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Array Pattern Synthesis with Excitation Control

via Norm Minimization
Benjamin Fuchs, Senior Member, IEEE and Sébastien Rondineau

Abstract— Simple and efficient procedures are presented to
synthesize antenna array patterns (focused or shaped beams)
while controlling the excitations. This synthesis problem is of
great practical interest as it makes active arrays more attractive
by reducing their complexity, cost and weight. With a proper
regularization of the array pattern synthesis solution, the excita-
tions can be optimized in order to design uniform amplitude
sparse arrays, arrays whose excitations have a low dynamic
range ratio or a smooth amplitude variation. More specifically,
the synthesis procedures are composed of the minimization of a
norm (mixed ℓ1/ℓ∞ norm, total variation norm or a combination
of the ℓ1- and ℓ∞-norms) associated with radiation pattern
constraints. Various representative array synthesis problems are
considered. Examples including the coupling between antennas
and a comparison with a deterministic approach confirm both
the usefulness and effectiveness of the proposed procedures.

Index Terms— Antenna arrays, antenna synthesis, phase-only
control, convex optimization.

I. INTRODUCTION

THE synthesis of antenna arrays with controlled excita-

tions is an issue of increasing relevance, especially for

embedded applications such as satellite and unmanned aerial

vehicles [1], [2]. It enables to reduce the complexity, cost

and weight of active arrays and consequently make them an

attractive alternative to the commonly used reflector antennas

to generate the multiple beams satellite coverage.

In addition to radiation pattern requirements, the antenna array

excitations are optimized in the synthesis procedure in order

to, for instance, simplify the beamforming network. Thus

the synthesis of uniform amplitude sparse arrays [3]–[6] and

arrays whose excitations have a reduced Dynamic Range Ratio

(DRR) [7]–[10] have recently drawn a lot of attention.

There are several benefits in designing antenna arrays having

equi-amplitude (isophoric) excitations as well explained in [3]

and [11]. Generally speaking, reducing the number of control

points (amplifiers and phase shifters) enables to make active

arrays more attractive in terms of cost, reliability and power

efficiency.

The price to pay in adding constraints on the array excitations

is the degradation of the radiating performances unless the

antenna locations are also optimized. The excitation taper

required to fulfill the pattern constraints is then replaced by a

spatial taper of the elements leading to non uniformly spaced

arrays.

Deterministic approaches have been proposed to efficiently
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synthesize uniform amplitude sparse arrays radiating pencil

beams in [3]–[5] and more recently shaped beams [6]. These

efficient methods are based on the density taper strategy intro-

duced by [12] and they outperform in canonical configurations

approaches using so-called global optimizers that are versatile

but computationally heavy [13], [14].

Besides, arrays whose excitations exhibit a low dynamic range

ratio or a smooth variation are also of great practical interest

because they enable a better control of the mutual coupling

between antennas. A projection based approach [7] and fast

iterative methods [9], [10] have been proposed in to synthesize

complex radiation patterns with various types of arrays while

simultaneously reducing the DRR of the excitations. The cost

function includes then both the pattern to fit and the DRR.

In this paper, several procedures are presented to synthesize

array pattern while controlling the excitations. With a proper

regularization of the pattern synthesis solution (mostly via

norm minimization), the array excitations can be optimized

in order to design uniform amplitude sparse arrays, arrays

with low DRR or smooth amplitude variation while taking

the coupling between antennas into account. All proposed

optimization schemes are convex and therefore easily and

efficiently solvable on readily available solvers such as CVX

[15]. However, it does not mean that all solutions are optimal

because approximations are necessary, notably in case of

shaped beam synthesis, in order to obtain convex formulations.

The paper is organized as follows. The array notations and

the definition of norms are introduced in Section II. The way

to formulate the synthesis of arrays with various excitation

control is described in Section III. A set of representative

numerical examples is provided in Section IV to both vali-

date and illustrate the proposed approaches. Conclusions and

perspectives are drawn in Section V.

II. ARRAY NOTATIONS AND NORMS

A. Array Notations

Let us consider an array composed of N antennas placed at

locations ~rn. For the sake of clarity, the problem is described

for a one-dimensional pattern synthesis, i.e. over the polar

angle θ in a fixed azimuthal plane ϕ = ϕ0 that is omitted

in the notations. The extension to a two-dimensional pattern

synthesis, i.e. a synthesis over both angular directions θ and

ϕ, is straightforward. Moreover, we consider the synthesis of

one component of the electromagnetic field to simplify the

notations. Each antenna n radiates a complex pattern gn(θ)
in the direction θ. The electromagnetic far field pattern f(θ)
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radiated by the antenna array is:

f(θ) = a(θ)Hx, (1)

with a(θ) =
[

g1(θ)e
j 2π

λ
~r1.r̂(θ) · · · gN (θ)ej

2π
λ
~rN .r̂(θ)

]H

where x is the complex excitation vector, r̂(θ) is the unit vector

in the direction θ and .H denotes the Hermitian transposition.

The power pattern radiated by the array can be expressed:

|f(θ)|2 = x
H

a(θ)a(θ)Hx (2)

= Tr (A(θ)X)

with A(θ) = a(θ)a(θ)H and X = xx
H

where Tr(C) is the trace of the matrix C. The matrix A(θ)
is Hermitian and X = xx

H is an Hermitian and positive

semidefinite matrix (denoted X � 0) of rank one. Thus the

constraint |f(θ)|2 = β is equivalent to:

Tr (A(θ)X) = β with X � 0 and rank(X) = 1.

To make this constraint convex with respect to X and therefore

easily solvable, the rank constraint is dropped and replaced

by the minimization of the trace of X. Indeed, this convex

relaxation amounts to minimize the sum of the eigenvalues of

X (all real and positive values) and therefore its rank.

The sought-for excitation vector x is then extracted by taking

the best rank one approximation of X through eigenvalue

decomposition: x =
√
σ1u1, where (σ1, u1) is the top eigen-

pair of X. This technique is known as semidefinite relaxation

and more details can be found in [16], [17].

The use of the proxy matrix X instead of the vector x leads

to a significant increase (from N to N2) of the number of

variables. This is the price to pay to turn an initially NP-hard

problem into a polynomial time solvable one.

B. Array Pattern Synthesis

A focused beampattern can be synthesized by applying the

following constraints on the radiated field f(θ): a main beam

radiated in the direction θ0 with sidelobes below a given upper

bound ρ(θ) over an angular region Θsl. These constraints

denoted FB reads:
{

|f(θ0)| ≥ 1
|f(θ)| ≤ ρ(θ), ∀ θ ∈ Θsl

(3)

It yields, after discretization of Θsl:

FB(x)
{

R(aH
0 x) ≥ 1

∣

∣a
H
mx

∣

∣ ≤ ρm, ∀m (4)

with ai = a(θi) and ρm = ρ(θm)

where the array excitations x are the unknowns. Note that

the constraint on the real part R(aH
0 x) ≥ 1 is convex and

equivalent to the non convex one |aH0 x| ≥ 1 in this case, since

the excitations x are determined up to a global phase shift.

A focused beampattern FB can also be achieved using (2) by

solving:

FB(X) : min
X

Tr(X) s.t.







Tr(A0X) ≥ 1
Tr(AmX) ≤ ρm

2, ∀m
X � 0

(5)

where ‘s.t.’ stands for ‘subject to’ and Ai = A(θi).

Let us point out that the constraints (5) are convex with

respect to the unknown X as well as the square magnitude of

the excitations since:

diag(X) =
[

|x1|2 . . . |xN |2]T . (6)

This interesting property will be used in Section III.

Let us define a (shaped) beam by either a complex pattern

yd(θ) or a power pattern |yd(θ)|2 over a given angular

range Θsb. The synthesis of a desired (shaped) beam can be

formulated by the constraints SB:
∣

∣f(θ)− yd(θ)
∣

∣ ≤ ǫ, ∀θ ∈ Θsb (7)

or

∣

∣

∣
|f(θ)|2 − |yd(θ)|2

∣

∣

∣
≤ ǫ, ∀θ ∈ Θsb (8)

respectively. The parameter ǫ is the bound setting the maxi-

mum ripple around the desired beam. It yields after discretiza-

tion of Θsb in the directions θs:

SB(x) :
∣

∣a
H
s x − yds

∣

∣ ≤ ǫ, ∀s (9)

or SB(X) : min
X

Tr(X) s.t.

{ ∣

∣

∣
Tr(AsX)− |yds |

2
∣

∣

∣
≤ ǫ, ∀s

X � 0
.

(10)

C. Norms

Let us recall a few definitions of norms that will be applied

on the array excitations x so as to regularize the solution of

pattern synthesis problems and thereby synthesize arrays with

controlled excitations.

The ℓ1-norm and the ℓ∞-norm of a vector x ∈ CN are:

‖x‖1 =

N
∑

n=1

|xn| and ‖x‖∞ = max
n∈{1,··· ,N}

|xn|. (11)

The minimization of the ℓ1-norm of a solution x is known to

promote sparse solutions [18]. It has been successfully used in

a wide range of applications including sparse array synthesis

[19], [20]. On the other hand, minimizing the ℓ∞-norm of a

vector limits the range of its components which in turn tend

to be stuck in the limit, i.e. |xn| = ‖x‖∞, as explained in

[21]–[23].

(a) (b)

x1x1

x2x2
feasible regionfeasible region

‖x‖1 ‖x‖∞

Fig. 1. Illustration of the ℓ1- and ℓ∞- norm regularization. The solution
is marked by a black dot. (a) The minimization of ‖x‖

1
leads to a sparse

solution: ‖x‖∗ = (x1
∗, 0). (b) The minimization of ‖x‖

∞
leads to a solution

with equal magnitude components: x1
∗ = x2

∗.
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A 2D illustration of the ℓ1- and ℓ∞- norms regularizing

a solution of a feasible set is given in Fig. 1. Although

simplified, this figure clearly illustrates the two extreme effects

induced by these norms.

Let us now divide the vector x into G non overlapping

groups denoted x
g of size Ng, such as

∑G
g=1 Ng = N and

x =
⋃

g=1,...,G

x
g . The mixed ℓ1/ℓ∞ norm reads:

‖x‖1,∞ =

G
∑

g=1

‖x
g‖∞ =

G
∑

g=1

max(|xg
1|, ..., |xg

Ng
|). (12)

This norm is an instance of group (or structured) sparsity-

inducing norm, as thoroughly described in [24]. Minimizing

the ℓ1/ℓ∞-norm has the same effect as minimizing the ℓ∞-

norm for each group (sub-vector) x
g . It means that the magni-

tude of all components of the g-th group will tend to be equal

to ‖x
g‖∞.

The Total Variation norm (TV-norm) is a smoothing function,

introduced in [25], that is defined for real vectors x ∈ R
N . It

can be expressed:

‖x‖TV =

N
∑

n=2

|xn − xn−1| = ‖∇x‖1 (13)

where ∇ =











−1 1 0
−1 1

. . .
. . .

0 −1 1











.

The matrix ∇ of size N − 1 × N is a discrete gradient

matrix. Minimizing the TV-norm of a real vector x reduces

the variation of its components hence the smoothing effect.

III. ARRAY SYNTHESIS WITH EXCITATION CONTROL

The synthesis of antenna arrays with excitation control can

be achieved by minimizing a norm or a functional of the

solution in order to promote a type of excitation while fulfilling

radiation pattern constraints. The optimization problems are of

the form:

min
x

‖x‖p s.t. FB(x) or SB(x) (14)

or min
X

f(X) + γ Tr(X) s.t. FB(X) or SB(X) (15)

where the ℓp-norm or convex functional f is chosen in order

to synthesize arrays with the desired type of excitations.

The positive scalar γ in (15) balances the trade-off between

the functional minimization and the low rank solution. This

parameter γ is chosen such as σ1 >> σ2, where σi is the i-th
eigenvalue of X, in order to ensure a low rank solution X.

A. Sparse Arrays with Uniform Amplitude and Phase Excita-

tions

The ℓ1-norm and ℓ∞-norm minimizers are two extremes

to regularize the solution of an optimization problem, as ex-

plained in Section II. However, when appropriately combined,

these two norms can promote the underlying binary sparsity

of a solution and therefore be used to synthesize sparse arrays

whose excitations have the same amplitude and phase. Thus,

isophoric arrays can be synthesized by solving:

min
0≤x≤1

‖x‖1 + γ‖x − α‖∞ s.t. FB(x) or SB(x) (16)

Let us explain the role of the scalar α. We assume that there

is a binary prior on the excitations (xn ∈ {0, 1}), i.e. there

exists an isophoric array that satisfies the pattern constraints

FB(x) or SB(x). All excitations xn are then of equal distance

to 0.5. Consequently, if α = 0.5, minimizing max
n

|xn − 0.5|
will tend to stuck the components of xn at the values 0 or 1.

Thus, the sparsity is promoted by the ℓ1-norm penalty whereas

the binary property is fostered by the ℓ∞-norm term which

encourages the non-zero coefficients to stick to 1.

The parameter γ in (16) controls the trade-off between the

sparsity and the binary aspect of the solution. Its choice is

a notoriously difficult problem arising in many optimization

problems. One solution is to solve the problem (16), that is

computationally cheap, multiple times for different values of

γ. Otherwise, it has been empirically noticed that a ‘good’

parameter γ balances equally the ℓ1- and ℓ∞-norms. It means

that if we know a priori that the isophoric arrays is composed

of N elements, then γ should be around 2N .

To further enhance the sparsity of the solution, the reweighted

ℓ1 minimization algorithm introduced in [26] is used. At

iteration k = 0, we start from a fully populated array and

solve (16). Then, the weakest excitations are removed (e.g.

the xn’s such as |xn| < max
n

0.001 |xn|) and we solve the

following reweighted minimization problem:

min
xk

‖W
k
x
k‖1 + γ‖x

k − α‖∞ s.t. FB(xk) or SB(xk)

with

{

W
k
n,n =

(

|xn
k−1|+ δ

)−1

W
k
n,p = 0 if n 6= p

. (17)

The matrix W
k is a diagonal weighting matrix that penalizes

heavily small excitations (see [26]) in order to foster more

aggressively sparse solutions. The parameter δ > 0 ensures

the numerical stability of algorithm. At each iteration k ≥ 1,

we solve (17), remove the lowest excitations and so on until

the number of zero excitation x do not diminishes anymore.

B. Groups with Uniform Magnitude Excitations

The use of the mixed ℓ1/ℓ∞-norm enables to synthesize

arrays with G predefined groups of antennas having the

same excitation magnitudes. Such synthesis problem can be

formulated:

min
x

G
∑

g=1

‖x
g‖∞ s.t. FB(x) or SB(x). (18)

It is important to note that the element locations and the

groups of elements are fixed a priori but both the phases of

the elements and the excitation amplitudes within each group

are left free and optimized when solving (18).
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C. Excitations with Minimized Dynamic Range Ratio

The Dynamic Range Ratio (DRR) of the excitation vector

x is the ratio between the maximum and minimum excitation

magnitude: DRR(x) = max
n

|xn| / min
n

|xn|.
When the excitations are real values, the array synthesis with

a minimized DRR amounts to solve the convex problem:

min
x∈RN

max(x)−min(x) (19)

s.t. FB(x) or SB(x) with xn ≥ 0, ∀n.
On the other hand, for x ∈ CN (excitations with amplitude and

phase), the problem is harder to solve and the formulation via

the matrix X = xx
H is required to keep the problem convex. A

reduced DRR can be achieved by minimizing |maxn |xn|2 −
minn |xn|2|. The array synthesis problem is then:

min
X

[

max
n

(Xn,n)−min
n

(Xn,n)
]

+ γ Tr(X) (20)

s.t. FB(X) or SB(X) and X � 0.

D. Excitations with Smooth Variation

The array pattern synthesis with smoothly varying excita-

tions can be achieved, when the excitations are real values, by

minimizing the TV-norm as follows:

min
x∈RN

‖x‖TV (21)

s.t. FB(x) or SB(x).
When the excitations are expected to be complex, the smooth-

ness can be synthesized by minimizing
∣

∣|xn+1|2 − |xn|2
∣

∣. The

problem is:

min
X

N
∑

n=1

|Xn+1,n+1 − Xn,n|+ γ Tr(X) (22)

s.t. FB(X) or SB(X) and X � 0.

IV. NUMERICAL APPLICATIONS

Various array synthesis problems are presented to show the

interest and efficiency of the proposed approaches. Generally

speaking, better radiation performances could be achieved, e.g.

lower sidelobe levels or smaller shaped beam ripples, but the

goal here is to let some freedom in order to illustrate the effects

of the proposed excitation regularizations.

A. Sparse Array with Uniform Amplitude and Phase Excita-

tions

The goal is to synthesize an array radiating a focused

beam with excitations having all the same amplitude. For

that purpose, the pattern radiated by the symmetric isophoric

array obtained via a deterministic approach described in [3] is

taken as the desired pattern yd. The reweighted minimization

problem (17) is applied and at each iteration the problem of

the form of (16) is solved:

min
x

‖x‖1 + γ‖x − 0.5‖∞ s.t.
∣

∣a(θ)Hx − yd(θ)
∣

∣ ≤ ǫ, ∀θ

As detailed in Section III-A, we are looking for binary

excitations (xn ∈ {0, 1}) which means that the sought-for
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Fig. 2. Synthesis of an isophoric array by fitting the focused beam pattern
of [3]. (a) Fitted and reconstructed radiation patterns, they are superimposed.
(b) Synthesized excitations: the optimal excitations (red circles) of [3] are
retrieved by the proposed procedure (black crosses), all excitations (except 5
of them) are set to zero.

xn are of equal distance to 0.5, hence the minimization of

‖x − 0.5‖∞. The upper bound ǫ has to be small enough, here

smaller than 10−5, in order to ensure a good fit between

synthesized and desired pattern. Moreover, the parameter γ is

chosen greater than 2N , i.e. 10. If γ < 10, the radiation pattern

is still well reconstructed but the excitations starts to have

various magnitudes because more importance is then attributed

to the ℓ1 penalty than the ℓ∞ one.

At iteration k = 0, we start with a fully populated symmetric

array composed of isotropic elements placed every 0.001λ.

After five iterations of the reweighted minimization problem

(17), five excitations only are remaining and we obtain the

results shown in Fig. 2. This synthesis problem is solved using

CVX [15] in less than 10 seconds on a standard laptop. The

corresponding MatLab code is given in Appendix I.

The radiation patterns are superimposed and the excitations

found by the proposed approach are very closed to those ob-

tained in [3]. The element locations are not exactly the optimal

ones computed by [3] because of the initial discretization of

0.001λ imposed by the thinning strategy.

B. Arrays with Groups of Uniform Amplitude, Minimized DRR

and ‘smooth’ Excitations

The goal is to synthesize a focused beam, of beamwidth

∆θ = 10˚ and sidelobes below ρ = −15 dB. We consider

a linear array composed of 30 patches working at 10 GHz

and uniformly spaced by a distance of 0.6λ. These patches

are simulated in their environment with the 3D full wave
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min TV(x)

Fig. 3. Synthesis of a linear array composed of 30 patches working at
10 GHz and simulated using Ansys HFSS in order to fully taken into account
the coupling effects. Three excitation objectives are set (5 groups with uniform
magnitudes, a minimized DRR and smooth excitations): (a) far field patterns
and (b) optimized excitations.

electromagnetic software Ansys HFSS in order to build the

steering vector a(θ) in (1). By doing so, the coupling effects

between patches are fully taken into account.

Three types of regularization are used to synthesize the pattern

radiated by the array while controlling its excitations in

order to have 5 groups of uniform amplitude excitations,

a minimized DRR and smooth excitations. Note that the

choice of the number of groups is arbitrary. Of course, a

smaller number of groups reduces the degrees of freedom

and consequently the array radiation performances. For that

purpose, the convex optimization problems (18), (19) and (21)

are used respectively.

The synthesized patterns, plotted in Fig. 3(a) show that the

radiation requirements are fulfilled. The optimized excitations

are reported in Fig. 3(b), the 5 groups of identical excitations

are clearly visible. The minimization of the TV norm of x

leads to a distribution of the excitations with three levels.

This distribution is close to the one with the smallest DRR

represented by the black markers.

Let us now consider a linear array composed of 22 half

wavelength spaced isotropic sources to radiate a focused beam

in the direction sin θ0 = 0.7. The beamwidth is defined by

0.6 ≤ sin(θ) ≤ 0.8 and the sidelobes are kept below -

20 dB. Three excitations objectives are compared: 5 groups

with uniform amplitudes, the minimization of the DRR and the

smoothness of the excitations. For these two latter cases, the

optimization problems (20) and (22) are solved since complex

excitations are expected to radiate the off-axis beam.

The synthesis results are plotted in Fig. 4. The three synthe-

sized patterns respect the predefined radiation constraints. The

excitations have the same expected linear phase variation in or-

der to radiate an off-centered beam. The excitation magnitude

plots clearly show 5 groups of excitations having the same

magnitude for the ℓ1/ℓ∞ minimization. The minimization of

the DRR and the TV norm leads to very close results, the

dynamic range of the excitation magnitudes and the variation

of amplitude between two excitations is obviously much

smaller than the case of the ‘amplitude-group’ optimization.

Finally, the synthesis of a cosecant beam with a linear array

composed of 21 half wavelength spaced elements is addressed.

The goal is to fit the shaped beam pattern provided by [27]

(constraints of the form (10)) while controlling the excitations

of the array to synthesize an array with: either 7 groups of

uniform magnitude, a minimized DRR or smoothly varying

excitations.

The synthesized shaped beams are plotted in Fig. 5(a), they

all fit closely the desired cosecant pattern. The three sets

of optimized excitations are given in Fig. 5(b), their own
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characteristics are clearly noticeable.
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Fig. 5. Synthesis of a cosecant pattern by fitting the shaped beam provided
in [27] with a linear array composed of 21 half wavelength spaced elements.
Three excitation objectives are considered : 7 groups with uniform amplitude
excitations, minimized DRR and smooth excitations. Synthesis results: (a) far
field patterns and (b) optimized excitation magnitudes.

C. Planar Array with Groups of Equi-Amplitude Excitations

Let us consider a planar array composed of 17 rings for a

total of 862 isotropic elements, the layout is represented in Fig.

6(b) and (c). The goal is to synthesize a focused beam tilted

in the direction (u0 = 0.4, v0 = 0.2) where the main beam is

defined by the region such as
√

(u − u0)2 + (v − v0)2 ≤ 0.1

while the sidelobes are kept below −30 dB. The 17 rings of the

array are divided into 6 zones (of 3 rings except for the inner

one) on which a uniform excitation magnitude is imposed so

as to ease the excitation of such array. The mixed ℓ1/ℓ∞ norm

minimization (18) is used to synthesize this array.

The results are obtained in less than 30 s with a standard

laptop and they are reported in Fig. 6. The uniform excitation

amplitude zones are clearly visible in Fig. 6(b) and the

synthesized phase gradient required to tilt the beam is plotted

in Fig. 6(c). Note that the excitation magnitudes of the 6 zones

have been optimized as well as the phases of each element.

V. CONCLUSION

A collection of regularization schemes has been presented

to synthesize antenna array patterns while controlling the ele-

ment excitations. By minimizing the appropriate norm (mixed

ℓ1/ℓ∞, total variation or a combination of the ℓ1 and ℓ∞) of

the array pattern solution, it is possible to synthesize either

uniform amplitude sparse arrays, arrays with a smooth exci-

tation amplitude variation or arrays with a reduced dynamic

range ratio. All proposed approaches can take into account the

coupling between the array antennas. Moreover, they are easy

to implement and use only off-the-shelf routines.

Various numerical application examples have been considered

to illustrate the potentialities of the proposed approaches.

Although the formulations are all convex, the optimality of

the solution can, in general, not be guaranteed because of

necessary approximations. However, our approach is able to

retrieve the uniform amplitude sparse array synthesized by a

deterministic technique.

The proposed techniques could also be of great relevance for

the synthesis of transmit-arrays and reflectarrays where, in

general, only the phases of the elements are optimized and/or

smooth magnitude variations are desired.

APPENDIX I

A CVX CODE FOR UNIFORM AMPLITUDE ARRAYS

% Inputs

% N: length of the unknown vector x

% yd: desired far field pattern
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% A: array factor

% IT nb: number of iterations

W = eye(N); % reweighting matrix

for k=1:IT nb

cvx begin

variable x(N)

minimize(norm(W*x,1) + gamma*norm(x-alpha,inf))

subject to

norm(A*x-yd ,2) <= epsilon;

cvx end

W = diag(1./(abs(x)+delta));

end

% Settings for example IV-A

gamma = 10;

epsilon = 1e-5;

delta = 1e-2;

alpha = 0.5;

IT nb = 5;

REFERENCES

[1] G. Toso, C. Mangenot, and A. G. Roederer, “Sparse and thinned arrays
for multiple beam satellite applications,” ESA Antenna Workshop on
Multiple Beams and Reconfigurable Antennas, pp. 207-210, Apr. 2007.

[2] G. Caille, Y. Cailloce, C. Guiraud, D. Auroux, T. Touya and M.
Masmousdi, “Large multibeam array antennas with reduced number
of active chains,” Proc. of European conf. on antennas and Propag.,
Edinburgh, UK, Nov. 2007.

[3] O.M. Bucci, M. D’Urso, T. Isernia, P. Angeletti and G. Toso, “De-
terministic Synthesis of Uniform Amplitude Sparse Arrays via New
Density Taper Techniques,” IEEE Trans. Antennas Propag., vol. 58,
no. 6, pp. 1949-1958, June 2010.

[4] O.M. Bucci and S. Perna, “A Deterministic Two Dimensional Density
Taper Approach for Fast Design of Uniform Amplitude Pencil Beams
Arrays,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 2852-2861,
Aug. 2011.

[5] O.M. Bucci and D. Pinchera, “A Generalized Hybrid Approach for
the Synthesis of Uniform Amplitude Pencil Beam Ring-Arrays,” IEEE
Trans. Antennas Propag., vol. 60, no. 1, pp. 174-183, Jan. 2012.

[6] O.M. Bucci, T. Isernia and A.F. Morabito, “An effective deterministic
procedure for the synthesis of shaped beams by means of uniform
amplitude linear sparse arrays,” IEEE Trans. Antennas Propag., vol. 61,
no. 1, pp. 169-175, Jan. 2013.

[7] O.M. Bucci, G. Mazzarella, and G. Panariello, “Reconfigurable arrays
by phase-only control,” IEEE Trans. Antennas Propag., vol. 39, no. 7,
pp. 919-925, Jul. 1991.

[8] L.I. Vaskelainen, “Constrained least-squares optimization in conformal
array antenna synthesis,” IEEE Trans. Antennas Propag., vol. 55, no. 3,
pp. 859-867, Mar. 2007.

[9] R. Vescovo, “Reconfigurability and Beam Scanning With Phase-Only
Control for Antenna Arrays,” IEEE Trans. Antennas Propag., vol. 56,
no. 6, pp. 1555-1565, June 2008.

[10] M. Comisso and R. Vescovo, “Fast Co-polar and Cross-polar 3D Pattern
Synthesis with dynamic range ratio reduction for conformal antenna
arrays,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 614-626,
Feb. 2013.

[11] A.F. Morabito, “An effective approach to the optimal synthesis of
circularly symmetric continuous aperture sources and innovative array
antennas,” Ph.D. dissertation, University of Reggio Calabria, Italy, Jan.
2011.

[12] M.I. Skolnik, “Nonuniform Arrays,” in “Antenna theory,” Part 1, R.E.
Collin and F.J. Zucker, McGraw-Hill, New York, NY, 1969, chapter 6.

[13] D.G. Kurup, M. Himdi and A. Rydberg, “Synthesis of Uniform Ampli-
tude Unequally Spaced Antenna Arrays Using the Differential Evolution
Algorithm,” IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2210-
2217, Sept. 2003.

[14] N. Jin and Y. Rahmat-Samii, “Advances in Particle Swarm Optimization
for Antenna Designs: Real-Number, Binary, Single-Objective and Mul-
tiobjective Implementations,” IEEE Trans. Antennas Propag., vol. 55,
no. 3, pp. 556-567, March 2007.

[15] CVX Research, Inc. CVX: Matlab software for disciplined convex
programming, version 2.0 beta. http://cvxr.com/cvx, September 2012.

[16] Z.-Q. Luo, W.-K. Ma, A. Man-Cho So, Y. Ye, and S. Zhang, “Semidef-
inite Relaxation of Quadratic Optimization Problems,” IEEE Signal
Processing Magazine, vol. 27, no. 3, pp. 20-34, May 2010.

[17] B. Fuchs, “Application of Convex Relaxation to Array Synthesis Prob-
lems,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 634-640, Feb.
2014.

[18] D.L. Donoho, “Compressive Sensing,” IEEE Trans. on Information
Theory, vol. 52, no. 4, pp. 1289-1306, April 2006.

[19] G. Prisco and M. D’Urso, “Maximally sparse arrays via sequential
convex optimizations,” IEEE Antennas Wireless Propag. Lett., vol. 11,
pp. 192-195, 2012.

[20] B. Fuchs, “Synthesis of sparse arrays with focused or shaped beam-
pattern via sequential convex optimizations,” IEEE Trans. Antennas
Propag., vol. 60, no. 7, pp. 3499-3503, Jul. 2012.

[21] J.J. Fuchs, “Spread representations,” Asilomar Conference on Signals,
Systems and Computers, Nov. 2011.

[22] H. Jegou, T. Furon, and J.J. Fuchs, “Anti-sparse coding for approximate
nearest neighbor search,” International Conference on Acoustics, Speech
and Signal Processing, March 2012.

[23] C. Studer, Y. Wotao, and R. G. Baraniuk, “Signal representations with
minimum ℓ∞-norm,” in Proc. Ann. Allerton Conf. Comm. Control
Comput. (Allerton), pp. 1270-1277, 2012.

[24] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, “Optimization with
sparsity-inducing penalties,” Foundations and Trends in Machine Learn-
ing, vol.4, no. 1, pp. 1-106, 2012.

[25] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D, 60:259-68, 1992.

[26] E.J. Candès, M.B. Wakin and S.P. Boyd, “Enhancing sparsity by
reweighted ℓ1 minimization,” J. Fourier Analy. Appl., vol. 14, pp. 877-
905, Dec. 2008.

[27] Y. Liu, Z. Nie, and Q.H. Liu, “A new method for the synthesis of nonuni-
form linear arrays with shaped power patterns,” Prog. Electromagn. Res.,
vol. 107, pp. 349-363, 2010.

Benjamin Fuchs (S’06-M’08-SM’16) received the
M.S. and electrical engineering degrees in 2004 from
the National Institute of Applied Science of Rennes,
France. He received the Ph.D. degree in 2007 from
the University of Rennes 1, France, and was during
that period a visiting scholar at the University of
Colorado at Boulder, USA. In 2009, he joined the
Institute of Electronics and Telecommunications of
Rennes (IETR) as a researcher at the Centre National
de la Recherche Scientifique (CNRS). He has spent
three years (2008 as postdoctoral research fellow and

2011-2012 on leave from CNRS) at the Swiss Federal Institute of Technology
of Lausanne (EPFL) in Switzerland.
His research interests revolve around the analysis and synthesis of electro-
magnetic field for antenna design and microwave imaging.



8
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et téléCommunications, a postgraduate degree in
signal processing and telecommunications, in 1999
and his Ph.D. degree in 2002 from the Univer-
sity of Rennes 1, France. He was Research Asso-
ciate (2002-2006) and Assistant Research Professor
(2006-2008) at the Microwave and Active Antenna
Laboratory of the Electrical and Computer Engineer-
ing Department, University of Colorado at Boulder,
USA. From 2008 to 2015, he was working in various

RF/Electronic Warfare Brazilian companies as technical director and/or com-
pany founder. Since February 2015, he is now Professor at both the Aerospace
Engineering and the Electronic Engineering departments of the University of
Brasilia, Brazil. His research interests include beam-forming, RF-optical con-
version, computational electromagnetics, mode matching, conformal mapping,
propagation and scattering of waves, dielectric lenses, discrete lens arrays and
antennas.


