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AM fungi patchiness and the clonal 
growth of Glechoma hederacea in 
heterogeneous environments
Nathan Vannier1, Anne-Kristel Bittebiere2, Philippe Vandenkoornhuyse1 & Cendrine Mony1

The effect of AM fungi spatial distribution on individual plant development may determine the 
dynamics of the whole plant community. We investigated whether clonal plants display, like for other 
resources, a foraging or a specialization response, to adapt to the distribution of AM fungi. Two separate 
experiments were done to investigate the response of Glechoma hederacea to a heterogeneous 
distribution of a mixture of 3 AM fungi species, and the effects of each species on colonization and 
allocation traits. No specialization and a limited foraging response to the heterogeneous distribution 
of AM fungi was observed. An effect of the AM fungal species on plant mass allocation and ramet 
production, but not on spacer length, was detected. Two possible explanations are proposed: (i) 
the plant’s responses are buffered by differences in individual effects of the fungal species or their 
root colonization intensity. (ii) the initial heterogeneous distribution of AM fungi is perceived as 
homogeneous by the plant either by reduced physiological integration or due to the transfer of AM 
fungi propagules through the stolons. Microscopic and DNA sequencing analyses provided evidence of 
this transfer, thus demonstrating the role of stolons as dispersal vectors of AM fungi within the plant 
clonal network.

In nature, environmental conditions, especially resources, vary spatially and temporally even at a fine scale. The 
spatial variations in resources abundance are perceived by organisms as environmental heterogeneity so long as 
the patches of resources are smaller than the organism and larger than the response unit1,2. Plants, because of their 
sessile lifestyle, have to cope with this heterogeneity and have evolved complex and diverse buffering mechanisms, 
such as phenotypic plasticity (i.e. production of different phenotypes from a single genotype3). Phenotypic plas-
ticity improves the plant’s ability to respond to resource heterogeneity during its lifetime by allowing trait adjust-
ment to current environmental conditions4–7. Plasticity is expressed at different modular levels in plants8, ranging 
from first order modules such as leaf or root to a higher modular level such as the ramet (see Harper, 1977 for 
modular structure description9). This plastic response results from a trade-off between environment exploration 
for a resource (e.g. foraging for nutrient-rich patches) and resources exploitation (e.g. uptake of the resource and 
establishment within the patches).

In clonal plants, each individual consists of a set of ramets connected through belowground (i.e. rhizomes) 
or aboveground horizontal modified stems (i.e. stolons). These connections result in a network structure and 
promote plant propagation in space (i.e. physical integration). In some species they also allow sharing of infor-
mation and resources within the physical clone (i.e. physiological integration10). As a result of this network archi-
tecture, clonal individuals experience spatial heterogeneity at centimetric scales. They also share information 
about this environmental signaling between ramets. This leads to plastic responses at the local scale to optimize 
performance, through resource-sharing, at the clone level11. The response of clonal individuals to this small-scale 
heterogeneity results from a resource exploitation-exploration trade-off. Exploration responses are mostly linked 
to ramet positioning and induce modifications in the clonal network architecture to allow foraging for available 
resources12,13. The optimal foraging theory predicts that ramets should maximize resource acquisition by aggre-
gating in rich patches and avoiding poor patches12,14–16. Such aggregation may be achieved through modifica-
tions of the horizontal architecture of clonal plants, such as internode shortening or increased branching12,17,18. 
Exploitative responses involve changes in resource acquisition traits. As a result of physiological integration, each 
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ramet may specialize in acquiring the most abundant resource (division of labor theory19) and share it throughout 
the network. This specialization can involve modifications in ramet resource allocation patterns20,21 whereby a 
higher root/shoot ratio is observed in ramets developing in nutrient-rich patches, and a lower ratio in light-rich 
patches20,22.

Clonal foraging and ramet specialization have been demonstrated in response to soil nutrient heterogeneity22–25.  
However, under natural conditions, plant-nutrients uptake is mostly mediated by symbiotic micro-organisms 
such as Arbuscular Mycorrhizal (AM) fungi which colonize ~80% of terrestrial plants26. AM fungi symbionts  
(i.e. Glomeromycota) colonize roots and develop a dense hyphal network, exploring soil to ‘harvest’ mineral nutri-
ents for the plant’s benefit26. Plants with mycorrhized roots can thus attain higher rates of phosphorus and nitro-
gen absorption (x 5 and x 25 respectively) than plants with non-mycorrhized roots27,28. In turn, AM fungi obtain 
from plants the carbohydrates required for their survival and growth29,30. Under natural conditions, plant roots 
are colonized by a complex community of AM fungi31. These fungi display different levels of cooperation ranging 
from good mutualists to more selfish ones (i.e. cheaters32). Within the root-colonizing fungal assemblage, plants 
have been shown to preferentially allocate carbon to the best cooperators, thereby favoring their maintenance 
over cheaters33. The additional nutrient supply provided by AM fungi can be assimilated as a resource for the 
plant. (An important raising expectation is that plants may respond to the heterogeneous presence of AM fungi 
as they do for a nutritive resource. Thus the plant might forage (optimal foraging theory) or specialize (division  
of labor theory) in response to AM fungi presence. The opposite hypothesis is that AM fungi and foraging or 
specialization are alternatives to cope with resource heterogeneity, implying that plants with clonal mobility do 
not rely on AM fungi to respond to this heterogeneity.

Our aim in this study was to analyze a plant’s plastic response to AM fungal heterogeneity by performing 
two experiments under controlled conditions with the clonal herb Glechoma hederacea. In the first experiment, 
we tested the plant’s foraging and specialization response to the heterogeneous distribution of AM fungi. The 
treatments consisted of a mixture of three species of AM fungi that had been shown to display various degrees of 
cooperativeness in precedent studies. Two assumptions were tested: (i) according to the optimal foraging theory, 
clones should aggregate ramets in the patches containing AM fungi by reducing their internodes lengths and (ii) 
according to the division of labour theory, clones should specialize in producing ramets with a higher allocation 
to roots in the presence of AM fungi than in their absence. To better understand the results obtained in experi-
ment 1 and because of the potential impact of different levels of cooperation in the fungi involved in this symbio-
sis, we carried out a second experiment to test the effect of AM fungal identity on the foraging and specialization 
response of G. hederacea. We tested i) the effect on plant traits of the individual presence of the three different 
species of AM fungi used in the assemblage treatment and ii) the assumption that AM fungal species differ in 
their effects on the traits involved in foraging and specialization responses. In both experiments, the performance 
of clonal individuals was expected to be reduced in the absence of AM fungi.

Results
G. hederacea traits variation was not significantly influenced by plant genotype in either experiment (i.e. the 
inter-genotypic variance was not greater than the intra-genotypic variance).

Experiment 1: Effect of heterogeneous AM fungi distribution on G. hederacea foraging and 
specialization responses.  The hypothesis of modified foraging and specialization responses of Glechoma 
hederacea to the patchiness of AM fungal presence was tested by comparing the internode lengths and R/S ratio 
between the treatments for the 5th, 6th, 10th and 11th ramets (see Methods for details on ramet selection and exper-
imental design).

A significant effect of the AM fungal treatment was found on the 10th internode length (P =​ 0.005; F =​ 5.74) 
(Fig. 1) with a longer internode in the PA treatment (AM fungi initially present then absent) than in the absence 
(A) and presence (P) treatments (results are presented in Table 1). Conversely, no significant effect was found for 
the 5th ramets (P =​ 0.71; F =​ 0.45) or 6th ramets (P =​ 0.15; F =​ 1.92) (Fig. 1). The 11th ramets seemed to display the 

Figure 1.  Foraging response: internode length under the four treatments applied (cm per gram of ramet 
total biomass) (A). Specialization response: root:shoot ratio (R/S) of 5th, 6th, 10th and 11th ramets under the 
four applied treatments (g of roots per g of shoots after drying) (B). Absence (blue bars), Presence (grey bars), 
Presence-Absence (orange bars), Absence-Presence (green bars). Statistical significance of the internode length 
or R/S variations between treatments: NS, not significant; **P <​ 0.01.
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same response patterns as the 10th ramets, but no significant differences were detected between the treatments 
(P =​ 0.93; F =​ 0.15), due to a partial bimodal distribution of data in the “P” treatment with a few individuals 
exhibiting longer stolons. In addition, the number of ramifications produced by the 5th, 6th, 10th, and 11th ramets 
was not significantly affected by treatment. No changes in the R/S ratio in response to AM fungal treatment were 
detected in any of the four tested ramets.

As regards performance, G. hederacea growth rate tended to vary with the AM fungal treatment (P =​ 0.067; 
F =​ 2.7), with a tendency for slower growth in the “A” treatment. No differences between treatments were detected 
for clone total biomass (P =​ 0.75; F =​ 0.39) which indicated that the clone, as a whole, did not exhibit any differ-
ence in biomass production or performance.

Experiment 2: Effect of AM fungi identity on G. hederacea traits.  The hypothesis that modifications 
in G. hederacea foraging and specialization traits were affected by the AM fungal species was tested by comparing 
the allocation, architectural and growth traits of four treatments inoculated with different AM fungal species 
(see Methods for details on experimental design). Primary stolon length (an architectural trait) tended to vary 
(P =​ 0.07; F =​ 2.83) in response to the presence and species of AM fungi whereas the number of ramifications 
(P =​ 0.25; F =​ 1.49) did not (results are presented in Table 2). Allocation to stolons was significantly affected by 
the presence and species of AM fungi (P =​ 0.017; F =​ 4.51) with plants inoculated with Glomus intraradices allo-
cating significantly fewer resources to stolons (Fig. 2) and more to shoots (P =​ 0.019, F =​ 4.24) than plants without 
AM fungi. The allocation to roots, however, was not dependent on the treatment (P =​ 0.68; F =​ 0.50).

As regards performance, changes in ramet production per biomass unit (P =​ 0.038; F =​ 3.55) were detected 
with G. intraradices inducing less ramet production than G. custos, whereas the treatments without AM fungi and 
with G. clarum did not differ significantly from the other two treatments (Fig. 3). No treatment-dependent change 
in total biomass was observed (P =​ 0.57; F =​ 0.67).

Discussion
The plants did display some foraging behavior in response to AM fungi heterogeneity, as elongation of the inter-
nodes was observed in patches without AM fungi after the plant had experienced patches with AM fungi. This 
behavior would correspond to an avoidance of resource-poor patches, as expected from the optimal foraging 
theory. However, this behavior was only detected at a particular ramet age (10th ramets), indicating a possible 
role of the ontogenic state in development of the plastic response34. This may be due to a “lag time” in the plant’s 
response based on the need for environmental sampling. Indeed, Louâpre et al., (2012) demonstrated that clonal 
plants may need a minimum number of sampling points as benchmarks in order to perceive and respond to 
resource availability35. In their study, Potentilla reptans and P. anserina started to respond to the treatment after 
the 5th internode, suggesting a strong effect of patch size. A similar patch size effect had already been demon-
strated in modeling studies10,36. No plastic modifications, corresponding to a ramet specialization of G. hederacea 
in response to AM fungal spatial heterogeneity, were found either. Contrary to the results expected with the spe-
cialization theory, biomass was not preferentially allocated to the roots in patches with AM fungi or to the shoots 
in patches without AM fungi. This absence of response was recorded for all the ramet ages tested.

These results – a mild foraging response and no specialization – give credit to the theory supported by 
Onipchenko & Zobel (2000) that species with high mobility do not rely on AM fungi to cope with resource  
heterogeneity37. Glechoma with its high clonal mobility should thus show no response to AM fungi presence. 
However, our results do not fit with the literature predictions for specialization and foraging response38. This 
divergence may be explained by two alternative hypotheses that are developed in the following sections. The 

Trait

Treatment Total biomass Random factor (Genotype)

F-value
P-value 

(α = 0.05) F-value
P-value 

(α = 0.05)
Intra: lower/

estimate/upper
Inter : lower/

estimate/upper

Total Biomass 0.39 0.75 — — 0.72/0.95/1.25 0.43/0.81/1.53

Growth time 2.7 0.067 — — 3.98/5.24/6.89 0.37/1.79/8.53

5th internode length 0.45 0.71 1.58 0.22 1.19/1.61/2.18 0.75/1.45/2.8

6th internode length 1.92 0.15 8.32 <0.01 1.03/1.4/1.9 0.34/0.83/2.05

10th internode length 5.74 <0.01 4.38 <0.05 0.59/0.81/1.12 0.54/0.97/1.74

11th internode length 0.15 0.93 0.02 0.87 0.96/1.34/1.86 0.41/0.94/2.17

5th ramet root/shoot 0.48 0.69 — — n/a n/a

6th ramet root/shoot 0.18 0.9 — — n/a n/a

10th ramet root/shoot 1.09 0.37 — — n/a n/a

11th ramet root/shoot 0.46 0.7 — — n/a n/a

5th ramet number of ramifications 1.1 0.36 14.49 <0.01 0.99/1.31/1.7 0.38/0.83/1.8

6th ramet number of ramifications 0.46 0.7 5.2 <0.01 1.06/1.40/1.85 0.81/1.46/2.64

10th ramet number of ramifications 0.26 0.84 1.91 0.18 0.89/1.18/1.55 0.36/0.77/1.66

11th ramet number of ramifications 0.88 0.46 1.08 0.3 0.89/1.18/1.56 0.22/0.59/1.63

Table 1.   Results of linear models for each trait linked to the plants foraging, specialization and 
performance. F-values and P-values of the treatment and total biomass (when used as covariable) are presented, 
as well as lower, estimate and upper values of intra and inter genotype variance (random factor).
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first explanation is linked with the occurrence of an individual effect of the species of AM fungus on plant traits, 
which may predominate or modify the response to the presence/absence of AM fungi when all three species exist 
together (experiment 2); the second is linked with reduced physiological integration either due to a direct effect of 
AM fungi on this plant trait, or to the absence of a clear contrast between the different patches sensed by the plant.

In our second experiment, we demonstrated that the architectural traits involved in the plant’s foraging 
response were not affected by the species of AM fungi tested, which is consistent with the weak response detected 
in the first experiment. On the contrary, significant changes in resource allocation traits (linked to the specializa-
tion response) were detected, depending on the species of AM fungus. Only one species, G. intraradices induced a 
change in allocation by the plant, in comparison to the absence of AM fungi treatment, which led to an increased 
allocation to shoots at the expense of stolons. Modifications of plant phenotype, depending on the AM fungal spe-
cies, have already been observed in such traits39,40. These authors identified a significant effect of Glomus species 
isolates on branching, stolon length and ramet production in Prunella vulgaris and Prunella grandiflora. In the first 
analysis of the AM fungal genome, Tisserant et al. (2013) revealed existing pathways attributed to the synthesis of 
phytohormones or analogues41. Such molecules would have a direct effect on host phenotype. In the individual 
effect observed, plant response in the presence of G. intraradices symbiosis was coupled with decreased plant per-
formance due to a diminution of ramet production relative to biomass in this treatment. In contrast, the G. custos 
treatment led to a decrease in the potential number of descendants of the clone. According to experiment 1, root 
colonization by an inoculum containing three species had no effect on plant traits associated with specialization 
and foraging. This suggests two alternative hypotheses: i) G. intraradices may be less cooperative than G. custos 
with Glechoma hederacea and the result is a consequence of the plant’s rewarding process to the more cooperative 
fungus33 and/or ii) root colonization by G. custos or G. clarum buffers the effect of G. intraradices due to a ‘priority 
effect’ (i.e. order of arrival in the colonization as a key to fungal community structure in roots)41,42.

To test this, the mycorrhization intensity of the three AM fungal species inoculated in the first experiment 
would need to be assessed by qPCR. Alternatively, the combined effects of the three AM fungal species on plant 
phenotype might result in the environment not being perceived as heterogeneous by the plant. This hypothesis is 
developed in the following section.

Trait

Treatment Total biomass Random factor (Genotype)

F-value
P-value 

(α = 0.05) F-value
P-value 

(α = 0.05)
Intra: lower/

estimate/upper
Inter : lower/

estimate/upper

Total Biomass 0.67 0.57 — — 0.27/0.38/0.52 0.03/0.14/0.67

Number of ramets (allocation) 3.55 <0.05 46.6 <0,001 5.97/8.45/11.96 7.58/13.7/24.8

Primary stolon length 2.84 0.07 1.99 0.17 10.99/15.45/21.75 4.53/10.69/25.23

Number of ramifications 1.49 0.25 5.8 <0.05 0.46/0.66/0.93 0.24/0.53/1.18

Stolons weight (allocation) 4.51 <0.05 91.37 <0.001 0.08/0.11/0.17 0.03/0.09/0.22

Shoots weight (allocation) 3.96 <0.05 1528 <0.001 0.06/0.09/0.13 0.04/0.08/0.18

Roots weight (allocation 0.5 0.68 30.72 <0.001 0.06/0.09/0.12 0.006/0.03/0.19

Table 2.   Results of linear models for each trait linked to the plants resources allocation and performance. 
F-values and P-values of the treatment and total biomass (when used as covariable) are presented, as well as 
lower, estimated and upper values of intra and inter genotype variance (random factor).

Figure 2.  Allocation traits of the whole clone for the four treatment of AM fungi inoculation: T1 = no AM 
fungi (white bars), T2 = Glomus custos (blue bars), T3 = Glomus intraradices (yellow bars), T4 = Glomus 
clarum (red bars). Mean biomass of each organ (shoots, roots and stolons) in grams per gram of total clone 
biomass. Statistical significance of the organ biomass variations between treatments: NS, not significant; 
*P <​ 0.05.
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The intraclonal plasticity predicted by the foraging and division of labor theories is based on the ability of 
ramets to sense environmental heterogeneity, and to share information and resources within the clonal network, 
to locally adapt and optimize the performance of the whole clone. The weak response of G. hederacea to AM 
fungal heterogeneity could thus be explained by a decrease in physiological integration that reduces the level of 
resource-sharing within the clone and prevents the plant from developing an optimized foraging or specializa-
tion response. This diminution could initially be due to the presence of AM fungi. Only a few studies have been 
carried out on the effect of AM fungi on the degree of integration43. These authors demonstrated that AM fungi 
led to reduced physiological integration in the clonal plant Trifolium repens when grown in a heterogeneous envi-
ronment. This effect was dependent on the presence and richness of AM fungal species. Whether this observed 
diminution of physiological integration would be due to a direct manipulation of the host plant phenotype by 
the fungi remains, as far as we know, unknown. Secondly, this diminution may depend on the individual plant’s 
perception of environmental conditions that might be sensed as homogeneous because the patch contrast is 
smaller than expected. A reduction of plant integration is expected when the maintenance of high physiological 
integration is more costly than beneficial44,45, e.g. when the environment is resource-rich, not spatially variable46 
or insufficiently contrasted10,47. Such a reduced contrast might result from the effect of the three AM fungal spe-
cies on the plant phenotype (when used as a mixed inoculum), which is unlikely. A more probable mechanism 
of environment homogenization could result from AM fungal transfer through the stolons. Scanning electron 
microscopy of the clone cultures (see protocol in supplementary material) revealed the presence of hyphae on 
the stolon surface (Fig. 4). In addition, several cells close to the external surface of the stolon cross-section were 
invaded by structures which could be interpreted as fungi. DNA sequencing of stolon samples (Fig. 5) confirmed 
these results and demonstrated the presence of AM fungi in the stolons. This suggests that fungi can be trans-
ferred from one ramet to another, at least by colonization of the stolon surface (as shown in Fig. 4A) and/or 
within the stolon (Fig. 4B). Whether fungi are passively or actively transferred through the plant’s stolon tissues, 
and hence to all related ramets, remains an open question. Further studies are therefore needed to confirm these 
fungal transfers to plant clones and to measure their intensities in contrasted environments.

Studies of the response of clonal plants to environmental heterogeneity have classically focused on abiotic 
heterogeneity48,49. Our study is the first to investigate clonal response to a heterogeneous distribution of AM 
fungi, based on the assumption that AM fungi can be regarded as a resource for the plant. However, in response 
to the heterogeneous distribution of AM fungi, G. hederacea clones displayed only a weak foraging response and 
no specialization which suggests, respectively, that clones do not aggregate more especially in patches with AM 
fungi or maximize their proportion of roots in contact with AM fungi. We provide a first explanation by high-
lighting the impact of AM fungal identity on the plant phenotypes and more particularly on the allocation traits 
involved in specialization. More importantly, we provide evidence that stolons might be vectors for the transfer of 
micro-organisms between ramets, thereby buffering (through this dispersion of fungi) the initial heterogeneous 
distribution. If this is true, stolons will have to be regarded in a different way, and be seen as ecological corridors 
for the dispersion of micro-organisms allowing a continuity of partnership along the clone. Considering the plant 
as a holobiont31,50, this novel view of stolon function is expected to stimulate new ideas and understanding about 
the heritability of microbiota in clonal plants.

Figure 3.  Performance traits of the clone for the four treatments of AM fungi inoculation: T1 = no AM 
fungi (white bars), T2 = Glomus custos (blue bars), T3 = Glomus intraradices (yellow bars), T4 = Glomus 
clarum (red bars). Total clone biomass in grams after drying (A). Number of ramets per gram of total clone 
biomass (B). Statistical significance of the total biomass and number of ramets variations between treatments: 
NS, not significant; *P <​ 0.05.
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Methods
Biological material.  We used the clonal, perennial herb Glechoma hederacea, which is a common Lamiaceae 
in woods and grasslands. G. hederacea clones produce new erect shoots at the nodes at regular intervals of 5 to 
10 cm on plagiotropic monopodial stolons (i.e. aboveground connections). Each ramet consists of a node with 
two leaves, a root system and two axillary buds. In climatic chambers with constant conditions, G. hederacea does 
not flower and displays only vegetative growth12. This species is known to exhibit foraging behavior12,22,45 and 
organ specialization22 in response to nutrients or light heterogeneity. The ramets used in our experiments were 
obtained from the vegetative multiplication of 10 clonal fragments taken in 10 different locations sufficiently 
spaced to obtain different genotypes. Plants were cultivated for three months under controlled conditions to 

Figure 4.  Results for the microscopy analysis of stolons harvested from G. hederacea pre-cultures. Scanning 
electron microscopy of the stolon surface showing hyphae attached to the stolon hairs (A). Stolon microscopy 
cross-section observed with an optical microscope. Arrows indicate cortical cells invaded by structures which 
may be interpreted as fungi (B).

Figure 5.  Maximum likelihood tree of the GTR + I + G model using PhyML. Multiple alignment was 
produced with MUSCLE62. Bootstrap values at the nodes were produced from 200 replicates. Only values above 
50 are shown. Multiple alignment and tree reconstruction were performed using SEAVIEW63. OTUs were 
obtained from a Glechoma hederacea stolon after DNA extraction using the DNEasy plant mini kit (Qiagen), 
PCR amplification using fungal primers NS22b and SSU817, and Illumina MiSeq sequencing. In addition to 
reference sequences within the Glomeromycota phylum, we sampled 13 sequences among the best BLAST  
hits (†).
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avoid parental effects linked with their original habitats51. Vegetative multiplication was carried out on a steri-
lized substrate (50% sand and 50% vermiculite, autoclaved at 120 °C for 20 minutes) to ensure the absence of AM 
fungi propagules. For each experiment, the transplanted clonal unit consisted of a mature ramet (leaves and axil-
lary buds) with one connective internode (to provide resources to support ramet survival)52, and without roots  
(to avoid prior mycorrhization). The AM fungi inocula used in both experiments were Glomus species: Glomus  
intraradices (see Stockinger et al., 2009 for discussion on G. intraradices reclassification53), Glomus custos, and Glomus 
clarum. These AM species were chosen to limit phylogenetic differences between the fungal life-history traits54.  
G. intraradices has been shown to induce beneficial P uptake in Medicago truncatula33. The use of three differ-
ent AM species also ensure a range of cooperativeness in the symbionts. The inocula used in the two experi-
ments consisted of a single-species inoculum produced in in vitro root cultures (provided by S. L. Biotechnologia 
Ecologica, Granada, Spain) or a mixture of equal proportions of all three inocula. The inoculations consisted of an 
injection of 1 mL of inoculum directly above the roots, and were administered when the plants had root lengths of  
0.5 to 1 cm.

Experimental conditions.  Experiment 1 was designed to test the foraging and specialization responses of 
G. hederacea to the heterogeneous distribution of AM fungi. Experiment 2 tested the effect of the species of AM 
fungus on the plant traits involved in these responses.

Both experiments were carried out with cultures grown on the same sterile substrate (50% sand, 50% vermicu-
lite) in a climate-controlled chamber with a diurnal cycle of 12 h day /12 h night at 20 °C. Plants were watered with 
deionized water every two days to check for nutrient availability. Necessary nutrients were supplied by watering 
the plants every 10 days using a fertilizing Hoagland’s solution with strongly reduced phosphorus content to 
ensure ideal conditions for mycorrhization (i.e. phosphorus stress)55–57. At each watering, the volumes of deion-
ized water and fertilizing solution per pot were 25 mL and 250 mL respectively for the first and second exper-
iments. We also controlled nutrient accumulation during the experimental period by using pierced pots that 
allowed evacuation of the excess watering solution. To prevent nutrient enrichment due to the inoculum, AM 
fungi-free pots were also inoculated with a sterilized inoculum (autoclaved at 100 °C for five minutes).

Experiment 1: Effect of heterogeneous AM fungal distribution on G. hederacea foraging and 
specialization responses.  The responses of G. hederacea to four different spatial distributions of AM fungi 
were tested. G. hederacea was grown in series of 11 consecutive pots: two homogeneous treatments with the 
presence (P) or absence (A) of AM fungi in all pots; and two heterogeneous treatments with two patches of 5 
pots either in presence then absence (PA) or absence then presence (AP) (Fig. 1). The two latter treatments were 
included to take into account a potential effect of ramet age in the plant’s response to heterogeneity. These treat-
ments were replicated for 10 clones of Glechoma hederacea (see Methods section “Biological material” for preci-
sion on plants used). Each clone was grown in plastic pots (8 ×​ 8 ×​ 7 cm3) filled with sterile substrate. Only one 
ramet was allowed to root in each pot and plant growth was oriented in a line by removing lateral ramifications. 
The initial ramet, in all treatments, was planted in a pot without AM fungi. For each treatment, the inoculum 
consisted of a mixture of the three AM fungal species (G. clarum, G. custos and G. intraradices). Inoculations were 
started on the second pot of each line which actually contained the fourth ramet of the clone (exceptionally, the 
first three ramets rooted in the same first pot due to internode shortness, see Fig. 1). Inoculations were adminis-
tered to each ramet separately when the ramet had roots 0.5 to 1 cm in length to avoid a ramet age effect on the 
AM fungi colonization process.

The clones were harvested when the final ramet (number 13) had rooted in the 11th pot. This ensured that 
each clone had 10 points for sampling environmental quality. The 5th, 6th, 10th and 11th ramets of each clone in 
the pot line (Fig. 6) were used for statistical analyses. These ramets corresponded to the second and third ramets 
experiencing the current patch quality. Indeed, Louâpre et al. (2012) emphasized the role of the “past experience” 
of the clone in developing a plastic response. The choice of these four ramets thus ensured that the clone had 
enough sampling points to assess the quality of its habitat i.e. in the patches where AM fungi were present or 
absent, in the heterogeneous treatments, and to adjust accordingly when initiating new ramets35. Each ramet was 
carefully washed after harvesting. The foraging response was assessed by measuring the length of the internode 
just after the ramet. An aggregation of ramets, with shortened internodes, was expected in patches where AM 
fungi were present, and an avoidance of patches, i.e. production of longer internodes, was expected where AM 
fungi were absent. Modifications in ramification production linked to the effect of the treatment were checked 
by recording the number of ramifications produced by the ramets throughout the experiment. The specialization 
response was examined by measuring the root/shoot ratio (R/S) i.e. the biomass allocated to the below- and 
above-ground resource acquisition systems, after separating the roots and shoots and after oven-drying for 72 h 
at 65 °C. We expected a higher R/S ratio in patches where AM fungi were present than in patches where AM 
fungi were absent. Clone performance was assessed from (i) the total biomass of the clone, calculated as the sum 
of ramet roots, shoots and stolons after oven-drying for 72 h at 65 °C and (ii) the growth rate calculated as the 
number of days needed for the clone to develop the 10 sampling ramets i.e. the number of days between rooting 
of the 4th ramet and final harvesting.

Experiment 2: Effect of AM fungal identity on G. hederacea performance and traits.  The effects 
of individual AM fungal species on G. hederacea foraging and specialization traits were tested using four culture 
treatments: 1) no AM fungi, 2) with Glomus custos, 3) with Glomus intraradices, and 4) with Glomus clarum. Each 
treatment was replicated eight times with four related ramets assigned to each treatment replicate (32 clones in 
total), to control for plant-genotype effects. The initial ramet of each clone had previously been cultivated on 
sterile substrate to ensure root system development and facilitate survival after transplanting. The initial ramets 
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were then transplanted in pots (27.5 ×​ 12 ×​ 35 cm3) filled with substrate. The AM fungi inoculations consisted of 
three injections of 1 mL of inoculum directly on the roots of the first three rooted ramets to ensure colonization of 
the whole pot. The plants were harvested after six weeks. The following traits involved in foraging were measured: 
(i) the longest primary stolon length (of order 1) as an indicator of the maximum spreading distance of space 
colonization (ii) the number of ramifications as an indicator of lateral spreading and clone densification. We also 
measured biomass allocation to the roots, shoots and stolons at the clone level, i.e. traits involved in the speciali-
zation response, after oven-drying for 72 h at 65 °C. Plant performance for the entire clone was determined from: 
(i) the total biomass calculated as the sum of the dry weights of the shoots, roots and stolons after oven-drying for 
72 h at 65 °C. and (ii) the number of ramets i.e. the number of potential descendants. Performance was expected 
to be higher in pots inoculated with fungi and to differ depending on the fungal species.

Statistical analysis.  For experiment 1, to test whether G. hederacea developed a plastic foraging (internode 
length) or specialization (R/S ratio) response to the heterogeneous distribution of AM fungi, ANOVA analyses 
were performed using the linear mixed-effects model procedure in R 3.1.358 with packages “nlme”59 and “car”60. 
Ramets of the same age were compared between genotypes to control for a possible effect of ramet age.

For experiment 2, to determine whether the species of AM fungi induced changes in plant traits and per-
formance, ANOVA analyses were performed using linear mixed models with the same R packages and version 
described above. Resource allocation was tested by using the clone total biomass as covariate to take into account 
the trait variance associated with clone growth.

In both experiments genotype-induced variance and data dependency was controlled by considering the 
treatment (four modalities) as a fixed factor and the plant-clone genotype as a random factor. The effect of gen-
otype was assessed by comparing the intra- and inter-genotype variance and was considered significant when 
the inter-genotype variance was strictly higher than the intra-genotype variance. When a significant effect of 
treatment was detected by ANOVA, post hoc contrast tests were performed using the “doBy” package61 to test for 
significant differences between modalities. When necessary, the normality of the residuals was checked by sub-
jecting the data to log transformation. The total clone biomass (summed dry weights of shoots, roots, and stolons) 
was used as covariate to account for variance due to differences in clone performance.
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