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Abstract
SAR imaging of underfoliage targets has to face a complex mixture of diverse scattering mechanisms. To character-
ize this complex scattering environment, nonparametric tomographic estimators are more robust to focusing artefacts
but limited in resolution. Parametric tomographic estimators provide better vertical resolution but fail to adequately
characterize continuously distributed volumetric scatterers such as forest canopies. To overcome these limitations, this
paper addresses a new wavelet-based approach for 3D characterization of underfoliage targets. The effectiveness of
this new approach is demonstrated by using L-band Multi-Baseline PolInSAR Data over Dornstetten, Germany.

1 Introduction

Hybrid environments refer to a scenario of objects em-
bedded in a host natural environment (e.g. forests). Their
scattering patterns consist of a complex mixture of di-
verse scattering mechanisms, like the volume scattering
from the canopy, double bounce reflection between the
ground and under-foliage objects as well as between an
object and trunks, surface scattering from the underlying
ground, etc. The resulting SAR information is charac-
terized by a strong complexity, which makes SAR im-
age analysis difficult by means of PolInSAR data (due to
the single-baseline configuration). Multi-baseline PolIn-
SAR techniques can be applied to reconstruct the asso-
ciated scattering responses and polarimetric patterns. In
[1], using single polarization tomograms, the forest pro-
file and truck shape were both extracted using Capon’s
spectral estimation approach. However, due to the limited
spectral resolution and sidelobe suppression of such an
approach, parametric and fully polarimetric tomographic
approaches are expected to show significantly improved
features of under-foliage objects and forests as it has
been shown in [2]. In [1, 2], the applied spectral esti-
mation methods are either nonparametric or parametric.
It is known that nonparametric approaches are in general
more robust to focusing artefacts, whereas parametric ap-
proaches are characterized by a better vertical resolution.
It has been shown [3, 4] that the performance of these
spectral analysis approaches is conditioned by the nature
of the scattering response of the observed objects.
The scattering power from forest canopy in elevation can
be characterized by continuous spectrum, since volumic
scatterers are continuously distributed in vertical. Scat-
tering responses from the objects or ground are consid-
ered to be localized discretely in the vertical direction.
The under-foliage object with a deterministic scattering
response embedded in the surrounding distributed en-
vironments, should be characterized by a mixed spec-
trum. Considering Conventional tomographic estimators,

either nonparametric methods(e.g.Capon, Beamforming)
or parametric methods (e.g. Maximum likelihood)are
limited to one type of spectrum or the other, due to the
lack of adaptation to the mixed spectrum. Semiparamet-
ric methods like sparse estimation methods, have been
used for compressive sensing over urban areas in [5] and
over forested areas in [6]. However for this scenario of
complex mixed scattering environment, a new wavelet-
based approach is proposed, adapted to characterize the
hybrid nature of the observed environment. The effec-
tiveness of the proposed method is demonstrated by us-
ing the L-band multibaseline InSAR data acquired over
the test site of Dornstetten, Germany.

2 Tomographic Signal Model
The MB-InSAR configuration consists of M acquisition
positions, each pair of which are separated by a baseline.
Considering an azimuth-range resolution cell that con-
tains K backscattering contributions from scatterers lo-
cated at different heights z = [z1, . . . , zK ], the received
data vector, y ∈ CM×1, can be formulated as follows:

y(l) =

K∑
i=1

a(zi)si(l) + n(l) (1)

where l = 1, . . . , L indicates one of theL independent re-
alizations of the signal acquisition. The complex additive
noise n ∈ CM is assumed to be Gaussianly distributed
with zero mean and variance σ2

n and to be white in time
and space. The steering vector a(z) contains the interfer-
ometric phase information associated to a source located
at the elevation position z above the reference focusing
plane and is given by:

a(z) = [1, exp(jkz2z), . . . , exp(jkzM z)]
T (2)

where kzj = 4π
λ

B⊥j

r1 sin θ is the two-way vertical wavenum-
ber between the master and the jth acquisition tracks.



The carrier wavelength is represented by λ, whereas θ
stands for the incidence angle and r1 is the slant range
distance between the master track and the scatterer. As
kzj is calculated from acquisition system parameters, a(.)
is a known function but the source elevation z is un-
known. The source signal vector, s = [s1 . . . sK ] ∈
CK , contains the unknown complex backscattering co-
efficients of the K source scatterers. We are interested in
recovering the power distribution in elevation (i.e. tomo-
graphic profile), x = [|s1|2, . . . , |sK |2] ∈ RK , from the
observed data [y(1), . . .y(L)] ∈ CM×L. Convention-
ally, K < M scatterers are assumed to be located within
one resolution cell. However, the forest canopy consists
of a large number of elementary scatterers continuously
distributed in the vertical direction. To characterize the
object embedded in a forest environment, it is reason-
able to assume K >> M . In order to solve this under-
determined problem, a wavelet-based sparse estimation
method is proposed in the following section.

3 Tomographic Estimation
In the frame of urban remote sensing, the l1 norm regu-
larization has been used for tomographic SAR inversion
by [5]. This compressive approach can efficiently local-
ize the point-like scatterers in the vertical direction, but
can not directly deal with volumic media because the vo-
lumic scatterers are not distributed sparsely in the verti-
cal domain. In [6], a wavelet-based compressed sensing
technique has been developed for SAR tomography of
forested areas and it provided undeniable performance for
forest characterization. However this approach lacks high
resolution to characterize the objects beneath the canopy.
For this purpose, a criterion is proposed and compactly
written in a standard format of l1 norm minimization with
quadratic constraints

minx ||Bx||1 subject to ||AΛxA† − R̂||F ≤ ε
(3)

where

• x =

[
x1

x2

]
∈ RK : scattering power distribution

in elevation. x1 ∈ Rp and x2 ∈ Rq represent re-
spectively scattering power distribution for the ob-
jects and canopy in elevation (N = p+ q).

• Bx =

[
I(p×p) 0

0 Ψ

]
x =

[
x1

Ψx2

]
∈ RK :

sparse signal.

– x1 ∈ Rp is sparse as the scattering responses
of an object may be described with a few scat-
terers discretely localized in elevation.

– Ψx2 ∈ Rq represents the projection of
canopy power distribution x2 onto an or-
thonormal wavelet basis Ψ ∈ Rq×q . The
power distribution of canopy in elevation, x2,
depicts continuous regular signal behaviors,
so its projection onto wavelet basis, Ψx2, is
sparse.

• Λx = diag(x) ∈ RN×N .

• R̂ = 1
L

∑L
1 y(l)y†(l) ∈ RM×M : sample covari-

ance matrix of observed data.

• ε: tolerance parameter to control model mismatch
and signal sparsity.

By minimizing the criterion (3), the solution x̂ is obtained
that reconstructs the vertical power distribution of under-
foliage objects. In practice, the problem in (3) is under
SOCP formulation and can be solved by any convex op-
timization solver proposed in the field of sparse recovery
estimation. In this paper, the CVX solver is implemented
to solve this standard l1 norm minimization, due to its im-
plementation facility and compactness. The parameter ε
is selected based on noise variance σ2

n, so according the
(3), ε should be ∝

√
Mσ2

n, e.g. for our applied data sets,
we choose ε=4

√
Mσ2

n.
For the sparse estimation controlled by the user-selected
parameter, the drawback is the source signal power leaks
into the neighboring sampling intervals. This fact may be
due to the inappropriate choice for the parameter ε. If ε is
chosen too small, then the measured data will be overfit-
ted and the mainlobe of the source signal power spectrum
may be splitted in several peaks, especially in the low
SNR case. The other reason may be due to the off-grids
effects and basis mismatch[7],[8]. This type of leakage
happens more often to the estimated signal associated to
the I basis, i.e. x1 in our criterion (3) . To solve this is-
sue, a merging processing based on linear interpolation is
used here, similar as in [7]. Candidate peaks with ampli-
tude > max(|x̂1|)/10 can be selected from estimated re-
flectivity x̂1 for underfoliage objects or ground reflection.
Taking a window with width ∆ and centering at each
peak location zi, the neighboring peaks [zi1 , . . . , zid ] lo-
cated within [zi − ∆/2, zi + ∆/2] are merged in such a
way: zm = zic +

∑d
k=1 x1(zi)(zik − zic)/

∑d
k=1 x1(zi)

with zic = (zi1 + · · · + zid)/d. This method effectively
merges splitted peaks within a filtering window ∆ into
one peak.

4 Experimental Results

The tomographic analysis of a volumetric forested area
and sub-canopy objects is led using polarimetic L-band
airborne data acquired by the DLR’s E-SAR system over
the Dornstetten test site, Germany. The acquisition ge-
ometry consists of 23 flight tracks, three of which are lo-
cated very close to each other (quasi-null spatial baseline)
in order to estimate the temporal decorrelation. Thus 21
tracks are effectively used for the tomographic analysis.
The horizontal baselines form a quasi-uniform linear ar-
ray with an average baseline close to 20 m and the geo-
metric vertical resolution is about 2 m. This quasi-regular
distribution provides 3D features with reduced sidelobe
levels and hence facilitates the tomographic analysis. The
test zone for underfoliage objects is shown in Fig.1.



Figure 1: Pauli image for test area where trucks are set

4.1 Vertical reflectivity profiles

The wavelet basis Φ should be selected based on the cri-
terion that the coherence between the measurement ma-
trix A and wavelet basis Φ should be as small as possible.
More details of the wavelet basis selection have been pro-
vided in [6]. The sym4 wavelet with 3-level decomposi-
tion has been used to form Φ in [6] which shows excel-
lent performances for the reflectivity recovery of forests
in vertical direction. Due to the same test data set used in
this paper, we keep the same choice for wavelet basis Φ.

Considering firstly the simple scenarios in this test ar-
eas, the recovered scattering profiles from HH chan-
nel are shown in Fig.2(a)-(c). The reflectivity profile,
x, directly estimated from (3) (in blue) may produce
splitted peaks, e.g. over the bare soil in Fig.2(a). The
reflectivity profile after merging is shown in black.
Clearly depicted in Fig.2(a), the merging process-
ing effectively merges the closely-spaced neighboring
peaks into a single one and its interpolated location
coincides with Beamforming or Capon estimation.

(a) Soil-HH (b) Forest-HH

(c) Uncovered Truck-HH (d) Covered Truck-HH

(e) Covered Truck-VV (f) Covered Truck-HV

Figure 2: Normalized scattering power distribution in el-
evation for underfoliage truck using different polarimet-
ric data sets. Horizontal axis: height z(m). Vertical axis:
normalized scattering power.

Applying now the proposed wavelet-based approach to
a pixel related to the underfoliage object, the reflectivity
function is estimated along elevation shown Fig.2 (d)-(f).
Compared with Capon (green) and Beamforming (red)
methods, the new estimation method provides much bet-
ter resolution than conventional non-parametric methods
for the underfoliage object. The estimated height for the
covered truck is around 3m, validated with the ground
truth. For the vertical profile of forest canopy, the re-
flectivity seems underestimated by the proposed method
compared with Capon and Beamforming methods. Two
reasons may be considered. One reason is the leakage of
canopy backscattering power into the underfoliage space.
The second reason is more postive: the proposed method
gives a clean or denoised version of the estimated re-
flectivity. Looking into the power spectra of Capon and
Beamforming methods, the noise power around the ele-
vation boundaries, i.e. close to−5m and 22m, is not fully
attenuated.

4.2 Tomograms of the test line

The entire test line is estimated by diverse tomographic
estimators and the resulting reflectivity tomograms are
given in Fig.3. The Capon tomogram depicts trucks with
a poor vertical resolution due to the nature of contin-
uous spectrum (Fig.3(a)), although it can well charc-
terize the forest canopy. Using ns estimated by di-
agonal loading MOS technique in [9], the MUSIC to-
mogram characterizes the uncovered truck with strong
sidelobes in the vertical direction and the forests with
a limited number of scatterers (Fig.3(b)). Moreover,
the underfoliage trucks are not visibly shown in the
above two tomograms. Applying now the proposed
wavelet-based method and merging process, the result-
ing tomogram demonstrates the continuous spectrum
for the canopy and the high-resolution discrete spec-
trum for the ground and underfoliage object as shown in
Fig.3(c). Also using the proposed method, the ground
and underfoliage scattering power can be separated from
the distributed scattering of canopy and their tomo-
grams can be respectively shown in Fig.3(d) and (e).



(a) Capon

(b) MUSIC

(c) Proposed method with merging

(d) Ground and underfoliage scattering (x1) estimated by proposed
method with merging

(e) Canopy power (x2) estimated by proposed method with merging

(f) dB

Figure 3: Reflectivity tomograms estimated by the pro-
posed method with merging processing using HH data
set. (Gray background:zero reflectivity).
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