

Factors associated with 12 week case-fatality in Staphylococcus aureus bacteraemia: a prospective cohort study

Pierre Braquet, François Alla, Catherine Cornu, François Goehringer, Lionel Piroth, Catherine Chirouze, Matthieu Revest, Catherine Lechiche, Xavier Duval, Vincent Le Moing

▶ To cite this version:

Pierre Braquet, François Alla, Catherine Cornu, François Goehringer, Lionel Piroth, et al.. Factors associated with 12 week case-fatality in Staphylococcus aureus bacteraemia: a prospective cohort study. Clinical Microbiology and Infection, 2016, 22 (11), pp.948.e1-948.e7. 10.1016/j.cmi.2016.07.034. hal-01417891

HAL Id: hal-01417891 https://univ-rennes.hal.science/hal-01417891

Submitted on 18 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Category: Original Article

Factors Associated with 12 Week Case-Fatality in Staphylococcus aureus Bacteraemia, a Prospective Cohort Study

- Pierre Braquet, MD, Department for Infectious Diseases and Tropical Medicine,

 Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMI

 233 TransVIHMI, Université de Montpellier, Institut de Recherche sur le

 Développement, Montpellier, France¹
- François Alla, MD PhD, Université de Lorraine, Université Paris Descartes,

 Apemac, EA 4360; INSERM, CIC-EC, CIE6; CHU Nancy, Nancy, France
- Catherine Cornu, MD, INSERM, CIC1407, Lyon, F-69000 France; CHU Lyon,
 Service de Pharmacologie Clinique, Lyon, F-69000 France; Université Lyon,
 UMR 5558, Lyon, F-69000 France;
- François Goehringer, MD, Department of Infectious Diseases and Tropical Medicine, Centre Hospitalier Universitaire de Nancy
- Lionel Piroth, MD PhD, CHU de Dijon, UMR 1347-MERS, Université de Bourgogne, Dijon, France
- Catherine Chirouze, MD PhD, UMR CNRS 6249 Chrono-environnement,

 Université de Bourgogne Franche-Comté, CHU de Besançon, Besançon,

 France

Matthieu Revest, MD, Infectious Diseases and Intensive Care Unit, Centre Hospitalier Universitaire de Rennes,

Catherine Lechiche, MD, Department for Infectious Diseases and Tropical Medicine, Centre Hospitalier Universitaire de Nîmes

Xavier Duval, MD PhD, Université Paris Diderot Sorbonne ; IAME, INSERM,
UMR 1137, CIC 1425; AP-HP, Hôpital Bichat Claude Bernard, Paris France.

Vincent Le Moing, MD PhD, Department for Infectious Diseases and Tropical Medicine, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMI 233 TransVIHMI, Université de Montpellier, Institut de Recherche sur le Développement, Montpellier, France¹

Keywords: Staphylococcus aureus; Bacteraemia; Prognostic factors;

Antistaphylococcal penicillin; vancomycin.

And the VIRSTA-AEPEI Study Group.

Running Title: Prognostic factors in S. aureus bacteraemia

¹Corresponding authors, complete contact info:

Email: pit.braquet@gmail.com, v-le_moing@chu-montpellier.fr

Mail address:

Service des Maladies Infectieuses et Tropicales CHU Gui de Chauliac

80, avenue Augustin FLICHE F- 34295 MONTPELLIER Cedex 5 France

Tel: +33 4 67 33 95 10 Fax: +33 4 67 33 77 09

ABSTRACT

- 2 Objectives. Staphylococcus aureus bacteraemia (SAB) is a frequent and deadly
- disease. Given the lack of randomized trial, optimal first-line antibiotic treatment is still
- 4 debated. Our aim was to identify prognostic factors in SAB patients and to analyse the
- 5 impact of first line antibiotics.
- 6 **Methods.** The VIRSTA prospective cohort study was conducted in 8 tertiary care
- 7 centres in France. Consecutive incident adults in whom a blood culture drawn in
- 8 participating centres grew S. aureus between April 2009 and October 2011 were
- 9 prospectively followed for 12 weeks. Factors associated with 12-week case-fatality
- were identified by multivariate logistic regression.
- 11 **Results.** We enrolled 2091 patients and analysed survival in 1972 (median age:
- 12 67.8 years, interquartile range 55.5-78.9; females 692/1972, 35.1%). SAB was
- nosocomial or health-care related in 1372/1972 (69.6%) and the primary focus was
- 14 unknown in 414/1972 (21.0%) of cases. Week 12 case-fatality rate was 671/1972
- 15 (34.0%). Main independent prognostic factors on multivariate analysis were: age
- 16 (adjusted odds ratio [OR] by 10-year increment, 1.56; 95% confidence interval
- 17 [CI], 1.44–1.69), septic shock (OR, 5.11; CI, 3.84-6.80), metastatic cancer (OR,
- 18 4.28; CI, 2.88-6.38) and unknown primary focus (OR, 2.62; CI, 2.02-3.41). In the
- 19 1538 patients with methicillin-sensitive S. aureus (MSSA) bacteraemia, first-line
- empiric antistaphylococcal penicillins (OR, 0.40; CI, 0.17-0.95) and vancomycin
- 21 (OR, 0.37; CI, 0.17-0.83), alone or combined with an aminoglycoside, were
- 22 associated with better outcome compared to other antibiotics.
- 23 **Conclusions**. There are few modifiable prognostic factors for SAB. Initiating
- 24 empiric antibiotics with antistaphylococcal penicillins or vancomycin may be
- associated with better outcome in MSSA bacteraemia.

26 **FULL TEXT**

27 **INTRODUCTION**

28	Staphylococcus aureus bacteraemia (SAB) is a frequent infectious disease
29	worldwide, especially in healthcare settings; it is even a suspected negative
30	consequence of medical progress [1-3]. Annual incidences range from
31	approximately 10 to 40 per 100 000 persons [4, 5]. Recent reports indicate an
32	impact of patient- or population-level measures [6].
33	
34	Case-fatality rates dropped during the 20 th century [7] but most recent studies still
35	report 12 weeks case-fatality rates ranging from 18% to 32% [8, 9], especially for
36	community-acquired SAB [5, 10]. Many prognostic factors associated with
37	mortality have been identified [8-17] and have been reviewed in detail [7]
38	Advanced age and sepsis are the most consistent factors whereas comorbidities
39	setting of acquisition and treatment (e.g. empirical and definitive antibiotics) are
10	subject to debate.
11	
12	Adequate treatment requires SAB source control, appropriate intravenous
13	antibiotics and, for some patients, surgery and intensive care, but large areas of
14	uncertainty remain concerning clinical management [18]. No randomized
15	controlled trial has directly evaluated the relative performance of most frequently
16	used empirical antibiotics, like large-spectrum beta-lactams, specific
17	antistaphylococcal penicillins, glycopeptides and aminoglycosides [3].
18	
19	Our aim was to identify prognostic factors in a large prospective cohort of SAB
50	patients and to analyse the impact of first line antibiotics on case-fatality

51 PATIENTS AND METHODS

_	\mathbf{a}
``	,
\sim	_

53 Study setting. The observational prospective cohort study VIRSTA was conducted 54 in 8 tertiary care centres in France, the university hospitals of Besançon, Dijon, 55 Lyon, Montpellier, Nancy, Nîmes, Paris (Bichat-Claude Bernard) and Rennes. Staphylococcus aureus endocarditis-specific analyses were described elsewhere 56 57 [19-21]. Standardized investigation of all cases was encouraged (e.g. follow-up 58 blood cultures and echocardiography) but was not mandatory. 59 60 Case identification. Consecutive patients were included if they had (i) at least one 61 positive blood culture specimen for S. aureus (ii) between April 2009 and October 62 2011 in a participating hospital. Bacteriology laboratories identified incident 63 patients and notified the local research team composed of research assistants, 64 bacteriologists, infectious disease specialists and cardiologists. Exclusion criteria were (i) positive catheter specimen without SAB, defined as single positive blood 65 66 cultures in vascular access device specimens with negative peripheral blood culture 67 and (ii) age < 18 years, pregnancy and adults under guardianship, for legal reasons. 68 69 Endpoint. Twelve-week vital status was compiled from three sources: hospital 70 discharge records, a systematic phone call by a research assistant at week 12 and an 71 enquiry into civil registries in 2013 for patients with unknown outcome at week 12. 72 Follow-up started on the collection day of the first positive blood culture and ended

74

73

with death or last contact.

75	Data collection. Standardized electronic case report forms were filled in locally and
76	compiled by the Centre for Epidemiology and Clinical Evaluation in Nancy.
77	Clinical data included demographics, comorbidities, initial bacteraemia
78	characteristics and complications. Treatment data included antibiotics, surgery, and
79	intensive care. The ethics committee "Comité de Protection des Personnes Sud-
80	Méditerranée IV" approved this observational study and requested an opt-out
81	strategy after oral and written information. The VIRSTA study is registered in the
82	European Clinical Trials Database (EUDRACT) under the number 2008-A00680-
83	55.
84	
85	Definitions. Setting of acquisition was defined as either nosocomial, healthcare-
86	related or community-acquired [2, 22]. SAB was defined as nosocomial if signs
87	consistent with bloodstream infection began after 48 hours of hospitalization. Both
88	healthcare-related and community-acquired SAB patients developed first signs
89	before 48 hours of hospitalization. Healthcare-related SAB patients either (i)
90	received intravenous therapy, wound care or specialized nursing care at home
91	within the thirty days prior to the onset of SAB, (ii) attended a hospital or
92	haemodialysis clinic or received intravenous therapy within the thirty days before
93	the onset of SAB, (iii) were hospitalized in an acute care hospital for two or more
94	days in the ninety days before the onset of SAB or (iv) resided in a nursing home or
95	long-term care facility. Otherwise, SAB was defined as community-acquired.
96	
97	Primary focus of infection was defined as a unique source for each SAB patient and
98	was diagnosed by the treating physician. Endocarditis was classified according to
99	modified Duke criteria into definite, possible or excluded cases by local boards

	reeli ilb wii wooddi i
100	involving bacteriologists, infectious disease specialists and cardiologists. Osteo-
101	articular localizations were considered secondary foci (via haematogenous or
102	contiguous spread) unless the primary focus was reported as bone or joint surgery.
103	
104	Severe sepsis was defined by major organ dysfunction, or blood pressure < 90
105	mmHg or signs of hypoperfusion (confusion, oliguria, skin mottling, lactate
106	elevation, metabolic acidosis), and septic shock by a severe sepsis requiring the use
107	of vasopressive agents. Laboratory diagnostic procedures and interpretation of in
108	vitro susceptibility were carried out according to the French Society of
109	Microbiology's recommendations (CA-SFM).
110	
111	Antibiotics. Patients were considered for analysis of antibiotic treatment if they had
112	complete follow-up, received at least one antibiotic for the SAB episode (regardless
113	of timing) and did not die within the first 24 hours following positive blood culture
114	sampling. To prevent survivor treatment selection bias, we took into account first
115	line antibiotics only (i.e. the antibiotics used on the day a patient first received
116	antibiotics for the episode).
117	
118	Statistical analyses. We used bivariate and multivariate logistic regression to
119	identify potential prognostic variables, chosen according to previous research. [7-
120	17] Due to the large number of variables, we performed five separate regression
121	analyses by groups of variables: demographics and comorbidities (group 1), initial
122	bacteraemia characteristics (group 2), secondary foci and other complications
123	(group 3) and sepsis (group 4). Variables were kept for multivariate regression if

the likelihood ratio test showed a p-value <0.20 in bivariate analysis and retained in

the reduced model if p-value was <0.05 after backward stepwise elimination of
non-significant variables. In a second step, treatment data (group 5) were described
and then used in a new logistic regression with adjustment on the main prognostic
variables. Missing data in logistic regression were handled by creating a separate
modality labelled "Missing" in the corresponding tables. All statistical analyses
were performed with Stata 12.1 (Stata Corp 2011).

RESULTS

4		
	-4	'4
1	.)	٠,

Population description. Main population characteristics are summarized in Table 1 and in the flowchart (supplementary material). Out of the 2091 included patients, 119 (5.7%) had incomplete follow-up. Patients with incomplete follow-up were younger, had less comorbidity and were discharged earlier. The remaining 1972 patients were included in the prognostic analysis. Echocardiography was performed in 1339/1972 patients (67.9%) with at least one transoesophageal echocardiography in 634/1972 patients (32.1%). Effect of first initiated antibiotic on prognosis was evaluated on 1896 patients as 76/1972 (3.9%) were excluded because they died on the day of blood culture sampling or did not receive any antibiotics at all.

Prognostic factors. Among the 1972 patients with complete follow-up, 671 died

before week 12 (case-fatality 34.0%). Bivariate analyses and the reduced logistic regression model are shown in Table 2. Case-fatality rates according to primary focus were: unknown primary focus 52.2% (216/414), lungs and pleura 49.6% (58/117), arterial catheter 31.6% (6/19), peripheral venous catheter 30.1% (41/134), central venous catheter 29.2% (103/353), skin 28.9% (109/377), urinary system 27.6% (27/98), surgery 26.8% (76/284), arterio-venous fistula 20.9% (9/43) and injecting drug use 20.9% (7/47).

On multivariate analysis, main independent prognostic factors for 12 week case-fatality among background characteristics and SAB characteristics were: age (adjusted odds ratio [OR] by 10-year increment, 1.56; 95% confidence interval [CI], 1.44–1.69), septic shock (OR, 5.11; CI, 3.84-6.80), severe sepsis (OR, 2.44; CI, 1.83-3.30), metastatic cancer (OR, 4.28; CI, 2.88-6.38), unknown primary focus

157	of infection (OR, 2.62; CI, 2.02-3.41), primary and secondary pulmonary foci (OR,
158	2.27; CI, 1.45-3.55 and OR, 2.14; CI, 1.46-3.14, respectively).
159	Female gender was associated with worse outcome (OR, 1.34; CI, 1.06-1.60). After
160	exploratory analyses we found no gender differences in comorbidities, setting of
161	acquisition, MRSA, complications like endocarditis, access to health care and
162	diagnostic procedures (time from 1st symptom to blood culture and from blood
163	culture to treatment, access to cardiac echography), treatments and surgical
164	procedures.
165	
166	First line antibiotics description in MSSA patients. First line antibiotics in the
167	1538 patients infected with methicillin-susceptible Staphylococcus aureus (MSSA)
168	with complete follow-up who received antibiotics and survived the first day are
169	described in Table 3. Oxacillin and cloxacillin were grouped together as
170	antistaphylococcal penicillins. Neither cefazolin nor daptomycin were used as first-
171	line treatments. Gentamycin was initiated in 455 out of the 530 patients who
172	received aminoglycosides as first line therapy (85.8%). First-line antibiotics were
173	prescribed within 24 hours after the drawing of first positive blood culture in
174	842/1538 patients (54.8%). Duration of first line antibiotics, patient's
175	characteristics and case-fatality rates at week 4 and week 12 according to first line
176	antibiotic are shown in Table 3. Kaplan-Meier survival estimates according to first
177	line antibiotic are reported in Figure 1.
178	
179	First line antibiotics description in MRSA patients. Similar analyses were done for
180	the 358 patients infected with MRSA with complete follow-up who received
181	antibiotics and survived the first day. First-line antibiotics were prescribed within

24 hours in 181/358 patients (50.6%). Antibiotics were appropriate according to
antimicrobial testing in 109/358 patients (30.4%). Due to small numbers in some
categories, we were not able to perform regression analyses in MRSA patients.

Association between first-line antibiotics and week 12 case-fatality in MSSA patients. Table 4 displays crude ORs of first-line antibiotics effects on outcome and ORs adjusted on previously identified prognostic factors. For these previously identified prognostic factors in the total cohort, the ORs and CIs were nearly identical in the MSSA group and the whole cohort and did not change significantly after adjustment by treatment variables. Antistaphylococcal penicillins and vancomycin prescriptions were associated with better outcome, alone and in association with an aminoglycoside. Time from first positive blood culture sampling to first antibiotic was associated with better survival only after adjusting for main prognostic factors.

DISCUSSION

In this large prospective multicentre study conducted in 8 tertiary care centres, we showed that case-fatality is still very high in SAB patients and mainly associated with older age, sepsis, metastatic cancer, pulmonary localization (primary and secondary foci) and unknown primary focus. Early initiation of antibiotics and use of specific first line antibiotics including antistaphylococcal penicillins and vancomycin, alone or in combination with an aminoglycoside, were associated with better survival in patients infected with MSSA.

Our conclusions may be affected by a referral bias. Since some patients were transferred to tertiary care centres, we may overestimate the case-fatality rate of SAB. Follow-up was incomplete in 119/2091 patients (5.7%) who were younger and had less comorbidities and complications. Therefore one can assume they were less likely to die within 12 weeks. The main strengths of our study were the multicentre recruitment, and the detailed prospective clinical data including antibiotic treatment in a large cohort of patients. We preferred to analyse global case-fatality at week 12 because diagnosis of disease-specific death is subject to interpretation and because longitudinal data suggest a high proportion of deaths attributable to SAB as far as week 12 [14, 23, 24].

Older age and sepsis are major consensual lethal factors [4, 8-17]. Some authors have suggested not adjusting on sepsis because it is too close to outcome [16, 25], but severe sepsis is one of the rare major potentially modifiable factors although its determinants and triggers are insufficiently understood. Metastatic cancer is a major factor as well [12, 15], but prolonging follow-up like in our study leads to measuring some underlying conditions' own contributions to outcome. Unknown primary focus is associated with worse outcome in most reports [10-12, 17]. These patients are older and have more severe disease, but the main explanation of this finding is still unknown. Thorough investigation for primary focus and earlier infectious source control may be ways to reduce case-fatality in patients without identified primary focus. Pulmonary localization is more difficult to diagnose and is also associated with higher case-fatality [8, 10-12, 17]. These patients need close monitoring and intensive care.

231	Like in most other studies [8, 9, 11, 14, 17], setting of acquisition was not
232	associated with prognosis of SAB in our cohort: community-acquired SAB was
233	associated with unknown primary focus (worse prognosis), whereas patients with
234	nosocomial SAB had more comorbidities (worse prognosis) and more catheter-
235	related primary foci (better prognosis).
236	
237	Endocarditis was no longer associated with prognosis after adjustment on mycotic
238	aneurism and complications like stroke and heart failure. Since the association of
239	endocarditis with increased mortality was moderate in bivariate analysis and on the
240	contrary lethal complications like stroke and heart failure also occur in non-
241	endocarditis patients, we decided to maintain the latter in the multivariate model.
242	We may thus hypothesize that endocarditis without severe complications does not
243	worsen the prognosis of SAB.
244	
245	Osteo-articular localizations were associated with a better prognosis, confirming
246	two previous reports [10, 15]. Osteo-articular localizations were considered
247	secondary localizations (except after surgery), and a complication is very unlikely
248	to improve outcome. However, bone and joint infections often have a subacute or
249	chronic evolution and they are associated with lower inoculum and less virulent
250	strains like small colony variants.
251	
252	In our population, infection with MRSA was associated with older age and
253	comorbidities that act as confounders, leaving only a small specific impact of
254	methicillin resistance after adjustment. Some studies found a small association of
255	methicillin resistance with outcome [9, 26] but most did not [13, 14, 16, 17, 27].

256	Female gender was associated with worse outcome and has been reported before
257	without a satisfactory explanation [24]. In our cohort it was not mediated by gender
258	differences in baseline characteristics or access to health care.

Our results suggest that using specific antistaphylococcal antibiotics as first-line treatment is associated with better prognosis in patients infected with MSSA. Caution is required as indication bias may partially explain our results, but higher quality evidence from randomized controlled trials is currently missing. Most cohorts that examined initial SAB antibiotics and their timing did not report an association with outcome, but could not adjust precisely on baseline severity [13, 16, 17, 28]. Due to higher statistical power in our cohort we could perform detailed adjustment on prognostic factors and separate specific antistaphylococcal penicillins from other beta-lactams.

We did not find a worse outcome for vancomycin compared to antistaphylococcal penicillins as *first line* antibiotic in MSSA bloodstream infection. Most studies reporting worse outcome for vancomycin in MSSA patients specifically examined definitive treatments in SAB [28]. Our results are in accordance with retrospective cohort data obtained from Veterans Affairs hospitals in the USA [29]. Our data furthermore suggest that other beta-lactams such as amoxicillin/clavulanate or ceftriaxone are less suitable alternatives to antistaphylococcal penicillins like oxacillin when SAB is suspected. Therefore, in case of sepsis of unknown origin when large spectrum beta-lactams are believed necessary and *S. aureus* a possible cause, inclusion of vancomycin in the empiric regimen may be a suitable strategy even if MSSA is responsible for the infection. When *S. aureus* is highly probable

and prevalence of MRSA low, choosing an antistaphylococcal beta-lactam is probably preferable, not least to avoid nephrotoxicity. The association of vancomycin and antistaphylococcal penicillin may also be an efficient empiric therapy when resistance to methicillin is possible [30]. When antimicrobial susceptibility is known, switch from vancomycin to a beta-lactam is mandatory and should be immediate when possible. Adding aminoglycoside to the initial therapy may allow a larger spectrum and activity on other potential microorganisms, without negatively impacting outcome according to our data.

SAB needs urgent attention from clinicians and researchers for prevention as well as for curative treatment, in order to lower its prohibitive case-fatality rate. Reinforcing prevention of SAB associated with medical devices would be a logical first step. Major aspects of SAB management are still uncertain [18], and randomized clinical trials addressing these questions are necessary [31]. A quasi-experimental study has examined the impact of an evidence-based bundle intervention in SAB with promising results [17], but without randomized clinical trials knowledge about optimal antibiotic treatment is unlikely to progress [3]. Quicker procedures to make susceptibility data available at the time of bacteriological diagnosis could be the missing piece to make these trials feasible [32].

302	TRANSPARENCY DECLARATION
303	This work was supported by the Programme Hospitalier de Recherche Clinique
304	[Ministry of Health, France, PHRC 2008-A00680-55], by the Institut National de la
305	Santé et de la Recherche Médicale [XM/GB/2009-051] and by the Fondation pour
306	la Recherche Médicale [DEA24533].
307	Preliminary results were published in poster format at the ECCMID 2014
308	conference in Barcelona (eP100).
309	During the conduct of the study, PB reports grants from Fondation pour la
310	Recherche Médicale. FG and VLM report grants from the French Ministry of
311	Health. LP received honoraries for consultancy, board membership and travel paid
312	by Viiv Healthcare, Bristol Myers Squibb, MSD, Pfizer, Abbott, Chugai Pharma,
313	Gilead, Janssen Cilag, unrelated to the submitted work. MR reports personal fees
314	from Pfizer, grants from Novartis, non-financial support from MSD outside the
315	submitted work. XD reports grants from Pfizer outside the submitted work. The
316	others have nothing to disclose.
317	
318	AUTHORSHIP AND CONTRIBUTION
319	Designed the experiments: FA XD VLM. Performed the experiments: PB FA FG
320	CC MR CL XD VLM. Analysed the data: PB FA VLM. Wrote the paper: PB FA
321	FG CC MR CL XD VLM.
322	
323	ACKNOWLEDGEMENTS
324	The VIRSTA-AEPEI Study Group: Clinical centers: Besançon: Catherine
325	Chirouze, Elodie Curlier, Cécile Descottes-Genon, Bruno Hoen, Isabelle Patry,

	ACCLITED MANUSCRITT
326	Lucie Vettoretti. Dijon: Pascal Chavanet, Jean-Christophe Eicher, Marie-Christine
327	Greusard, Catherine Neuwirth, André Péchinot, Lionel Piroth. Lyon: Marie Célard,
328	Catherine Cornu, François Delahaye, Malika Hadid, Pascale Rausch. Montpellier:
329	Audrey Coma, Florence Galtier, Philippe Géraud, Hélène Jean-Pierre, Vincent Le
330	Moing, Catherine Sportouch, Jacques Reynes. Nancy: Nejla Aissa, Thanh Doco-
331	Lecompte, François Goehringer, Nathalie Keil, Lorraine Letranchant, Hepher
332	Malela, Thierry May, Christine Selton-Suty. Nîmes: Nathalie Bedos, Jean-Philippe
333	Lavigne, Catherine Lechiche, Albert Sotto. Paris: Xavier Duval, Emila Ilic
334	Habensus, Bernard Iung, Catherine Leport, Pascale Longuet, Raymond Ruimy.
335	Rennes: Eric Bellissant, Pierre-Yves Donnio, Fabienne Le Gac, Christian Michelet,
336	Matthieu Revest, Pierre Tattevin, Elise Thebault. Coordination and statistical
337	analyses: François Alla, Pierre Braquet, Marie-Line Erpelding, Laetitia Minary.
338	National reference laboratory for Staphylococcus aureus: Michèle Bès, Jérôme
339	Etienne, Anne Tristan, François Vandenesch. Erasmus University Rotterdam: Alex
340	Van Belkum, Willem Vanwamel.
341	
342	
343	FIGURE AND TABLE LEGENDS
344	
345	Figure 1. Kaplan-Meier survival estimates according to first line antibiotic use
346	in patients with methicillin-sensitive Staphylococcus aureus (MSSA)

bacteraemia in the VIRSTA study (n=1538)

348

347

349 Log-rank test p < 0.001. Case-fatality rates at 12 weeks among these first line 350 antibiotics groups were: 20.0% (7/35) for regimens including an antistaphylococcal

351	penicillin and vancomycin, 23.1% (70/303) for regimens including an
352	antistaphylococcal penicillin, 26.1% (106/406) for regimens including vancomycin
353	and 35.9% (285/794) for any other regimen.
354	
355	Table 1. Characteristics of patients with complete follow-up at 12 weeks in the
356	VIRSTA study (n= 1972).
357	
358	^a No comorbidity was found in 125 patients (6.3%), 1 comorbidity in 286 patients
359	(14.5%), 2 comorbidities in 764 patients (38.4%), 3 comorbidities in 605 patients
360	(30.7%) and at least 4 comorbidties in 192 patients (9.7%)
361	
362	Table 2. Factors associated with week 12 case fatality of Staphylococcus aureus
363	bacteraemia in the VIRSTA study (n=1972). ^a
364	
365	OR: odds-ratio; CI: confidence interval; ^a Main variables not associated with case-
366	fatality in bivariate analyses were diabetes mellitus, peripheral arteriopathy, chronic
367	obstructive pulmonary disease, immunosuppressive therapy, and foci like
368	meningitis and cerebral abscess. ^b For the multivariate logistic regression: events to
369	independent variables ratio is 55.6; age complied with linearity; we analysed only
370	expected interactions (MRSA and treatment variables), results were presented
371	separately (tables 3 and 4); no collinearity was detected; Hosmer-Lemeshaw
372	goodness-of-fit indicated a p-value of 0.618 and area under the curve for receiver
373	operating characteristic was 0.807, which indicated a good fit to the real data.
374	

375	Table 3. First line antibiotics, patients' characteristics and outcome in patients
376	with methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia in the
377	VIRSTA study (n=1538)
378	
379	IQR: inter-quartile range; ASP were antistaphylococcal penicillins: oxacillin and
380	cloxacillin; ^a Ceftriaxone or cefotaxim (53%), amoxicillin (28%); ^b Fluoroquinolone
381	(30%); ^c Ceftriaxone + aminoglycoside (44%); ^d Ceftriaxone + fluoroquinolone
382	(17%)
383	
384	
385	Table 4. Association between first line antibiotics and week 12 case-fatality in
386	patients with methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia
387	in the VIRSTA study (n=1538)
388	
389	OR: odds-ratio; CI: confidence interval; ASP were antistaphylococcal penicillins:
390	oxacillin and cloxacillin; ^a Those identified in the multivariate regression model in
391	table 2, except MRSA (these factors remained associated with outcome when tested
392	in this MSSA population); A potential interaction between Time to 1st antibiotics
393	initiation and First line antibiotic was not significant by likelihood ratio test,
394	(p=0.72); ^b p calculated using Wald's test
395	

Page 19 / 24

REFERENCES

397

- 398 [1] Laupland KB. Incidence of bloodstream infection: a review of population-
- 399 based studies. Clin Microbiol Infect 2013;19:492-500.
- 400 [2] Fowler VG, Jr., Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, et
- al. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA
- 402 2005;293:3012-21.
- 403 [3] Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr.
- 404 Staphylococcus aureus infections: epidemiology, pathophysiology, clinical
- 405 manifestations, and management. Clinical microbiology reviews 2015;28:603-61.
- 406 [4] Tong SY, van Hal SJ, Einsiedel L, Currie BJ, Turnidge JD. Impact of
- 407 ethnicity and socio-economic status on Staphylococcus aureus bacteremia incidence
- 408 and mortality: a heavy burden in Indigenous Australians. BMC Infect Dis
- 409 2012;12:249.
- 410 [5] Mejer N, Westh H, Schonheyder HC, Jensen AG, Larsen AR, Skov R, et al.
- 411 Stable incidence and continued improvement in short term mortality of
- 412 Staphylococcus aureus bacteraemia between 1995 and 2008. BMC Infect Dis
- 413 2012;12:260.
- 414 [6] Mitchell BG, Collignon PJ, McCann R, Wilkinson IJ, Wells A. A major
- reduction in hospital-onset Staphylococcus aureus bacteremia in Australia-12 years
- of progress: an observational study. Clin Infect Dis 2014;59:969-75.
- 417 [7] van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB.
- 418 Predictors of mortality in Staphylococcus aureus Bacteremia. Clinical microbiology
- 419 reviews 2012;25:362-86.

- 420 [8] Forsblom E, Ruotsalainen E, Molkanen T, Ollgren J, Lyytikainen O,
- 421 Jarvinen A. Predisposing factors, disease progression and outcome in 430
- 422 prospectively followed patients of healthcare- and community-associated
- 423 Staphylococcus aureus bacteraemia. J Hosp Infect 2011;78:102-7.
- 424 [9] Rieg S, Peyerl-Hoffmann G, de With K, Theilacker C, Wagner D, Hubner J,
- 425 et al. Mortality of S. aureus bacteremia and infectious diseases specialist
- 426 consultation--a study of 521 patients in Germany. J Infect 2009;59:232-9.
- 427 [10] Turnidge JD, Kotsanas D, Munckhof W, Roberts S, Bennett CM, Nimmo
- 428 GR, et al. Staphylococcus aureus bacteraemia: a major cause of mortality in
- 429 Australia and New Zealand. The Medical journal of Australia 2009;191:368-73.
- 430 [11] Mylotte JM, Tayara A. Staphylococcus aureus bacteremia: predictors of 30-
- day mortality in a large cohort. Clin Infect Dis 2000;31:1170-4.
- 432 [12] Hill PC, Birch M, Chambers S, Drinkovic D, Ellis-Pegler RB, Everts R, et
- 433 al. Prospective study of 424 cases of Staphylococcus aureus bacteraemia:
- 434 determination of factors affecting incidence and mortality. Internal medicine
- 435 journal 2001;31:97-103.
- 436 [13] Ammerlaan H, Seifert H, Harbarth S, Brun-Buisson C, Torres A, Antonelli
- 437 M, et al. Adequacy of antimicrobial treatment and outcome of Staphylococcus
- aureus bacteremia in 9 Western European countries. Clin Infect Dis 2009;49:997-
- 439 1005.
- 440 [14] Honda H, Krauss MJ, Jones JC, Olsen MA, Warren DK. The value of
- 441 infectious diseases consultation in Staphylococcus aureus bacteremia. Am J Med
- 442 2010;123:631-7.
- 443 [15] Kang CI, Song JH, Chung DR, Peck KR, Ko KS, Yeom JS, et al. Clinical
- impact of methicillin resistance on outcome of patients with Staphylococcus aureus

- 445 infection: a stratified analysis according to underlying diseases and sites of
- infection in a large prospective cohort. J Infect 2010;61:299-306.
- 447 [16] Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor
- 448 JC, et al. Empiric antibiotic therapy for Staphylococcus aureus bacteremia may not
- 449 reduce in-hospital mortality: a retrospective cohort study. PLoS One
- 450 2010;5:e11432.
- 451 [17] López-Cortés LE. Impact of an Evidence-Based Bundle Intervention in the
- 452 Quality-of-Care Management and Outcome of Staphylococcus aureus Bacteremia.
- 453 Clin Infect Dis 2013;57:1225-33
- 454 [18] Thwaites GE, Edgeworth JD, Gkrania-Klotsas E, Kirby A, Tilley R, Torok
- 455 ME, et al. Clinical management of Staphylococcus aureus bacteraemia. Lancet
- 456 Infect Dis 2011;11:208-22.
- 457 [19] Le Moing V, Alla F, Doco-Lecompte T, Delahaye F, Piroth L, Chirouze C,
- 458 et al. Staphylococcus aureus Bloodstream Infection and Endocarditis A
- 459 Prospective Cohort Study. PLoS One 2015;10:e0127385.
- 460 [20] Tubiana S, Duval X, Alla F, Selton-Suty C, Tattevin P, Delahaye F, et al.
- The VIRSTA score, a prediction score to estimate risk of infective endocarditis and
- determine priority for echocardiography in patients with Staphylococcus aureus
- 463 bacteremia. J Infect 2016;72:544-53.
- Bouchiat C, Moreau K, Devillard S, Rasigade JP, Mosnier A, Geissmann T,
- et al. Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle
- 466 genetic differences at stake. Infection, genetics and evolution: journal of molecular
- 467 epidemiology and evolutionary genetics in infectious diseases 2015;36:524-30.
- 468 [22] Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et
- al. Health care-associated bloodstream infections in adults: a reason to change the

- accepted definition of community-acquired infections. Annals of internal medicine
- 471 2002;137:791-7.
- 472 [23] Kaasch AJ, Rieg S, Neumann S, Seifert H, Kern WV. Measuring mortality
- 473 in Staphylococcus aureus bloodstream infections: are 3 months of follow-up
- 474 enough? Infection 2011;39:281-2.
- 475 [24] Yahav D, Yassin S, Shaked H, Goldberg E, Bishara J, Paul M, et al. Risk
- 476 factors for long-term mortality of Staphylococcus aureus bacteremia. Eur J Clin
- 477 Microbiol Infect Dis 2016;35:785-90.
- 478 [25] McGregor JC, Rich SE, Harris AD, Perencevich EN, Osih R, Lodise TP, Jr.,
- 479 et al. A systematic review of the methods used to assess the association between
- 480 appropriate antibiotic therapy and mortality in bacteremic patients. Clin Infect Dis
- 481 2007;45:329-37.
- 482 [26] Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW,
- 483 Carmeli Y. Comparison of mortality associated with methicillin-resistant and
- 484 methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin
- 485 Infect Dis 2003;36:53-9.
- 486 [27] Yaw LK, Robinson JO, Ho KM. A comparison of long-term outcomes after
- 487 meticillin-resistant and meticillin-sensitive Staphylococcus aureus bacteraemia: an
- observational cohort study. Lancet Infect Dis 2014;14:967-75.
- 489 [28] Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact
- 490 of initial antibiotic choice and delayed appropriate treatment on the outcome of
- 491 Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 2006;25:181-5.
- 492 [29] McDanel JS, Perencevich EN, Diekema DJ, Herwaldt LA, Smith TC,
- 493 Chrischilles EA, et al. Comparative Effectiveness of Beta-Lactams Versus

494 Vancomycin for Treatment of Methicillin-Susceptible Staphylococcus aureus 495 Bloodstream Infections Among 122 Hospitals. Clin Infect Dis 2015;61:361-7. 496 Davis JS, Sud A, O'Sullivan MV, Robinson JO, Ferguson PE, Foo H, et al. [30] 497 Combination of Vancomycin and beta-Lactam Therapy for Methicillin-Resistant 498 Staphylococcus aureus Bacteremia: A Pilot Multicenter Randomized Controlled 499 Trial. Clin Infect Dis 2016;62:173-80. 500 Kaasch AJ, Rieg S, Kuetscher J, Brodt HR, Widmann T, Herrmann M, et al. [31] 501 Delay in the administration of appropriate antimicrobial therapy in Staphylococcus 502 aureus bloodstream infection: a prospective multicenter hospital-based cohort 503 study. Infection 2013;41:979-85. Clerc O, Prod'hom G, Senn L, Jaton K, Zanetti G, Calandra T, et al. Matrix-504 505 assisted laser desorption ionization time-of-flight mass spectrometry and PCR-506 based rapid diagnosis of Staphylococcus aureus bacteraemia. Clin Microbiol Infect

508

507

2014;20:355-60.

Table 1. Characteristics of patients with complete follow-up at 12 weeks in the VIRSTA study (n=1972).

Variables	Median or frequency	Inter-quartile range or proportion
Demographics	- ·	
Median age	67.8	55.5-78.9
Female gender	692	35.1
Comorbidities ^a		
Diabetes mellitus	551	27.9
Chronic renal insufficiency	549	27.8
Peripheral arteriopathy	352	17.8
Chronic heart failure	523	26.5
Chronic obstructive pulmonary disease	243	12.3
Respiratory insufficiency	233	11.8
Chronic liver disease	279	14.1
Cardiac prosthetic valve	153	7.8
Native valve disease	354	18.0
Localized cancer	429	21.8
Metastatic cancer	148	7.5
Bacteraemia characteristics		
MRSA	374	19.0
Community-acquired	548	27.8
Health care-related (non-nosocomial)	351	17.8
Nosocomial	1021	51.8
Primary focus		
Skin	377	19.1
Urinary system	98	5.0
Lungs and pleura	117	5.9
Surgery	284	14.4
Peripheral venous catheter	134	6.8
Central venous catheter	353	17.9
Arterial catheter	19	1.0
Arterio-venous fistula	43	2.2
Injecting drug use	47	2.4
Other	86	4.4
Unknown	414	21.0
Complications		`
Endocarditis	286	14.5
Stroke	100	5.1
Heart failure	186	9.4
Pulmonary 2 ^{ndary} focus	172	8.7
Osteo-articular 2 ^{ndary} focus	266	13.5
Meningeal 2 ^{ndary} focus	24	1.2
Cerebral abscess	23	1.2
Severe sepsis (without shock)	303	15.4
Septic shock	376	19.1
Outcome	310	17.1
Death at 4 weeks	456	23.1
Death at 12 weeks	671	34.0
In-hospital death	524	26.6
m-nospitai ucatti	324	20.0

 $^{^{\}rm a}$ No comorbidity was found in 125 patients (6.3%), 1 comorbidity in 286 patients (14.5%), 2 comorbidities in 764 patients (38.4%), 3 comorbidities in 605 patients (30.7%) and at least 4 comorbidities in 192 patients (9.7%)

Table 2. Factors associated with week 12 case fatality of Staphylococcus aureus bacteraemia in the VIRSTA study (n=1972).^a

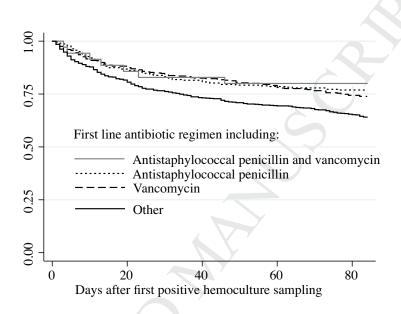
variable		Frequencies			Bivariate analysis	Sis	M	Multivariate model	dei
Modality	Dead	Exposed	%	OR	95% CI	p (Wald)	OR	95% CI	p (Wald)
Group 1: Demographics and Comorbidities									
Age (By 10-year increment)				1.53	1.43-1.63	<0.001	1.56	1.44-1.69	<0.001
Gender Male Formal	408	1280	31.9	1.00	1 00 1 50	9000	1.00	1 06 1 68	0.013
Chronic renal insufficiency	007	700	0.00	1.01	70.1-00.1	000.0	t.:1	1.00-1.00	0.01
No No	435	1423	30.6	1.00	0,000	500	1.00	1 15 1 06	
	067	349	43.0	1./1	1.40-2.10	<0.001	1.40	1.13-1.00	0.002
Chronic heart failure No	437	1449	30.2	1.00					
Yes	234	523	44.7	1.88	1.53-2.30	<0.001			
Respiratory insufficiency									
No	559	1739	32.1	1.00					
Yes	112	233	48.1	1.95	1.48-2.57	<0.001			
Chronic liver disease									
No	695	1693	33.6	1.00			1.00		
Yes	102	279	36.6	1.14	0.87-1.48	0.335	1.43	1.04-1.97	0.028
Heart valve disease									
None	457	1465	31.2	1.00					
Native valve disease	139	354	39.3	1.42	1.12-1.81	0.004			
Prosthetic valve	75	153	49.0	2.12	1.52-2.97	<0.001			
Cancer history									
None	434	1395	31.1	1.00			1.00		
Localized Cancer	154	429	35.9	1.24	0.99-1.56	0.064	1.17	0.90 - 1.52	0.246
Metastatic Cancer	83	148	56.1	2.83	2.00-3.99	< 0.001	4.28	2.88-6.38	< 0.001

Group 2: Initial Bacteraemia Characteristics

	<0.001			0.031	0.002		<0.001	0.001		<0.001	0.252
	1.45-3.55			1.05-2.86	1.23-2.53		1.46-3.14	0.39-0.79		1.83-3.30	0.68-4.31
	1.00 2.27 2.62			1.00	1.00		1.00	1.00		1.00 2.45 5.11	1.71
0.214	<0.001		0.035	<0.001	<0.001	0.047	<0.001	<0.001		<0.001	0.451
0.92-1.44	1.77-3.78		1.02-1.70	1.40-3.15	1.86-3.43	1.01-4.38	1.59-3.00	0.35-0.65		2.08-3.51	0.59-3.18
1.15	1.00 2.58 2.87		1.00	1.00	1.00	1.00	1.00	1.00		1.00 2.70 5.16	1.38
34.9 54.2	27.6 49.6 52.2		33.1 39.5	33.1 51.0	31.9	33.8	32.4	36.0		23.4 45.2 61.2	29.6
1021	1441 117 414		1686	1872	1786	1943 29	1800	1706		1266 303 376	27
356 32	397 58 216		558 113	620 51	570	656	583	615 56		296 137 230	∞
Nosocomial Missing	Primary focus Other known focus Pulmonary focus Unknown focus	Group 3: Secondary foci and other complications	Endocarditis No Yes	Stroke No Yes	Heart Failure No Yes	Mycotic Aneurism No Yes	Pulmonary 2 ^{ndary} focus No Yes	Osteo-articular 2 ^{ndary} focus No Yes	Group 4: Sepsis	None Severe sepsis (without shock) Septic shock	Missing

OR: odds-ratio; CI: confidence interval; ^aMain variables not associated with case-fatality in bivariate analyses were diabetes mellitus, peripheral arteriopathy, chronic obstructive pulmonary disease, immunosuppressive therapy, and foci like meningitis and cerebral abscess. Pror the multivariate logistic regression: events to independent variables ratio is 55.6; age complied with linearity; we did not analyse interactions because none was expected, no collinearity was detected; Hosmer-Lemeshaw goodness-offit indicated a p-value of 0.618 and area under the curve for receiver operating characteristic was 0.807, which indicated a good fit to the real data.

Table 3. First line antibiotics, patients' characteristics and outcome in patients with methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia in the VIRSTA study (n=1538)


First line antibiotics	iotics			Patient	Patients' characteristics	eristics	Outcome	Outcome at 4 weeks	Outcome	Outcome at 12 weeks
	Patients	Jo % =	Median	Median	Septic	Jo % =	Case	Jo % =	Case	Jo % =
	treated	MSSA	duration	age	shock	treated	fatality	treated	fatality	treated
		patients	(IQR)	(years)						
Monotherapy			(days)							
Antistaphylococcal penicillin (ASP)	80	5.2	9 (4-21)	64.1	10	12.5	12	15.0	17	21.3
Amoxicillin/clav.	127	8.3	3(2-7)	66.5	11	8.7	29	22.8	46	36.2
Other beta-lactam ^a	139	0.6	3 (2-5)	71.9	21	15.1	31	22.3	47	33.8
Vancomycin	92	0.9	2(1-5)	65.3	11	12.0	11	12.0	20	21.7
Other monotherapy ^b	138	0.6	4.5 (2-11)	63.8	24	17.4	19	13.8	37	26.8
Bitherapy										
ASP + aminoglycoside	138	0.6	8 (4-15)	6.09	19	13.7	20	14.5	27	19.6
Other beta-lactam ^c + aminoglycoside	72	4.7	3 (2-4)	70.1	19	26.4	21	29.2	31	43.1
Vancomycin + aminoglycoside	106	6.9	2 (1-4)	65.2	10	9.4	12	11.3	19	17.9
Vancomycin + beta-lactam	54	3.5	4 (1.5-8)	61.7	7	13.0	S	9.3	11	20.4
Other bitherapy ^d	333	21.7	4 (2-9)	0.99	55	16.5	99	19.8	107	32.1
Multiple therapy										
Strategy with ≥ 3 antibiotics	259	16.8	2 (1-4)	64.9	100	38.6	74	28.6	106	40.9
Time to 1 st antibiotic initiation										
> 24 hours after blood culture collection	969	45.3	4 (2-9)	66.5	101	14.5	130	18.7	211	30.3
≤ 24 hours after blood culture collection	842	54.8	3 (2-7)	9.59	186	22.1	170	20.2	257	30.5

IQR: inter-quartile range; ASPs were the antistaphylococcal penicillins: oxacillin and cloxacillin; ^a Ceftriaxone or cefotaxim (53%), amoxicillin (28%); ^b Fluoroquinolone (17%) (30%); ^c Ceftriaxone + aminoglycoside (44%); ^d Ceftriaxone + fluoroquinolone (17%)

Table 4. Association between first line antibiotics and week 12 case-fatality in patients with methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia in the VIRSTA study (n=1538)

Group 5: treatment variables	ent variables	Fr	Frequencies		Bŗ	Bivariate analysis	ysis	Effect o	Effect of antibiotics adjusted	adjusted
		Dead	Treated	%	OR	CI	Dp	on other	on otner prognostic factors OR CI p ^b	ractors D ^b
Variable 1: First line antibiotics	t line antibiotics						-			-
Monotherapy	Antistaphylococcal penicillin (ASP)	17	80	21.3	0.36	0.18-0.73	0.004	0.40	0.17-0.95	0.037
	Amoxicillin/clav.	46	127	36.2	0.75	0.42-1.36	0.342	0.85	0.42-1.72	0.650
	Other beta-lactam	47	139	33.8	89.0	0.38-1.21	0.188	0.56	0.28-1.14	0.110
	Vancomycin	20	92	21.7	0.37	0.19-0.73	0.004	0.37	0.17-0.83	0.016
	Other monotherapy	37	139	26.8	0.48	0.27-0.88	0.018	0.50	0.25-1.03	0.059
Bitherapy	ASP+ aminoglycoside	27	138	19.6	0.32	0.17-0.60	<0.001	0.37	0.17-0.78	0.009
	Other beta-lactam + aminoglycoside (Ref.)	31	72	43.1	1.00			1.00		
	Vancomycin + aminoglycoside	19	106	17.9	0.29	0.15-0.57	<0.001	0.33	0.15-0.72	900.0
	Vancomycin + beta-lactam	11	54	20.4	0.34	0.15-0.76	0.009	0.41	0.16-1.02	0.055
	Other bitherapy	107	333	32.1	0.63	0.37-1.05	0.078	0.59	0.32-1.10	0.099
Multiple therapy	Strategy with ≥ 3 antibiotics	106	259	40.9	0.92	0.54-1.55	0.746	0.67	0.35-1.26	0.216
Variable 2: Tim	Variable 2: Time to 1 st antibiotic initiation									
> 24 hours after b	> 24 hours after blood culture collection (Ref.)	211	969	30.3	1.00			1.00		
\leq 24 hours after t	≤ 24 hours after blood culture collection	257	842	30.5	1.01	0.81-1.26	0.930	0.71	0.54-0.93	0.015

OR: odds-ratio; CI: confidence interval; ASPs were the antistaphylococcal penicillins oxacillin and cloxacillin; ^a Those identified in the multivariate regression model in table 2, except MRSA (these factors remained associated with outcome when tested in this MSSA population); A potential interaction between Time to 1st antibiotics initiation and First line antibiotic was not significant by likelihood ratio test, (p=0.72); p calculated using Wald's test

