Supporting information to

"New insight into the local structure of hydrous ferric arsenate using full-potential multiple scattering analysis, density functional theory calculations, and vibrational spectroscopy"

Shaofeng Wang¹, Xu Ma¹, Guoqing Zhang¹, Yongfeng Jia^{1,2,} *, Keisuke Hatada³

1. Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China

2. Institute of Environmental Protection, Shenyang University of Chemical Technology, Shenyang, 100049, China

Département Matériaux Nanosciences, Institut de Physique de Rennes, UMR
 UR1-CNRS 6251, Université de Rennes 1, 35042 Rennes Cedex, France

* Corresponding author, Prof. Yonfeng Jia, Email: <u>yongfeng.jia@iae.ac.cn</u>, Tel: +86 24 83970503

This supporting information contains 9 figures, 4 tables, and references.

Contents

Figure S1	
Figure S2.	4
Figure S3	5
Figure S4	6
Figure S5	7
Figure S6	
Figure S7	9
Figure S8	
Figure S9	
Table S1.	
Table S2.	
Table S3.	
Table S4.	16
References	

Figure S1. XRD patterns of hydrous ferric arsenate $(HFA)^{1, 2}$ (a) and scorodite (b).

Vertical lines in Figure S1b is the standard of scorodite (No. 37-0468).

Figure S2. SEM images of synthetic HFA (left) and scorodite (right)

Figure S3. Wigner-Seitz cell of arsenate tetrahedron with 10 empty spheres

Figure S4. Comparison between non-structural optimized theoretical As (a) and Fe (b) K-edge XANES spectra (red solid lines) according to the extracted structure from scorodite (Figure 2a, b) and experimental data (black dotted lines) of HFA. For As K-edge spectra, cluster A8-A11 represent As+Fe1+Fe2+Fe3, As+Fe1+Fe2+Fe4, As+Fe1+Fe3+Fe4, and As+Fe2+Fe3+Fe4, respectively. For Fe K-edge spectra, cluster F8-F11 represent Fe+As1+As2+As3, Fe+As1+As2+As4, Fe+As1+As3+As4, and Fe+As2+As3+As4, respectively.

Figure S5. The butlerite-like (left) and fibroferrite-like (right) chain structures optimized by DFT calculations with S atoms replaced by As atoms. The unit of bond length marked in the figure is Å. The interatomic distances of Fe-Fe in optimized butlerite-like (left) and fibroferrite-like (right) chain structures are ~ 3.61 and ~ 3.60 Å, respectively.

Figure S6. Comparison between theoretical and experimental data of As (a, b) and Fe (c, d) K-edge XANES spectra based on the optimized butlerite-like and fibroferrite-like HFA structures proposed by Paktunc et al.²

Figure S7. Deconvoluted infrared $(400 - 1200 \text{ cm}^{-1})$ (a) and Raman $(60 - 1200 \text{ cm}^{-1})$ (b) spectra of synthetic scorodite. Black and red line represent the experimental and fitted spectra, respectively.

Figure S8. FTIR (top) and Raman (bottom) spectra of synthetic scorodite and HFA.

Figure S9. Comparison between experimental IR spectra and theoretical frequencies (vertical lines) of HFA in the range of 400 - 1200 cm⁻¹.

Table S1. Summary of reported values of As-Fe coordination number (CN) and

Absorber	k range (Å ⁻¹)	CN	Distance (Å)	Beamline	Model	Reference
As K-edge	2.7-14	3.2	3.33	APS	scorodite	3
EXAFS						
	2.7-17.55	1.85	3.31	APS	not state	4
	2.7-16.68	1.78	3.32	CLS	not state	4
	5.5-16.6	2.7	3.32	APS	not state	4
	5.4-15.7	2.6	3.32	CLS	not state	4
	3-13	1.8	3.31	APS	not state	2
	3-17	4 ^a	3.33	ELETTRA	scorodite	5
	3-17	2 ^a	3.33	ELETTRA	scorodite	5
Fe K-edge	2.7-14	3.8	3.31	APS	not state	3
EXAFS						
	2-14	4^{a}	3.34	ELETTRA	scorodite	5
	2-14	2 ^a	3.32	ELETTRA	scorodite	5
Total X-ray	no data	no	3.32	APS	no data	6
scattering		data				

averaged interatomic distance in HFA

^a The coordination number was fixed.

Bond	Bond length (Å) or angle (°)
As-O1	1.671 Å
As-O2	1.686 Å
As-O3	1.681 Å
As-O4	1.681 Å
As-Fe1	3.335 Å
As-Fe2	3.325 Å
As-Fe3	3.379 Å
As-Fe4	3.347 Å
Fe-O1	1.966 Å
Fe-O2	1.944 Å
Fe-O3	1.960 Å
Fe-O4	1.993 Å
Fe-OW1	2.111 Å
Fe-OW2	2.036 Å
As-O1-Fe	132.818°
As-O2-Fe	132.511°
As-O3-Fe	136.110°
As-O4-Fe	131.089°

2 extracted from the crystalline scorodite determined by Hawthorne.⁷

Table S2. Interatomic distance and bond angle in the local structure shown in Figure

Sample	Path	CN ^a	$R(Å)^b$	$\sigma^2 (\text{\AA}^2)^c$	$\Delta E (eV)^d$	S_0^{2e}	N _{idp} /N _{var} ^f	R range (Å)	R-factor ^g	Reduced $\chi^{2 h}$
Arsenic K-edge EXAFS										
Scorodite	As-O	4	1.69 (0)	0.003 (0)	6.6 (7)	1.0	16/9	0.9-3.3	0.009	100
	As-Fe	4	3.36(1)	0.005 (1)						
	As-O-O	12	3.09 (5)	0.003 (6)						
	As-O-As-O	4	3.38 ⁱ	0.004^{i}						
	As-O-Fe	8	3.46 (3)	0.003 (3)						
HFA	As-O	4	1.68 (0)	0.003 (0)	7.7 (9)	1.0	16/9	0.9-3.3	0.008	110
	As-Fe	1.5	3.30 (3)	0.009 (3)						
	As-O-O	12	3.13 (4)	0.003 (3)						
	As-O-As-O	4	3.38 ⁱ	0.004^{i}						
	As-O-Fe	3	3.47 (2)	0.002 (4)						
Iron K-edge EXAFS										
Scorodite	Fe-O1	6	2.01 (0)	0.003 (0)	-4.3 (7)	0.9	20/10	1.0-3.7	0.008	34
	Fe-As	4	3.36(1)	0.005 (1)						
	Fe-O-O	24	3.51 (6)	0.006 ⁱ						
	Fe-O-As	8	3.48 (2)	0.003 (1)						
	Fe-O2	9	3.71 (2)	0.002 (2)						
	Fe-O-Fe-O	8	4.00^{i}	0.007^{i}						
HFA	Fe-O1	6	2.00 (2)	0.006(1)	-1.4 (8)	0.9	20/10	1.0-3.7	0.006	28
	Fe-As	1.5	3.33 (1)	0.006(1)						
	Fe-O2	4	4.09 (5)	0.007 (7)						
	Fe-O-As	3	3.50(2)	0.003 (2)						
	Fe-O-O	24	3.45 (7)	0.010 ⁱ						

Table S3. Fit parameters for the EXAFS data of synthetic scorodite and HFA

S14

Fe-O-Fe-O $6 4.11^{1} 0.011^{1}$				-	
$Fe-O-Fe-O = 6 = 4 \cdot [1^2 = 0.0]$			4 1 1 1	0 0 1 1 1	
		6		<u>nnii ·</u>	
	1,6-()-1,6-()	0	4.11	0.011	

^a coordination number (degeneracy), fixed. ^b mean half-path length (interatomic distance). ^c Debye-Waller parameter. ^d energy-shift. ^e amplitude reduction factor. ^f number of independent points/number of fit variables, ^g R-factor = $\Sigma_i (data_i - fit_i)^2 / \Sigma_i data_i^2$. ^h reduced $\chi^2 = (N_{idp}/N_{pts}\Sigma_i (data_i - fit_i)^2 / \varepsilon_i)^2)/(N_{idp} - N_{var})$, where N_{pts} is the number of data points and ε_i is the uncertainty at each data point *i*. ⁱ Linked to the first shell. ^j defined as $(\varDelta R_{As-O} + \varDelta R_{As-Fe})/2$. Fit uncertainties are given for the last significant figure.

Table S4. Comparison of infrared and Raman frequencies of synthetic scorodite and HFA with theoretical frequencies of HFA and other previously reported hydrogen arsenate bearing minerals

Minerals	Infrared	Raman	Assignment
HFA ^a		213, 271	lattice mode
	424	360, 412	v_2 HAsO ₄ ²⁻ /H ₂ AsO ₄ ⁻ symmetric bending
	481	469	v_4 HAsO ₄ ²⁻ /H ₂ AsO ₄ ⁻ antisymmetric bending
	605		FeOH stretching vibrations/As-OH stretching
			vibrations from H ₂ AsO ₄ ⁻ groups
	748	766	composite of As-OH stretching vibrations from
			H ₂ AsO ₄ groups and As-OFe stretching
			vibrations from HAsO ₄ ²⁻ groups
	827	825	composite of v_1 AsO ₃ symmetric stretching
			vibration from HAsO42- groups and As-OFe
			stretching vibrations from H2AsO4 groups
	877	889	v ₃ AsO ₃ antisymmetric stretching vibration
			from HAsO ₄ ²⁻ groups
	951		possibly v3 AsO2 antisymmetric stretching
			vibration from H ₂ AsO ₄ ⁻ groups
	1048, 1108	985	possibly v1 SO4 symmetric stretching vibrations
	1385	1345	As-OH bending vibration from
			HAsO ₄ ²⁻ /H ₂ AsO ₄ ⁻ groups
	1635	1614	δ H ₂ O bending vibrations
	3396(broad band)		composite of H ₂ O/OH unit/H-bond symmetric
			and antisymmetric stretching vibration
HFA (Theoretical) ^a	343, 406		v_2 HAsO ₄ ²⁻ /H ₂ AsO ₄ ⁻ symmetric bending
	492		v_4 HAsO ₄ ²⁻ /H ₂ AsO ₄ ⁻ antisymmetric bending
	577		FeOH stretching vibrations/librational modes of
			water molecules and hydroxyl ions
	613		As-OH stretching vibrations from H2AsO4
			groups
	696		As-OH stretching vibrations from HAsO42-
			groups
	742		composite of As-OH stretching vibrations from
			H ₂ AsO ₄ ⁻ groups and As-OFe stretching
			vibrations from HAsO ₄ ²⁻ groups
	835		composite of v_1 AsO ₃ symmetric stretching
			vibration from HAsO42- groups and As-OFe
			stretching vibrations from $H_2AsO_4^-$ groups
	865		v ₃ AsO ₃ antisymmetric stretching vibration
			from HAsO4 ²⁻ groups
	923, 939		v ₃ AsO ₂ antisymmetric stretching vibration
			from H ₂ AsO ₄ ⁻ groups

	985, 1230, 1271		As-OH bending vibration from
			HAsO ₄ ²⁻ /H ₂ AsO ₄ ⁻ groups
	1530 - 1621		δ H ₂ O bending vibrations
	2804 - 3714		H ₂ O/OH unit/H-bond symmetric and
			antisymmetric stretching vibration
Scorodite		83, 136, 182, 293	lattice mode
FeAsO ₄ 4H ₂ O ^{a, b}			
		339, 383	$v_2 \operatorname{AsO}_4^{3-}$ symmetric bending
	442, 468, 491	422, 456, 487	$v_4 \operatorname{AsO}_4^{3-}$ antisymmetric bending
	580	626	Fe-H ₂ O stretching vibration/librational modes
			of water molecules and hydroxyl ions
	722		As-O-Fe/As-OH stretching vibration
	810	801, 812	$v_1 \operatorname{AsO}_4^{3-}$ symmetric stretching vibration
	827, 847, 898	831, 869, 893	$v_3 \operatorname{AsO}_4^{3-}$ antisymmetric stretching vibration
	1068		possibly v_1 SO ₄ ²⁻ symmetric stretching
			vibration
	1390, 1623	1468	δ H ₂ O bending vibrations
	2970, 3517		hydroxyl stretching vibrations from water
			molecule
Haidingerite		338, 323, 299	$v_2 (AsO_3OH)^{2-}$ bending vibrations
Ca(AsO ₃ OH)·H ₂ O ^c			
		433,420,376,369	split triply degenerate v_4 (AsO ₃ OH) ²⁻ bending
			vibrations
		660	librational modes of water molecules and
			hydroxyl ions
		739	δ AsOH bending vibration
		855	$v_1 (AsO_3OH)^{2-}$ symmetric stretching vibration
		886, 838	split v_3 (AsO ₃ OH) ²⁻ antisymmetric triply
		(shoulder), 823	degenerate stretching vibration
		(shoulder), 745	
		2842	OH stretching vibrations of water molecules
		3412, 3574	stretching vibrations of the OH units
Brassite ^c		298, 274	$v_2 (AsO_3OH)^{2-}$ bending vibrations
		448,404, 387, 358	split triply degenerate $v_4 (AsO_3OH)^{2-}$ bending
			vibrations
		699, 609	librational modes of water molecules and
			hydroxyl ions
		739	δ AsOH bending vibration
		809	$v_1 (AsO_3OH)^{2^-}$ symmetric stretching vibration
		878, 876, 862	split triply degenerate v_3 (AsO ₃ OH) ²⁻
			antisymmetric stretching vibration
		3035	OH stretching vibrations of water molecules
		3305, 3314, 3387,	stretching vibrations of the OH units

		3450, 3511	
Pharmacolite		125, 156	lattice vibrations
Ca(AsO ₃ OH)·2H ₂ O ^d			
		179, 192, 209	OCaO bending modes
		287, 306	CaO stretching vibrations
		337,398	$v_2 (AsO_3OH)^{2-}$ bending mode
		416, 448	$v_4 (AsO_3OH)^{2-}$ bending mode
	668, 674	684, 542	water librational modes
	711, (737) ⁸	707, (726) ⁸	As-OH stretching vibrations
	826, 801		split doubly degenerate v_3 (AsO ₃ OH) ²⁻
			antisymmetric stretching modes
	864, (871) ⁸	865, (871)	v_1 (AsO ₃ OH) ²⁻ symmetric stretching mode
	903, 893, 841,	852, 886, (899) ⁸	v_3 (AsO ₃ OH) ^{2–} antisymmetric stretching mode
	(899) ⁸		
	1120, 1163, 1190	1179	As-OH in-plane bending vibration
	1639, 1651, 1730		HOH bending modes
Arseniosiderite		331, 250, 227, 197	lattice mode
Ca ₂ Fe ₃ (AsO ₄) ₃ O ₂ H ₂ O			
e			
		389	$v_2 (AsO_4^{3-})/\delta_{as}(HAsO_4^{2-})$ bending mode
		479, 441	v_4 (AsO ₄ ³⁻) bending mode
	643	535	FeOH ₂ stretching vibrations
		772	As-OH stretching vibrations
	778	828	v_3 (AsO ₄ ³⁻) antisymmetric stretching mode
		852	v_1 (AsO ₄ ³⁻) symmetric stretching mode
	919	927	v_1 (HAsO ₄ ²⁻) symmetric stretching mode
	1417, 1389		v_3 (CO ₃ ²⁻) antisymmetric stretching mode
	1624		δ H ₂ O bending vibration
	2851		
	3411, 3100		OH stretching / v H ₂ O stretching vibrations
	3576		OH stretching vibrations
burgessite,		162	lattice mode
Co ₂ (H ₂ O) ₄ (AsO ₃ OH) ₂			
$\cdot H_2O^f$			
		233, 215	v (O–H···O) stretching vibrations
		383, 353, 322	split doubly degenerate v_2 (AsO ₄ ³⁻) bending
			vibrations.
	492, 470,	447	split triply degenerate v_4 (δ antisymmetric)
	437, 431		(AsO ₄ ³⁻) bending vibrations
	589, 557		δ As-OH bending vibrations
	726, 697, 679, 655,		librational modes of water molecules and
	619		hydroxyl ions
	741	740	v As-OH stretching vibrations

	868, 836, 802	852, 830, 806	v_3 and v_1 (AsO ₄ ³⁻) stretching vibrations
	1707,1636		δ H ₂ O bending vibrations
	3593, 3516, 3410,	3591, 3395, 3328,	v OH stretching vibrations
	3245, 2952	3204, 3185	
geminite		134, 160, 171,	hydrogen bonding of the water molecule
Cu(AsO ₃ OH)·H ₂ O ^g		178, 187	
		213, 244, 284,	Cu-O stretching and bending bands
		310	
		309, 333, 345,	$v_2 (\delta_s) (AsO_3OH)^{2-}$ split doubly degenerate
		364	bending vibrations
		408, 424, 444,	$v_4 (\delta_{as}) (AsO_3OH)^{2-}$ split triply degenerate
		481, 496	bending vibrations
	739, 751	741	δ As–OH bending vibrations
	804, 828, 876	812, 836, 859,	split triply degenerate v_3 (AsO ₃ OH) ²⁻
		885	antisymmetric stretching vibrations
	849	851	$v_1 (AsO_3OH)^{2-}$ symmetric stretching vibration
	1240, 1306, 1361,	1305	δ OH bending vibrations, overtones and
	1541		combination bands
	1631, 1670		$v_2(\delta)$ HOH bending modes
	2337, 2403, 2469	2289, 2433	the strong hydrogen bonded of water molecules
	2820, 3037, 3190,	2737, 2855, 3235,	the v OH stretching vibrations of hydrogen
	3311	3305, 3377	bonded watermolecules in the crystal structure
	3452, 3520	3449,3521	the OH stretching vibrations of the hydrogen
			bonded hydroxyls in the (AsO ₃ OH) ²⁻ units
mixite		386.5, 395.3,	v_2 bending modes of the $(AsO_3OH)^{2-}$ (423.1
BiCu ₆ (AsO ₄) ₃ (OH) ₆		423.1	and 395.3) and the (AsO_4^{3-}) groups (386.5)
$3H_2O^h$			
		473.7	v4 antisymmetric bending mode of (AsO_4^{3-})
			units.
		803,833	symmetric stretching vibration of the
			protonated (AsO ₄ ³⁻) units
		854.3, 831.5,	(AsO ₄ ³⁻) stretching bands
		809.8	
		867-870	symmetric stretching vibration of the
			protonated $(H_2AsO_4)^-$ units
		880-910	symmetric stretching vibration of the
			protonated $(HAsO_4)^{2-}$ units
		915	antisymmetric stretching vibration of
			protonated (AsO ₄ ³⁻) units
		3386.7	the interlamellar water
		3473.9, 3428.4	the OH- stretching vibration of the hydroxyl
			units
Na ₂ HAsO ₄ 7H ₂ O ⁱ	711(shoulder at	737	v As-OH stretching vibrations

	756)		
	835	825	$v_1 (AsO_3OH)^{2-}$ symmetric stretching vibration
Sainfeldite	713	719	v As-OH stretching vibrations of As1-OH
Ca ₅ (HAsO ₄) ₂ (AsO ₄) ₂			
4H ₂ O ⁱ			
	824	824	$v_1 (AsO_4^{3-})^{2-}$ symmetric stretching vibration of
			As2-OCa
	852	852,	v_3 (AsO ₄ ³⁻) antisymmetric stretching mode of
			As2-OCa/H ₂ O
	869	869,	$v_1 (AsO_3OH)^{2-}$ symmetric stretching vibration
			of As2-OCa
	895	895	v_3 (AsO ₄ ³⁻) antisymmetric stretching mode of
			As1-OCa
(C6H9N2)H2AsO4 ^j	2735 - 3402		v(CH ₃)/ v(NH ₂)/ v(OH)
	1792 - 2553		bands of combination and harmonics
	1748		δ OH bending vibrations
	1301 – 1667		ν(C=C), ν(N=C), δ(NH ₂), δ(CH ₃)
	1184, 1240		δ(As-O-H)
	990, 1033		v(AsO ₂)
	865, 938		v(As(OH) ₂)
	581,610		γ(As-O-H)
	515		$\rho(AsO_2)$ rocking
	470		$\omega(AsO_2)$ wagging
	427		δ (OHAsOH) bending
	396		$\tau(AsO_2)$ torsion
	374		δ (O-As-O) bending

^a This study, ^b Gomez et al.⁹, ^c Frost et al.¹⁰, ^d Frost et al.¹¹, ^eGomez et al.¹², ^fČejka et al.¹³, ^gSejkora et al.¹⁴, ^h Frost et al.¹⁵, ⁱ Myneni et al.^{8 j} Chtioui et al.¹⁶

References

(1) Jia, Y. F.; Xu, L. Y.; Wang, X.; Demopoulos, G. P., Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. *Geochim Cosmochim Ac* **2007**, *71* (7), 1643-1654.

(2) Paktunc, D.; Dutrizac, J.; Gertsman, V., Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility. *Geochim Cosmochim Ac* **2008**, *72* (11), 2649-2672.

(3) Chen, N.; Jiang, D. T.; Cutler, J.; Kotzer, T.; Jia, Y. F.; Demopoulos, G. P.; Rowson, J. W., Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy. *Geochim Cosmochim Ac* **2009**, *73* (11), 3260-3276.

(4) Jiang, D. T.; Chen, N.; Demopoulos, G. P.; Rowson, J. W., Response to the comment on "Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy". *Geochim Cosmochim Ac* **2010**, *74* (15), 4597-4602.

(5) Mikutta, C.; Mandaliev, P. N.; Kretzschmar, R., New Clues to the Local Atomic Structure of Short-Range Ordered Ferric Arsenate from Extended X-ray Absorption Fine Structure Spectroscopy. *Environ Sci Technol* **2013**, *47* (7), 3122-3131.

(6) Mikutta, C.; Schröder, C.; Marc Michel, F., Total X-ray scattering, EXAFS, and Mössbauer spectroscopy analyses of amorphous ferric arsenate and amorphous ferric phosphate. *Geochim Cosmochim Ac* **2014**, *140*, 708-719.

(7) Hawthorne, F. C., The hydrogen positions in scorodite. *Acta Crystallographica, Section B (Structural Crystallography and Crystal Chemistry)* **1976,** *B32*, 2891-2.

(8) Myneni, S. C. B.; Traina, S. J.; Waychunas, G. A.; Logan, T. J., Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. *Geochim Cosmochim Ac* **1998**, *62* (19-20), 3285-3300.

(9) Gomez, M. A.; Assaaoudi, H.; Becze, L.; Cutler, J. N.; Demopoulos, G. P., Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4 center dot 2H(2)O), ferric arsenate sub-hydrate (FAsH; FeAsO₄ \cdot 0.75H₂O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO₄)_{(1-x})(SO₄)_{(x})(OH)_{(x})] \cdot wH₍₂₎O). *J Raman Spectrosc* **2010**, *41* (2), 212-221.

(10) Frost, R. L.; Bahfenne, S.; Čejka, J.; Sejkora, J.; Palmer, S. J.; Škoda, R., Raman microscopy of haidingerite Ca(AsO₃OH)·H₂O and brassite Mg(AsO₃OH)·4H₂O. *J Raman Spectrosc* **2010**, *41* (6), 690-693.

(11) Frost, R. L.; Bahfenne, S.; Čejka, J.; Sejkora, J.; Plášil, J.; Palmer, S. J., Raman spectroscopic study of the hydrogen-arsenate mineral pharmacolite Ca(AsO₃OH)·2H₂O—implications for aquifer and sediment remediation. *J Raman Spectrosc* **2010**, *41* (10), 1348-1352.

(12) Gomez, M. A.; Becze, L.; Blyth, R. I. R.; Cutler, J. N.; Demopoulos, G. P., Molecular and structural investigation of yukonite (synthetic & natural) and its relation to arseniosiderite. Geochim Cosmochim Ac 2010, 74 (20), 5835-5851.

(13) Čejka, J.; Sejkora, J.; Bahfenne, S.; Palmer, S. J.; Plášil, J.; Frost, R. L., Raman spectroscopy of hydrogen-arsenate group (AsO₃OH) in solid-state compounds: cobalt mineral phase burgessite Co₂(H₂O)₄[AsO3OH]₂·H₂O. *J Raman Spectrosc* **2011**, *42* (2), 214-218.

(14) Sejkora, J.; Čejka, J.; Frost, R. L.; Bahfenne, S.; Plášil, J.; Keeffe, E. C., Raman spectroscopy of hydrogen-arsenate group (AsO₃OH) in solid-state compounds: copper mineral phase geminite Cu(AsO₃OH)·H₂O from different geological environments. *J Raman Spectrosc* **2010**, *41* (9), 1038-1043.

(15) Frost, R. L.; Weier, M.; Martins, W.; Duong, L., Identification of mixite minerals - An SEM and Raman spectroscopic analysis. *Mineral Mag* **2005**, *69* (2), 169-177.

(16) Chtioui, A.; Benhamada, L.; Jouini, A., Crystal structure, thermal analysis and IR spectroscopic investigation of $(C_6H_9N_2)H_2XO_4$ (X = As, P). *Mater Res Bull* **2005**, 40 (12), 2243-2255.