecular Structures of bis(tetrathiafulvalenium) bis(1,2-dithio-oxalato-S,S[',"])palladate(II), [ttf]₂[Pd(S₂C₂O₂)₂], and of bis(tetrathiafulvalenium)tetrathiafulvalene bis(1,2-dithio-oxalato-S,S[',"])platinate(II), [ttf]₃[Pt(S₂C₂O₂)₂]*J. Chem. Soc., Dalton Trans.* **1989**, *4*, 719-727.

(50) Choudhury, D.; Das, B.; Sarma, D. D.; Rao, C. N. R. XPS Evidence for Molecular Charge-Transfer Doping of Graphene. *Chem. Phys. Lett.* **2010**, *497*, 66-69.

(51) Lieffrig, J.; Jeannin, O.; Frąckowiak, A.; Olejniczak, I.; Świetlik, R.; Dahaoui, S.; Aubert, E.; Espinosa, E.; Auban-Senzier, P.; Fourmigué, M. Charge-Assisted Halogen Bonding: Donor–Acceptor Complexes with Variable Ionicity *Chem. Eur. J.* **2013**, *19*, 14804-14813.

(52) Torrance, J. B.; Vazquez, J. E.; Mayerle, J. J.; Lee, V. Y. Discovery of a Neutral-to-Ionic Phase Transition in Organic Materials. *Phys. Rev. Lett.* **1981**, *46*, 253-257.

(53) Lieffrig, J.; Jeannin, O.; Guizouarn, T.; Auban-Senzier, P.; Fourmigué, M. Competition between the C–H…N Hydrogen Bond and C–I…N Halogen Bond in TCNQFn (n = 0, 2, 4) Salts with Variable Charge Transfer. *Crystal Growth & Design* **2012**, *12*, 4248-4257.

(54) Iyoda, M.; Suzuki, H.; Sasaki, S.; Yoshino, H.; Kikuchi, K.; Saito, K.; Ikemoto, I.; Matsuyama, H.; Mori, T. Charge-Transfer Complex and Radical Cation salt of a New Donor EDT-TTFCl₂: Unique Conductivities and Crystal Structures *J. Mater. Chem.* **1996**, *6*, 501-503.

GRAPHICAL ABSTRACT

