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Abstract. Preoperative path planning for Deep Brain Stimulation (DBS)
is a multi-objective optimization problem consisting in searching the best
compromise between multiple placement constraints. Its automation is
usually addressed by turning the problem into mono-objective thanks
to an aggregative approach. However, despite its intuitiveness, this ap-
proach is known for its incapacity to find all optimal solutions. In this
work, we introduce an approach based on multi-objective dominance to
DBS path planning. We compare it to a classical aggregative weighted
sum of the multiple constraints and to a manual planning thanks to a
retrospective study performed by a neurosurgeon on 14 DBS cases. The
results show that the dominance-based method is preferred over man-
ual planning, and covers a larger choice of relevant optimal entry points
than the traditional weighted sum approach which discards interesting
solutions that could be preferred by surgeons.

1 Introduction

Preoperative planning of a safe and efficient trajectory for a Deep Brain Stimu-
lation (DBS) electrode is a crucial and challenging task which usually requires
a long experience. The path is usually chosen as the best compromise between
multiple placement rules that may be contradictory, such as accurate targeting,
avoidance of various sensitive structures or zones, or compliance with standards.

Most of the automatic trajectory planning techniques that have been pro-
posed in the literature for DBS are based on mono-objective approaches [1,2,5,
7,11]. They combine the rules into a single aggregative weighted sum and mini-
mize it to find an optimal solution. This approach is intuitive, and sounds close
to the current decision making process. However, the optimization community
has shown that using such mono-criteria approaches for solving multi-criteria
optimization problems can lead to an under-detection of the optimal solutions
in a given solution space: it often produces poorly distributed solutions and does
not find optimal solutions in non-convex regions [6].
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If multi-criteria methods are already widely used for radiation therapy plan-
ning [3], it’s only recently that a few groups started to consider Pareto-optimality
techniques for path planning in minimally invasive surgery. For example, a non-
dominance based optimization was described in [9,10] for radiofrequency ablation
of tumors. But to our knowledge, no such method has been used in DBS.

The purpose of this work is to better understand and quantify the capacities
and limits of different approaches to detect optimal solutions in the case of
preoperative DBS path planning. We introduce to this context an optimality
quantification approach based on dominance with the computation of a Pareto
front. We compare it to a classical aggregative method based on a weighted
sum. For both methods, within a uniform distribution of candidate entry points,
optimal solutions are proposed and the difference is studied. These approaches
are described in detail in Section 2. Then in Section 3, we describe the experiment
performed by an experienced neurosurgeon on 14 patients cases, in order to
quantify the loss of relevant trajectories missed by the aggregative approach.

2 Materials and Methods

In this section, we detail both quality quantification approaches that were com-
pared. Then, we describe the GUI proposed to facilitate the navigation within
the solutions, and present the data and experiment used for comparison.

2.1 Method 1: Pareto front (MPF )

Method MPF is a multi-objective method based on a Pareto ranking scheme.
It consists in analyzing the mutual non-dominance of candidate entry points in
an initial set S. We define the strict dominance relationship dom between two
individuals x and y of the solution space S for a set of n objective functions fi
as follows:

∀ x, y ∈ S x dom y ⇐⇒ ∀i ∈ [1..n] , fi(x) < fi(y)

A solution x is Pareto-optimal if it is not dominated by any other solution
in the solution space S.

x ∈ S is Pareto optimal ⇐⇒ ∀ y ∈ S , ¬(y dom x)

The set of all Pareto-optimal solutions is called a Pareto front. Let us denote
SPF the subset of points of S that belong to the Pareto front. Inside the front,
no solution dominates another.

x ∈ SPF ⇐⇒ ∀ y ∈ SPF , ¬(y dom x) ∧ ¬(x dom y)

SPF represents the Pareto-optimal points of S that can be reached using
MPF . They are computed by comparing point of the sampling in pairs and
keeping only the points that satisfy the above property.
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2.2 Method 2: Weighted Sum Exploration (MWSE)

The weighted sum is a mono-objective approach for quantifying the quality of a
solution based on the representation of all of the n objective functions fi by a
single aggregative cost function f to minimize. A weight wi is associated to each
fi as follows:

f(x) =

n∑
i=1

wi.fi(x), x ∈ RN

where: 0 < wi < 1 and Σwi = 1 (weights condition), and x represents the
trajectory associated to a candidate entry point.

For a fixed combination of weights W = w1, ..., wn, we can quantify the
quality of each candidate entry point pj ∈ S of the initial set by evaluating
f(xj), where xj is the trajectory corresponding to pj . Then, the optimal entry
point for combination W is the point of S with a minimal evaluation of f .

When varying weights wi in W , different entry points of S minimizing f can
be obtained. An exploration by varying systematically a high number of different
combinations of weights is the most widely-used approach to approximate a
Pareto front: the maximal coverage of this method MWSE is the subset SWSE

of all the points of S that can be found as optimal with this method.
To achieve this, a stochastic sampling of the n weights wi satisfying the

above-mentioned weights condition is built. A Dirichlet distribution [8] allows
to obtain a uniform sampling of 20,000 different combinations of weights. Note
that different combinations can lead to the same optimal entry point within a
predefined finite set of candidate entry points.

2.3 Discretization of the solution space

Usual automatic trajectory planning techniques involve the search of the best
entry point thanks to an optimization phase converging to solutions optimiz-
ing the chosen quality measurement. However, optimization methods would dif-
fer for mono- and multi-objective cases: classical derivative-free optimization
techniques are appropriate for mono-objective, while evolutionary approaches
are more suitable and most frequently used for multi-objective techniques. The
choice of such different optimizers could bias the comparison of the quality mea-
surement method, as their convergence may differ. In order to have a fair com-
parison, we chose to avoid the use of optimizers, and focused on comparing only
the quality measurement methods on a selection of candidate entry points.

To do so, we computed a discretization of the solution space by choosing a
uniform distribution S of points over the surface of the feasible entry points,
i.e. the points leading to a safe trajectory not crossing any forbidden anatomical
structure or zone. The precision of the distribution was chosen such that we
have one candidate trajectory per degree, if the center of rotation is the center
of the targeted structure, which corresponds to approximately to one entry point
every millimeter. This precision was assessed as sufficiently spaced by our expert
neurosurgeon. An example of a distribution of candidate points over a surface
of feasible points is shown on Fig. 1d.
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2.4 Evaluation study

The objective of the test was 1) to compare the two methods on their coverage
over the surface of candidate entry points, and their ability to find the maximal
set of optimal solutions, and 2) to check whether the points found as optimal by
one method and not by the other one were likely to be chosen by neurosurgeons.

To this end, a retrospective study was performed on 14 datasets from 7 pa-
tients who underwent a bilateral Deep Brain Stimulation of the Subthalamic
Nucleus (STN) to treat Parkinson’s disease. Each dataset was composed of pre-
operative 3T T1 and T2 MRI with a resolution of 1.0mm x 1.0mm x 1.0mm,
and a 3D brain model containing triangular surface meshes of the majority of
cerebral structures, segmented and reconstructed from the preoperative images
using the pyDBS pipeline described in [4]. Among the 3D structures, we have
the STN, a patch delineated on the skin as a search area for the entry points,
the ventricles and the sulci that neurosurgeon try to avoid. The T1, T2 and 3D
meshes were registered in the same coordinates system.

A second pipeline was implemented and executed on the 3D scenes. First a
discretization S of the search space, as described in Section 2.3, was performed.
The distribution contained between 0.93 and 1.29 point per mm2 (average 1.07),
representing an average of 2,320 sample points per case on an average surface of
2,158 mm2. Then we computed the subsets SWSE and SPF of points labeled as
optimal respectively by methodsMWSE andMPF , as described in Sections 2.1
and 2.2. Examples of subsets of optimal points proposed by both methods are
presented on Figs. 1a and 1b. We marked for each case the difference set D of
points found by one method and not by the otherDWSE = SWSE−(SWSE∩SPF )
and DPF = SPF − (SWSE ∩ SPF ), and computed their cardinality.

Finally, an experienced neurosurgeon was asked to perform a test in 4 steps.

– Step 1: “Manual planning MMP”. This phase consisted in selecting
interactively the target point and the entry point on the 2D T1/T2 slices.
The chosen trajectory TMP could be visualized and assessed in the 3D view
to check if the position was satisfying. Let’s denote this method MMP .

– Step 2: “Planning using method MWSE”. In this phase, the target
point chosen in step 1 was kept, and the surgeon had to choose an entry
point among the ones proposed by MWSE .

– Step 3: “Planning using methodMPF”. In this phase, the target point
chosen in step 1 was also kept, and the surgeon had to choose an entry point
among the ones proposed by method MPF .

– Step 4: “Trajectories ranking”. This phase consisted in ranking the
three trajectories TMP , TWSE and TPF chosen in steps 1-3. The ranking
was blind as the three trajectories were randomly assigned a color, and the
surgeon ranked the colors. An illustration of this step is shown on Fig. 1c,
where the colors have been set to match Figs. 1a and 1b for readability
purposes. The ranking could be zero if the trajectory was finally marked as
being really worse than the others and rejected. Trajectories could be equally
ranked if they were identical or estimated to have a similar quality.
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(a) Step 2: weighted sum set SWSE (b) Step 3: Pareto front set SPF

(c) Step 4: ranking (d) Initial distribution of points

Fig. 1: Case #12: area of feasible entry points, with solutions ofMWSE in blue,
solutions of MPF in red, and the trajectory chosen with MMP in green.

The trajectory planning is submitted to a number of surgical rules. We have
chosen to represent three of them, that seemed to be among the most commonly
accepted rules, as objective functions for our experiment. Function f1 represents
the proximity to a standard trajectory defined by expert neurosurgeons and
commonly used in the commercial platforms: 30◦ anterior and 30◦ lateral. Func-
tion f2 represents the distance from the electrode to the sulci where the vessels
are most often located, and that the surgeons try to avoid at best. Function f3
represents the distance from the electrode to the ventricles, to avoid as well.

In order to assist the navigation through the solutions proposed by each
method, we displayed visual clues controlled by sliders. For method MWSE , a
slider i allows the surgeon to assign a value to weight wi. Modifying the slider
position updates a color map representing f for a particular set of weights, to
help in the selection of a candidate. Its use is optional, and the visualization of all
candidates in SWSE is not affected. In the case of methodMPF , the implemented
filtering sliders were inspired by those proposed in [9] for radiofrequency tumor
ablation. A slider i assigns a threshold θi for the value of fi: point p ∈ SPF

is displayed only if fi(p) < θi, and hidden otherwise. Sliders range from 1 (all
solutions displayed) to 0 (no solution displayed). Their use is also optional.

The experiment has been performed on an Intel Core i7 running at 2.67 GHz
with 8GB RAM workstation. For all cases, the positions of the target/entry
points, the final ranking, and the times required for each step were recorded 6.

6 A video illustrating the experiment can be watched at http://goo.gl/mfgrqX or
https://youtu.be/16JthovAh5c.
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3 Results and discussion

For all the cases, SWSE ⊂ SPF . Average cardinalities are |SWSE | = 26 and
|SPF | = 190. Difference set DWSE was always empty, meaning that all points
found as optimal byMWSE were also proposed byMPF . On the contrary,MPF

always found more points thanMWSE . The chart on Fig.2 shows the number of
points in SWSE and SPF . The average cardinality of the difference DPF is 164,
which represents 86.41% of the average number of points of MPF .

Fig. 2: Number of points in SWSE (in blue) and SPF (in red) for the 14 cases

In order to determine if the points missed byMWSE were interesting points
likely to be chosen by a surgeon, we analyzed the data recorded during the test.
First, we could observe that MMP ranked first in 2/14 cases, method MWSE

ranked first in 5/14 cases, and method MPF ranked first in 6/14 cases. In the
remaining case, the entry points chosen using MWSE and MPF coincided, so
both methods were equally ranked in first position.

Let us note that the risk of being biased towards one solution picked right
before is significantly reduced by the random color coding, the protocol pipeline
(14 plannings with MMP , then 14 with MWSE then 14 with MPF , before the
14 rankings), and the absence of any visual clue when ranking.

The fact that MWSE ranked first 5 times does not mean MWSE outper-
formed MPF in 5 cases, as SWSE ⊂ SPF . On the contrary, when MPF ranked
first we observed that none of the entry points were also part ofMWSE . There-
fore, we can state that method MPF is superior to MWSE in the sense that
it finds preferred solutions that MWSE does not propose, while the opposite is
not true. Presumably, the best possible solution was not available in SWSE so a
sub-optimal alternative was chosen.

In order to see whether, in these kind of cases, reasonably close alternatives
would be available in SWSE , we computed the distances between entry points
selected in SPF and the closest point of SWSE . Results are shown on the left
part of Table 1. It can be observed that in one case over six (#12), the distance
is higher than 16 mm, which means that no point was proposed by SWSE within
the region of the selected entry point. This case is also the one having the highest
difference in terms of coverage of optimal points between the two methods. We
chose to display this particular case in Fig.1 to highlight that such cases may
happen quite often due to the mathematical specificity of the weighted sum
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Table 1: Distances in mm between entry points selected with methodsMPF and
MMP and the closest alternative point in other automatic methods

Distance MPF ranked first MMP ranked first
to: 2 6 9 11 12 14 7 13

SWSE 2.05 4.83 1.67 1.90 16.05 5.92 2.83 1.49
SPF - - - - - - 1.16 0.87

approach. In two other cases, the distance is higher than 4.8 mm, which is still
far from the preferred location. For the other 3 cases, the distance ranges between
1.6 mm and 2.05 mm which may correspond to relatively reasonable alternatives.

It is also interesting to observe that for the two cases whereMMP was ranked
first (#7 and #13), the distance between the manually proposed entry point and
the closest point of SPF (resp. 1.16 and 0.87 mm) was always lower than the
closest point of SWSE (resp. 2.83 and 1.49 mm).

The average times taken for each of the three methods of selection were
respectively 155 s. for MMP , 38 s. for MWSE , and 42 s. for MPF . Of course,
this measurement is biased because the target selection time is included only in
MMP , as steps 2 and 3 consisted in only selecting an entry point. We did not
record separately the time required to select the entry point, because in step 1
we chose to let the surgeon go back and forth between target and entry point
position refinement to have a good accuracy. However, even considering that
planning the target point took half of the time in step 1, steps 2 and 3 were still
much faster. Besides, the improvement of speed was not at the cost of accuracy,
as an automatically proposed entry point was ranked first in 12/14 cases. This
experiment confirms the overall interest of automatic assistance to preoperative
trajectory planning for Deep Brain Stimulation.

Finally, we can notice that in 5 cases the surgeon did not choose the same
point using PF and WS even though the preferred point was available in both. We
hypothesize that the display might have to be improved for MPF , for instance
by using a color scheme for the objectives.

4 Conclusion

The automatic trajectory planning techniques that have been proposed for DBS
in the literature are based on mono-objective optimization approaches that com-
bine different criteria through weighted sums. Unfortunately, theory shows that
such techniques cannot find concavities in Pareto fronts, meaning that some
Pareto-optimal solutions cannot be reached.

This paper shows that methods using a quantification of the trajectories
quality based on Pareto-optimality can find more optimal propositions than the
current state of the art algorithms using weighted sums. The evaluation study we
conducted involving a blind ranking, highlighted that the extra propositions can
often be chosen as more accurate by a neurosurgeon, and that some of them did
not have any reasonably close alternative proposed by the weighted sum method.
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Finally, the recorded times indicated that the automatic assistance was, in 12
cases over 14, both faster and more accurate than a manual planning, which
further confirms the overall interest of automatic assistance to preoperative tra-
jectory planning for Deep Brain Stimulation.
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