HYBRID PEROVSKITE: SOLID-STATE NMR INVESIGATION FROM

ROOM TO VERY LOW TEMPERATURES

<u>Claire Roiland</u>^a, Laurent Le Pollès^a, Jean-Claude Ameline^b, Bruno Alonso^c, Khaoula Jemli^d, Gaëlle

Allard^d, Emmanuelle Deleporte^d, Jacky Even^e, Claudine Katan^a

^a ISCR, CNRS, Université Rennes 1, ENSC Rennes, France <u>claire.roiland@univ-rennes1.fr</u>
^b IPR, CNRS, Université Rennes 1,Rennes, France
^c Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSC Montpellier, France
^d LAC, ENS Cachan, CNRS, Université de Paris-Sud, Université Paris-Saclay, Orsay, France
^e FOTON, INSA de Rennes, CNRS, Rennes, France

Presenting high solar energy conversion efficiencies^{1,2} (21%), Hybrid Perovskite APbX₃ (A is a small organic cation, X=CI, Br, I) have recently become one of the most promising compound in the field of photovoltaic devices.

In a first step, we will present a room temperature NMR study of three methylammonium lead halides, namely MAPbX₃ (MA=CH₃NH₃). Investigation of the organic part confirms the isotropic mobility of the methylammonium cations while the structure of the inorganic part is confirmed by ²⁰⁷Pb NMR. Several years ago, R.E. Wasylishen *et al.*³ had already revealed the interest of deuterium NMR to investigate the temperature behaviour and the dynamics operating in such materials in their isotropic phase. Thus, in a second step we will focus on CH₃ND₃PbBr₃ in the anisotropic dynamic regime. By using a homemade probehead, we can discuss on the dynamical behaviour of the inorganic part of such hybrid perovskites, which can be further rationalized based on appropriate theoretical approaches⁴.

1. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, *Nature*, **2013**, 499, 316-319

- 2. M. Liu, M. B. Johnston, H. J. Snaith, Nature, 2013, 501, 395-398
- 3. R.E. Wasylishen, O. Knop, J. B. Macdonald, Solid State Communications, 1985, 56, 7,581-582.
- 4. J. Even, M. Carignano, C. Katan, Nanoscale, 2016, doi:10.1039/C5NR06386H

This project has received funding from the European Union's Horizon 2020 research and innovation Program under the grant agreement No 687008 (GOTSolar).