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Abstract. We present an importance sampling framework that com-
bines symbolic analysis and simulation to estimate the probability of
rare reachability properties in stochastic timed automata. By means of
symbolic exploration, our framework first identifies states that cannot
reach the goal. A state-wise change of measure is then applied on-the-
fly during simulations, ensuring that dead ends are never reached. The
change of measure is guaranteed by construction to reduce the variance
of the estimator with respect to crude Monte Carlo, while experimental
results demonstrate that we can achieve substantial computational gains.

1 Introduction

Stochastic Timed Automata [7] extend Timed Automata [1] to reason on the
stochastic performance of real time systems. Non-deterministic time delays are
refined by stochastic choices and discrete non-deterministic choices are refined
by probabilistic choices. The semantics of stochastic timed automata is given in
terms of nested integrals over products of uniform and exponential distributions.
Abstracting from the stochasticity of the model, it is possible to find the symbolic
paths reaching a set of goal states, but solving the integrals to calculate the
probability of a property becomes rapidly intractable. Using a similar abstraction
it is possible to bound the maximum and minimum probabilities of a property,
but this can lead to results such as the system could work or fail with high
probability. Our goal is to quantify the expectation of rare behaviour with specific
distributions.

A series of works [7, 5, 3, 4] has developed methods for analysing Stochastic
Timed Automata using Statistical Model Checking (SMC) [18]. SMC includes a
collection of Monte Carlo techniques that use simulation to avoid “state space ex-
plosion” and other intractabilities encountered by model checking. It is typically
easy to generate sample executions of a system, while the confidence of estimates
increases with the number of independently generated samples. Properties with
low probability (rare properties) nevertheless pose a challenge for SMC because
the relative error of estimates scales inversely with rarity. A number of standard
variance reduction techniques to address this have been known since the early
days of simulation [11]. The approach we present here makes use of importance
sampling [11, 15], which works by performing Monte Carlo simulations under



a probabilistic measure that makes the rare event more likely to occur. An un-
biased estimate is achieved by compensating for the change of measure during
simulation.

Fig. 1: A rare event
of reaching A due to
timing constraints.

Our model may include rarity arising from explicit
Markovian transitions, but our main contribution is ad-
dressing the more challenging rarity that results from the
intersection of timing constraints and continuous distribu-
tions of time. To gain an intuition of the problem, consider
the example in Fig. 1. The automaton first chooses a delay
uniformly at random in [0, 106] and then selects to either
go to A or B. Since the edge to A is only enabled in the
interval [106 − 1, 106], reaching A constitutes a rare event

with probability
∫ 106

106−1
10−6 · 1

2 dt =
1
2 · 10−6.

The probability theory relating to our model has been considered in the
framework of generalised semi Markov processes, with related work done in the
context of queueing networks. Theory can only provide tractable analytical so-
lutions for special cases, however. Of particular relevance to our model, [17] pro-
poses the use of state classes to model stochastic distributions over dense time,
but calculations for the closely related Duration Probabilistic Automata [14] do
not scale well [12]. Monte Carlo approaches provide an approximative alternative
to analysis, but incur the problem of rare events. Researchers have thus turned
to importance sampling. In [19] the authors consider rare event verification of a
model of stochastic hybrid automata that shares a number of features in com-
mon with our own model. They suggest using the cross-entropy method [16] to
refine a parametrised change of measure for importance sampling, but do not
provide a means by which this can be applied to arbitrary hybrid systems.

Our contribution is an automated importance sampling framework that is
integrated into Uppaal SMC and applicable to arbitrary time-divergent priced
timed automata [7]. By means of symbolic analysis we first construct an exhaus-
tive zone-based reachability graph of the model and property, thus identifying
all “dead end” states that cannot reach a satisfying state. Using this graph we
generate simulation traces that always avoid dead ends and satisfy the property,
applying importance sampling to compensate estimates for the loss of the dead
ends. In each concrete state we integrate over the feasible times of enabled ac-
tions to calculate their total probabilities, which we then use to choose an action
at random. We then choose a new concrete vector of clock values at random
from the feasible times of the chosen action, using the appropriately composed
distribution. All simulated traces reach satisfying states, while our change of
measure is guaranteed by construction to reduce the variance of estimates with
respect to crude Monte Carlo. Our experimental results demonstrate substantial
reductions of variance and overall computational effort.

The remainder of the paper is as follows. Section 2 and Section 3 provide back-
ground: Section 2 recalls the basic notions of importance sampling and Section 3
describes Stochastic Timed Automata in terms of Stochastic Timed Transition
Systems. We explain the basis of our importance sampling technique in Section 4
and describe how we realise it for Stochastic Timed Automata in Section 5. In
Section 6 we present experimental results using our prototype implementation



in Uppaal SMC and then briefly summarise our achievements and future work
in Section 7.

2 Variance Reduction

Let F be a probability measure over the measurable set of all possible executions
ω ∈ Ω. The expected probability pφ of property φ is defined by

pφ =

∫
Ω

1φ dF, (1)

where the indicator function 1φ : Ω → {0, 1} returns 1 iff ω satisfies φ. This
leads to the standard (“crude”) unbiased Monte Carlo estimator used by SMC:

pφ ≈ 1

N

N∑
i=1

1φ(ωi), (2)

where each ωi ∈ Ω is selected at random and distributed according to F , denoted
ωi ∼ F . The variance of the random variable sampled in (2) is given by

σ2
crude =

∫
Ω

(1φ − pφ)
2 dF =

∫
Ω

1φ dF − (pφ)
2 (3)

The variance of an N -sample average of i.i.d. samples is the variance of a single
sample divided by N . Hence the variance of the crude Monte Carlo estimator
(2) is σ2

crude/N and it is possible to obtain more confident estimates of pφ by
increasing N . However, when pφ ≈ 0, i.e., φ is a rare property, standard con-
centration inequalities require infeasibly large numbers of samples to bound the
relative error.

In this work we use importance sampling to reduce the variance of the random
variable from which we sample, which then reduces the number of simulations
necessary to estimate the probability of rare properties. Referring to the same
probability space and property used in (1), importance sampling is based on the
integral

pφ =

∫
Ω

1φ
dF

dG
dG, (4)

where G is another probability measure over Ω and dF/dG is called the likelihood
ratio, with 1φF absolutely continuous with respect to G. Informally, this means
that ∀ω ∈ Ω, dG(ω) = 0 =⇒ 1φdF (ω) = 0. Hence 1φ(ω)dF (ω)/dG(ω) > 0 for
all realisable paths under F that satisfy φ and is equal to 0 otherwise.

The integral (4) leads to the unbiased importance sampling estimator

pφ ≈ 1

N

N∑
i=1

1φ(ωi)
dF (ωi)

dG(ωi)
, ωi ∼ G. (5)

In practice, a simulation is performed under measure G and if the resulting
trace satisfies φ, its contribution is compensated by the likelihood ratio, which



is calculated on the fly. To reduce variance, the intuition is that G is constructed
to make traces that satisfy φ more likely to occur in simulations.

The variance σ2
is of the random variable sampled by the importance sampling

estimator (4) is given by

σ2
is =

∫
Ω

(
1φ

dF

dG
− pφ

)2

dG =

∫
Ω

1φ

(
dF

dG

)2

dG− (pφ)
2 (6)

If F = G, the likelihood ratio of realisable paths is uniformly equal to 1, (4)
reduces to (1) and (6) reduces to (3). To ensure that the variance of (5) is less
than the variance of (2) it is necessary to make σ2

is < σ2
crude , for which it is

sufficient to make dF/dG < 1,∀ω ∈ Ω.

Lemma 1. Let F,G be probability measures over the measurable space Ω, let
1φ : Ω → {0, 1} be an indicator function and let 1φF be absolutely continuous

with respect to G. If for all ω ∈ Ω, 1φ(ω) · dF (ω)
dG(ω) ≤ 1 then σ2

is ≤ σ2
crude.

Proof. From the definitions of σ2
crude (3) and σ2

is (6), we have

σ2
is ≤ σ2

crude ⇐⇒
∫
Ω

1φ

(
dF

dG

)2

dG− (pφ)
2 ≤

∫
Ω

1φ dF − (pφ)
2,

where pφ is the expectation of 1φF . Noting that (pφ)
2 is outside the integrals

and common to both sides of the inequality, we conclude

σ2
is ≤ σ2

crude ⇐⇒
∫
Ω

1φ
dF

dG
dF ≤

∫
Ω

1φ dF.

Hence, given 1φ ∈ {0, 1}, to ensure σ2
is ≤ σ2

crude it is sufficient that 1φ(ω) ·
dF (ω)
dG(ω) ≤ 1,∀ω ∈ Ω.

3 Timed Systems

The modelling formalism we consider in this paper is a stochastic extension
of Timed Automata [1] in which non-deterministic time delays are refined by
stochastic choices and non-deterministic discrete choices are refined by proba-
bilistic choices. Let Σ = Σ! ∪ Σ? be a set of actions split into output (Σ!) and
input (Σ?). As usual we assume there is a one-to-one-mapping between input
actions and output actions. We adopt the scheme that a! is an output action
and a? is the corresponding input action.

Definition 1 (Timed Transition System). A timed transition system over
actions Σ split into input actions Σ? and output actions Σ! is a tuple L =
(S, s0,→,AP, P) where 1) S is a set of states, 2) s0 is the initial state, 3) →⊆
S × (Σ ∪R≥0)× S is the transition relation, 4) AP is a set of propositions and
5) P : S → 2AP maps states to propositions. ⊓⊔



For shorthand we write s
a−→ s′ whenever (s, a, s′) ∈→. Following the composi-

tional framework laid out by David et al. [6] we expect timed transition systems

to be action-deterministic i.e. if s
a−→ s′ and s

a−→ s′′ then s′ = s′′ and we expect
them to be input-enabled meaning for all input actions a? ∈ Σ? and all states

s there exists s′ such that s
a?−→ s′. Let s, s′ ∈ S be two states then we write

s →∗ s′ if there exists a sequence of transitions such that s′ is reachable and we
write s ̸→∗ s′ if s′ is not reachable from s. Generalising this to a set of states
G ⊆ S, we write s →∗ G if there exists s′ ∈ G such that s →∗ s′ and s ̸→∗ G if for
all s′ ∈ G, s ̸→∗ s′.

A run over a timed transition system L = (S, s0,→,AP, P) is an alternat-
ing sequence of states, reals and output actions, s0d0a0!s1d1a1! . . . such that

si
di−→ ai!−−→ si+1. We denote by Ω(L) the entire set of runs over L. The set of

propositional runs is the set ΩAP(L) = {P(s0)d0, . . . |s0d0a0! ∈ Ω(L)}.
Several Timed Transition Systems L1 . . .Ln, Li = (Si, s

0
i ,→i,APi, Pi), may

be composed in the usual manner. We denote this by L = L1|L2| . . . |Ln and for
a state s = (s1, s2, . . . , sn) of L we let s[i] = si.

Timed Automata Let X be a finite set of variables called clocks. A valuation over
a set of clocks is a function v : X → R≥0 assigning a value to each clock. We
denote by V (X) all valuations over X. Let v ∈ V (X) and Y ⊆ X then we denote
by v[Y ] the valuation assigning 0 whenever x ∈ Y and v(x) whenever x /∈ Y . For
a value d ∈ R≥0 we let (v + d) be the valuation assigning v(x) + d for all x ∈ X.
An upper bound (lower bound) over a set of clocks is an element x ▹ n (x ◃ n)
where x ∈ X, n ∈ N and ▹ ∈ {<,≤} (◃ ∈ {>,≥}). We denote the set of finite
conjunctions of upper bounds (lower bounds) over X by B▹(X) (B◃(X)) and the
set of finite conjunctions over upper and lower bounds by B(X). We write v |= g
whenever v ∈ V (X) satisfies an element g ∈ B(X). We let v0 ∈ V (X) be the
valuation that assigns zero to all clocks.

Definition 2. A Timed Automaton over output actions Σ! and input actions Σ?

is a tuple (L, ℓ0, X,E, Inv) where 1) L is a set of control locations, 2) ℓ0 is the
initial location, 3) X is a finite set of clocks, 4) E ⊆ L×B◃(X)×(Σ!∪Σ?)×2X×L
is a finite set of edges 5) Inv : L → B▹(X) assigns an invariant to locations. ⊓⊔

The semantics of a timed automaton A = (L, ℓ0, X,E, Inv) is a timed transition

system L = (S, s0,→, L, P) where 1) S = L×V (X), 2) s0 = (ℓ0, v0), 3) (ℓ, v)
d−→

(ℓ, (v+ d)) if (v+ d) |= Inv(ℓ), 4) (ℓ, v)
a−→ (ℓ′, v′) if there exists (ℓ, g, a, r, ℓ′) ∈ E

such that v |= g, v′ = v[r] and v′ |= Inv(ℓ′) and 5) P((ℓ, v)) = {ℓ}.

3.1 Stochastic Timed Transition System

A stochastic timed transition system (STTS) is a pair (L, ν) where L is a timed
transition system defining allowed behaviour and ν gives for each state a density-
function, that assigns densities to possible successors. Hereby some behaviours
may, in theory, be possible for L but rendered improbable by ν.



Definition 3 (Stochastic Timed Transition System). Let L = (S, s0,→
,AP, P) be a timed transition system with output actions Σ! and input actions
Σ?. A stochastic timed transition system over L is a tuple (L, ν) where ν : S →
R≥0 ×Σ! → R≥0 assigns a joint-delay-action density where for all states s ∈ S,

1)
∑

a!∈Σ!
(
∫
R≥0

ν(s)(t, a!) dt) = 1 and 2) ν(s)(t, a!) ̸= 0 implies s
t−→ a!−→. ⊓⊔

1) captures that ν is a probability density and 2) demands that if ν assigns
a non-zero density to a delay-action pair then the underlying timed transition
system should be able to perform that pair. Note that 2) is not a bi-implication,
reflecting that ν is allowed to exclude possible successors of L.

Forming the core of a stochastic semantics for a stochastic timed transition
system T = ((S, s0,→,AP, P), ν), let π = p0I0p1I1p2 . . . In−1pn be a cylinder
construction where for all i, Ii is an interval with rational end points and pi ⊆ AP.
For a finite run ω = p′1d1p

′
2 . . . dn−1pn we write ω |= π if for all i, di ∈ Ii and

p′i = pi. The set of runs within π is then C(π) = {ωω′ ∈ ΩAP(T) | ω |= π}.
Using the joint density, we define the measure of runs in C(π) from s recursively:

Fs(π) = (p0 = P(s)) ·
∫
t∈I0

∑
a!∈Σ!

(
ν(s)(t, a!) · F[[s]d]a!(π1)

)
dt,

where π1 = p1I1 . . . pn−1pn, base case Fs(p) = (PT(s) = (p)) and [s]a is the

uniquely defined s′ such that s
a−→ s′. With the cylinder construction above and

the probability measure F , the set of runs reaching a certain proposition p within
a time limit t, denoted as ♢≤t p, is measurable.

(a) A

(b) B

Fig. 2: Two Stochastic
Timed Automata.

Stochastic Timed Automata (STA) Following [7], we
associate to each state, s, of timed automaton A =
(L, ℓ0, X,E, Inv) a delay density δ and a probability
mass function γ that assigns a probability to out-
put actions. The delay density is either a uniform
distribution between the minimal delay (dmin) be-
fore a guard is satisfied and maximal delay (dmax)
while the invariant is still satisfied, or an exponen-
tial distribution shifts dmin time units in case no
invariant exists. The γ function is a simple dis-
crete uniform choice of all possible actions. For-

mally, let dmin(s) = min{d|s d−→ a!−→ for some a!} and

dmax(s) = sup{d|s d−→} then δ(s)(t) = 1
dmax(s)−dmin(s)

if dmax(s) ̸= ∞ and δ(s)(t) = λ · e−λ(t−dmin(s), for
a user specified λ, if dmax(s) = ∞. Regarding output actions, let Act(s) =

{a!|s a!−→}, then γ(s)(a!) = 1
|Act| for a! ∈ Act. With δ and γ at hand we de-

fine the stochastic timed transition system for A with underlying timed tran-
sition system L as T A = (L, δ • γ), where δ • γ is a composed joint-delay-
density function and (δ • γ)(s)(t, a!) = δ(s)(t) · γ([s]t)(a!). Notice that for any
t,
∑

a!∈Σ!
ν(s)(t, a!) = δ(s)(t). In the remainder we will often write a stochastic

timed transition as (L, δ • γ). Also we will write γ(s)(t)(a!) in lieu of γ([s]t)(a!).



Example 1. Consider Fig. 2 and the definition of δA and γA in the initial state
(A.I, x=0). By definition we have γA((I, x=0)(t)(a!) = 1 for t ∈ [90, 100] and
δA(I, x=0)(t) = 1

100−90 for t ∈ [90, 100]. Similarly for the B component in the

state (B.I, x=0) we have γB((I, x=0)(t)(b!) = 1 if t ∈ [0, 100] and zero otherwise
and δB(I, x=0)(t) = 1

100−0 if t ∈ [0, 100] and zero otherwise.

3.2 Composition of Stochastic Timed Transitions Systems

Following [7], the semantics of STTS is race based, in the sense that each com-
ponent first chooses a delay, then the component with the smallest delay wins
the race and finally selects an output to perform. For the remainder we fix
Ti = (Li, νi) where Li = (Si, s

0
i ,→i,APi, Pi) is over the output actions Σi

! and
the common input actions Σ?.

Definition 4. Let T1, T2, . . . , Tn be stochastic timed transition systems with dis-
joint output actions. The composition of these is a stochastic timed transition
system J = (L1|L2| . . . |Ln, ν) where

ν(s)(t, a!) = νk(s[k])(t, a!) ·
∏
j ̸=k

∫
τ>t

∑
b!∈Σj

!

νj(s[j])(τ, b!) dτ

 for a! ∈ Σk
! .

The race based semantics is apparent from ν in Definition 4, where the kth

component chooses a delay t and action a! and each of the other components
independently select a τ > t and an output action b!. For a composition of
Stochastic Timed Automata we abstract from the losing components’ output
actions and just integrate over δ, as the following shows. Let J = (L, ν) be
a composition of stochastic timed transition systems, T1, T2, . . . , Tn, and let for
all i, Ti = (Li, δi • γi) originate from a timed automaton. Let a! ∈ Σk

! , then
ν(s)(t, a!) is given by

δk(s[k])(t) · γk(sk)(t)(a!) ·
∏
j ̸=k

∫
τ>t

∑
b!∈Σj

!

δj(s[j])(τ)γj(s[j])(τ)(b!) dτ


= δk(s[k])(t) ·

∏
j ̸=k

(∫
τ>t

δj(s[j])(τ) dτ

)
· γk(s[k])(t)(a!).

The term δk(s[k])(t) ·
∏

j ̸=k

(∫
τ>t

δj(s[j])(τ) dτ
)
is essentially the density of the

kth component winning the race with a delay of t. In the sequel we let κδ
k(t) =

δk(s[k])(t) ·
∏

j ̸=k

(∫
τ>t

δj(s[j])(τ) dτ
)
.

Example 2. Returning to our running example of Fig. 2, we consider the joint-
delay density of the composition in the initial state s = (sA, sB), where sA =
(I, x = 0) and sB = (I, x = 0). Applying the definition of composition we see that

νA|B(s)(t, c!) =


1

100−90 · 100−t
100−0 · 1 if t ∈ [90, 100] and c! = a!

1
100−0 · 1 if t ∈ [0, 90[

1
100−0 · 100−t

100−90 · 1 if t ∈ [90, 100]

}
and c! = b!.



4 Variance Reduction for STTS

For a stochastic timed transition system T = ((S, s0,→,AP, PL), ν) and a set of
goal states G ⊆ S we split the state space into dead ends (⌢G) and good ends
(⌣G) i.e. states that can never reach G and those that can. Formally,

⌢G= {s ∈ S | s ̸→∗ G} and ⌣G= {s ∈ S | s →∗ G}.
For a state s, let ActG,t(s) = {a! | [[s]t]a! ∈⌣G} and DelF (s) = {d | [s]d ∈⌣G

∧ActG,d(s) ̸= ∅}. Informally, ActG,t(s) extracts all the output actions that after
a delay of t will ensure having a chance to reach G. Similarly, DelG(s) finds all
the possible delays after which an action can be performed that ensures staying
in good ends.

Definition 5 (Dead End Avoidance). For a stochastic timed transition sys-
tem T = ((S, s0,→,AP, P), ν) and goal states G, we define an alternative dead
end-avoiding stochastic timed transition system as any stochastic timed transi-
tion system T́ = ((S, s0,→,AP, P), ν́) where if ν́(s)(t, a!) ̸= 0 then a! ∈ ActG,t(s).

⊓⊔
Recall from Lemma 1 in Section 2 that in order to guarantee a variance reduction,
the likelihood ratio should be less than 1. Let T = ((S, s0,→,AP, PL), ν) be
a stochastic timed transition system, let G ⊆ S be a set of goal states and
let T́ = ((S, s0,→,AP, PL), ν́) be a dead end-avoiding alternative. Let ω =
s0, d0, a0!s1, . . . dn−1an−1!sn be a time bounded run, then the likelihood ratio of

ω sampled under T́ is

dT(ω)
dT́(ω)

=
ν(s0)(d0, a0!)

ν́(s0)(d0, a0!)
· ν(s1)(d1, a1!)
ν́(s1)(d1, a1!)

. . .
ν(sn−1)(dn−1, an−1!)

ν́(sn−1)(dn−1, an−1!)

Clearly, if for all i, ν(si)(di, ai!) ≤ ν́(si)(di, ai!) then
dT(ω)

dT́(ω)
≤ 1. For a stochastic

timed transition system (L, ν = δ • γ) originating from a stochastic timed au-
tomaton we achieve this by proportionalising δ and γ with respect to good ends,
i.e. we use υ̃ = δ̃ • γ̃ where

δ̃(s)(t) =
δ(s)(t)∫

DelG(s)
δ(s)(τ) dτ

and γ̃(s)(t)(a!) =
γ(s)(t)(a!)∑

b!∈ActG,t(s) γ(s)(t)(b!)
.

Lemma 2. Let T = (L, ν = δ • γ) be a stochastic timed transition system from

a stochastic timed automata, let G be a set of goal states and let T̃ = (L, υ̃) be a

dead end avoiding alternative where υ̃(s)(t, a!) = δ̃(s)(t) • γ̃(s)(t)(a!). Also, let

1G be an indicator function for G. Then for any finite ω ∈ Ω(T), 1G(ω) · dT(ω)

dT̃(ω)
≤ 1

⊓⊔
For a composition, J = (L, ν) of stochastic timed transition systems T1, T2, . . . ,
Tn where for all i, Ti = (Li, δi • γi), we define a dead end avoiding stochastic

timed transition system for G as T́ = (L, υ̃∗) where

υ̃∗(s)(t, a!) =

0 if t /∈ DelG,k(s)
κδ
k(s[k])(t)∑n

i=1(
∫
t′∈DelG,i(s)

κδ
i (s[i])(t

′) dt′)
· κγ

k(s[k])(t, a!) otherwise



where DelG,k(s) = {d | (ActG,d(s)) ∩Σk
! ̸= ∅} and

κγ
k(s[k])(t, a!) =

{ γk(s[k])(t)(a!)∑
b!∈(ActG,t(s)∩Σk

!
)
γk(s[k])(t)(b!)

if a! ∈ ActG,t(s) ∩Σk
!

0 otherwise

First the density of the kth component winning (κδ
k) is proportionalised with

respect to all components winning delays. Afterwards, the probability mass of
the actions leading to good ends for the kth component is proportionalised as
well (κγ

k).

Lemma 3. Let J = (L, ν) be a stochastic timed transition system for a composi-
tion of stochastic timed transitions T1, T2, . . . , Tn, where for all i, Ti = (Li, δi•γi)
originates from a stochastic timed automaton. Let G be a set of goal states and let
J́ = (L, υ̃∗), where υ̃∗ is defined as above. Also, let 1G be an indicator function

for G. Then for any finite ω ∈ Ω(J ), 1G(ω) · dJ (ω)

dJ́ (ω)
≤ 1 ⊓⊔

Example 3. For our running example let us consider υ̃∗
A|B as defined above:

υ̃∗
A|B(s)(t, c!) =


1
10 ·

100−t
100∫ 100

90

1
10 ·

100−τ
100 dτ+

∫ 10
0

1
100 dτ

· 1
1 if c! = a! and t ∈ [90, 100]

1
100∫ 100

90

1
10 ·

100−τ
100 dτ+

∫ 10
0

1
100 dτ

· 1
1 if c! = b! and t ∈ [0, 10]

=

{
20
30 · 100−t

100 · 1 if c! = a! and t ∈ [90, 100]
20
300 · 1 if c! = b! and t ∈ [0, 10]

5 Realising Proportional Dead End Avoidance for STA

In this section we focus on how to obtain the modified stochastic timed transition
T́ = (L, υ̃) for a stochastic timed transition system T = (L, ν) originating from a

stochastic timed automaton A and how to realise T́ = (L, υ̃∗) for a composition
of stochastic timed automata. In both cases the practical realisation consists
of two steps: first the sets ⌣G and ⌢G are located by a modified algorithm of
uppaal Tiga [2]. The result of running this algorithm is a reachability graph
annotated with what actions to perform in certain states to ensure staying in
good ends. On top of this reachability graph the sets DelG,k(s) and ActG,k(s) can
be extracted.

5.1 Identifying Good Ends

Let X be a set of clocks, a zone is a convex subset of V (X) described by a
conjunction of integer bounds on individual clocks and clock differences. We let
ZM (X) denote all sets of zones, where the integers bounds do not exceed M .

For A = (L, ℓ0, X,E, Inv) we call elements (ℓ, Z) of L×ZM (X), where M is
the maximal integer occuring in A, for symbolic states and write (ℓ, v) ∈ (ℓ, Z)



if v ∈ Z. An element of 2ZM (X) is called a federation of zones and we denote
all federations by FM (X). For a valuation v and federation F we write v ∈ F if
there exists a zone Z ∈ F such that v ∈ Z.

Zones may be effectively represented using Difference Bound Matrices (DBM)
[8]. Furthermore, DBMs allow for efficient symbolic exploration of the reachable
state space of timed automata as implemented in the tool Uppaal [13]. In par-
ticular, a forward symbolic search will result in a finite set R of symbolic states:

R = {(ℓ0, Z0), . . . , (ℓn, Zn)} (7)

such that whenever vi ∈ Zi, then the state (ℓi, vi) is reachable from the initial
state (ℓi, v0) (where v0(x) = 0 for all clocks x). Dually, for any reachable state
(ℓ, v) there is a zone Z such that v ∈ Z and (ℓ, Z) ∈ R.

To capture the good ends, i.e. the subset of R which may actually reach a
state in the goal-set G, we have implemented a simplified version of the backwards
propagation algorithm of uppaal Tiga [2] resulting in a strategy S “refining”
R:

S = {(ℓ0, Z0, F0, a0!), . . . , (ℓk, Zk, Fk, ak!)} (8)

(I,I)

0 10 · · · 90 100

τ

(G,I)

0 10 · · · 90 100

(B,K)

0 10 · · · 90 100
x

τ

(G,K)

0 10 · · · 90 100
x

a!

b!

a!

b!

Fig. 3: Running example reachability set
R (grey) and strategy set S (blue) for
goal G ∧ τ ≤ 100.

where Fi ⊆ Zi and whenever vi ∈ Fi

then (ℓi, vi)
ai!−−→→∗ G. Also, (ℓi, Zi) ∈

R whenever (ℓi, Zi, Fi, ai!) ∈ S. Thus,
the union of the symbolic states
(ℓi, Fi) appearing in quadruples of S 4

identifies exactly the reachable states
from which a discrete action ai! guar-
antees to enter a good end of the
timed automaton (or network). Fig. 3
depicts the reachability set R (grey
area) and strategy set S (blue area)
of our running example.

Given the strategy set S (8) and
a state s = (ℓ, v), the set of possible
delays after which an output action a!
leads to a good end is given by

Dela!(s) = { d | ∃(ℓi, Zi, Fi, a!) ∈ S s.t. [s]d ∈ Fi)}.

For a single stochastic timed automaton DelG(s) =
∪

a!∈Σ!
Dela!(s) and for a

network DelG,i(s) =
∪

a!∈Σi
!
Dela!(s). Importantly, note that Dela!((ℓ, v)) – and

thus also DelG((ℓ, v)) – can be represented as a finite union of disjoint intervals.
Given a closed zone Z and a valuation v, the Uppaal DBM library5 provides
functions that return the minimal delay (dmin) for entering a zone as well as
the maximal delay for leaving it again (dmax). Due to convexity of zones then
{(v+ d) | dmin ≤ d ≤ dmax} ⊆ Z and thus the possible delays to stay in Z from

4 one symbolic state may appear in several quadruples.
5 http://people.cs.aau.dk/~adavid/UDBM/index.html

http://people.cs.aau.dk/~adavid/UDBM/index.html


v is equal to the interval [dmin, dmax]. For the remainder of this paper we write
{I1, I2 . . . , In} = DelG(s) where I1, I2 . . . In are the intervals making up DelG(s).

Extracting the possible actions from a state s = (ℓi, vi) after a delay of d is
simply a matter of iterating over all elements (ℓi, Zi, Fi, ai!) in S and checking
whether [s]d ∈ Fi. Formally, given a state s = (ℓi, vi), ActG,d((s)) = {ai! ∈ Σ! |
∃(ℓi, Zi, Fi, ai!) ∈ S s.t. [s]d ∈ Fi}.

5.2 On-the-fly State-wise Change of Measure

Having found methods for extracting the sets ActG,d(s) and DelG,k(s), we focus
on how to perform the state-wise change of measure.

Single Stochastic Timed Automaton In the following let A be a timed
automaton, TA = (L, δA •γA) be its stochastic timed transition system and let G
be the goal states. For a fixed t obtaining samples γ̃A(s)(t) is a straightforward

normalised weighted choice. Sampling delays from δ̃A(s) requires a bit more
work: let I = {I1, I2, . . . In} = DelG(s) and let t ∈ Ij , for some j then

δ̃A(s)(t) =
δA(s)(t)∫

τ∈DelG(s) δA(s)(t) dτ
=

∫
τ∈Ij

δA(s)(t) dτ∑
I∈I

∫
τ∈I

δA(s)(τ) dτ
· δA(s)(t)∫

τ∈Ij
δA(s)(t) dτ

.

Thus, to sample a delay we first choose an interval–weighted by its probability–
and then sample from the conditional probability distribution of being inside that
interval. Since δA(s) is either an exponential distribution or uniform, integrating
over it is easy and sampling from the conditional distribution is straightforward.

Network of Stochastic Timed Automata In the following letA1,A2, . . . ,An

be timed automata, Ti = (Li, δi •γi) be their stochastic timed transition systems
and let J = (J , ν) be their composition. Recall from previously we wish to ob-

tain υ̃∗(s)(t, a!) =
κδ
k(s[k])(t)∑n

i=1(
∫
t′∈DelG,i(s)

κδ
i (s[i])(t

′) dt′)
· κγ

k(s[k])(t, a!) for t ∈ DelG,k(s).

Let Ii = {Ii1, Ii2, . . . , Iik} = DelG,i(s) for all 1 ≤ i ≤ n and let t ∈ I for some
I ∈ Iw then

υ̃∗(s)(t, a!) =

∫
I
κδ
w(s[w])(τ) dτ∑n

i=1

∑
I′∈Ii

∫
I′ κ

δ
i (s[i])(τ) dτ

κδ
w(s[w])(t)∫

I
κδ
w(s[w])(τ) dτ

· κγ
w(s[w])(t, a!),

when t ∈ I and thus sampling from υ̃∗ reduces to selecting an interval I and

winner w, sample a delay t from
κδ
w(s[m])(t)∫

I
κδ
w(s[w])(τ) dτ

and finally sample an action a!

from κγ
w(s[w])(t, a!).

Algorithm 1 is our importance sampling algorithm for a composition of STA.
In line 5 the delay densities of components according to standard semantics is
extracted, and the win-densities (κδ

i ) of each component winning is defined in

line 6. In line 7 the delay intervals we should alter the distributions of κδ
i into

is found. Lines 8 and 9 find a winning component ,w, and an interval in which



it won, and then lines 10 and 11 sample a delay from that interval according to
κδ
w. After sampling a delay, lines 13 and 14 sample an action. Afterwards the

current state and likelihood ratio (L) is updated. The sampling in line 14 is a
standard weighted choice, likewise is the sampling in line 9 - provided we have
first calculated the integrals over κδ

i for all i. In line 11 the sampling from the
conditional distribution is performed by Inverse Transform Sampling, requiring
integration of κδ

k(s[k]).

Algorithm 1: Importance Sampling for Composition of STA

Data: Stochastic Timed Automata: A1|A2| . . . |An

Data: Goal States: G
1 Let (L, δAi • γA1) = T Ai for all i;
2 sc = initial state ;
3 L = 1 ;
4 while sc /∈ G do
5 Let δi = δAi(sc[i]) for all i;

6 Let κδ
i (t) = δi(t) ·

∏
j ̸=i

(∫
τ>t

δj(τ) dτ
)
for all i;

7 Let Ii = {I1, I2, . . . , In} = DelG,i(sc)for all i;

8 K(I, w) =
∫
I κδ

w(t) dt∑n
i=1

∑
I′∈Ii

∫
I′ κ

δ
i (τ) dτ

for I ∈ Im ;

9 (I, w) ∼ K ;

10 d(T ) =
κδ
w(T )∫

I κ
δ
w(τ) dτ

for T ∈ I;

11 t ∼ d;
12 γ = γAw (s)(t);

13 m(a!) = γ(a!)∑
b!∈ActG,t(s)∩Σi

!
γ(b!)

for a! ∈ ActG,t(s) ∩Σi
! ;

14 a! ∼ m;

15 sc = [[sc]
t]a!;

16 L = L · δi(t)
K(I,w)·d(t) ·

γ(a!)
m(a!)

;

17 return L;

A recurring requirement for the algorithm is thus that κδ
k(s[k]) is integrable:

In the following we assume, without loss of generality, that s is a state where
there exists some k such that for all i ≤ k, δi(s[i]) is a uniform distribution
between ai and bi and for all i > k that δi(s[i])(t) = λie

−λi(t−di) for t > di i.e.
δi(s[i]) is a shifted exponential distribution. For any i ≤ k we can now derive

that κδ
i (s[i])(t) = δi(s[i])(t)

∏
j ̸=i

(∫
τ>t

δj(s[j])(τ dτ)
)
is

1

bi − ai

∏
j≤k,j ̸=i




bj−t
bj−aj

if aj ≤ t ≤ bj

1 if t < aj
0 if bj < t or t < ai

or t > ai

 ·
∏
j>k

({
e−λi(t−di) if t > di
1 else

)



and in general it can be seen that κδ
i (s[i])(t) =


P0(t) · E0(t) if t ∈ I0
P1(t) · E1(t) if t ∈ I1

...

Pk(t) · Ek(t) if t ∈ Il
where I0, I1 . . . Il are disjoint intervals covering [ai, bi], and for all j, Pj(t) is a
polynomial constructed by the multiplication of uniform distribution and Ej(t)
is an exponential function of the form eα·t+β constructed by multiplying shifted
exponential distributions. Notice that although we assumed i ≤ k, the above gen-
eralisation also holds for i > k. As a result we need to show for any polynomial,
P(t), that P(t) · eα·t+β is integrable.

Lemma 4 (6). Let P(t) =
∑n

i=0 ait
i be a polynomial and let E0(t) = eα·t+β be

an exponential function with α, β ∈ R≥0. Then
∫
P(t) · E(t) dt = ˆP(t) · E(t), with

ˆP(t) =
∑n+1

i=0 bit
i, where bn+1 = 0 and bi =

ai−bi+1(i+1)
α . ⊓⊔

6 Experiments

In this section we compare the variance of our importance sampling (IS) estima-
tor with that of standard SMC. We include a variety of scalable models,6 with
both rare and not-so-rare properties to compare performance. Running is a
parametrised version of our running example. Race is based on a simple race
between automata. Both Running and Race are parametrised by scale , which
affects the bounds in guards and invariants. Race considers the property of reach-
ing goal location Obs.G within a fixed time, denoted ♢≤1 Obs.G. Running consid-
ers the property of reaching goal location A.G within a time related to scale ,
denoted ♢≤scale·100 A.G. The DPA (Duration Probabilistic Automata) are job-
scheduling models [7] that have proven challenging to analyse in other contexts
[12]. We consider the probability of all processes completing their tasks within
parametrised time limit τ . The property has the form ♢≤τ DPA1.G∧ · · · ∧DPAn.G,
where DPA1.G, . . . ,DPAn.G are the goal states of the n components that comprise
the model.

The variance of our IS estimator is typically lower than that of SMC, but
SMC simulations are generally quicker. IS also incurs additional set-up and initial
analysis with respect to SMC. To make a valid comparison we therefore consider
the amount of variance reduction after a fixed amount of CPU time. For each ap-
proach and model instance we calculate results based on 30 CPU-time-bounded
experiments, where individual experiments estimate the probability of the prop-
erty and the variance of the estimator after 1 second. This time is sufficient to
generate good estimates with IS, while SMC may produce no successful traces.
Using an estimate of the expected number of SMC traces after 1 second, we are
nevertheless able to make a valid comparison, as described below.

Our results are given in Table 1. The Gain column gives an estimate of the
true performance improvement of IS by approximating the ratio (variance of

6 Details can be found at http://people.cs.aau.dk/~marius/stratego/rare.html

http://people.cs.aau.dk/~marius/stratego/rare.html


SMC estimator)/(variance of IS estimator) after 1 second of CPU time. The
variance of the IS estimator is estimated directly from the empirical distribution
of all IS samples. The variance of the SMC estimator is estimated by p̂(1 −
p̂)/NSMC, where p̂ is our best estimate of the true probability (the true value
itself or the mean of the IS estimates) and NSMC is the mean number of standard
SMC simulations observed after 1 second.

For each model type we see that computational gain increases with rarity
and that real gains of several orders of magnitude are possible. We also include
model instances where the gain is approximately 1, to give an idea of the largest
probability where IS is worthwhile. Memory usage is approximately constant
over all models for SMC and approximately constant within a model type for IS.
The memory required for the reachability graph is a potential limiting factor of
our IS approach, although this is not evident in our chosen examples.

Param. Estimated Prob. IS Mem. (MB)

Model scale / τ P SMC IS σ̂2
is Gain SMC IS

Running
scale = 1 1.0e−1 1.0e−1 1.0e−1 2.5e−3 1.6 10.2 14.0

10 1.0e−2 1.0e−2 1.0e−2 2.5e−5 1.7e1 10.4 13.6
100 1.0e−3 1.0e−3 9.6e−4 2.5e−7 1.4e2 10.2 13.7

Race

1 1.0e−5 1.3e−5 1.6e−5 2.1e−11 8.3e3 10.0 13.5
2 3.0e−6 1.6e−6 3.2e−6 1.3e−12 2.0e4 10.0 13.3
3 1.0e−6 0 1.4e−6 2.5e−13 6.8e4 10.0 13.6
4 8.0e−7 0 8.0e−7 8.1e−14 1.5e4 11.5 14.4

DPA1S3
τ = 200 n/a 1.4e−1 1.4e−1 2.8e−2 1.1 10.2 11.9

40 n/a 3.6e−4 3.5e−4 1.7e−7 2.8e2 10.2 12.0
16 n/a 0 2.2e−8 6.9e−16 2.7e6 10.2 11.8

DPA2S6
423 n/a 1.0e−5 2.9e−5 3.7e−7 0.9 10.2 13.5
400 n/a 2.7e−5 7.6e−6 2.8e−8 3.0 10.3 13.5
350 n/a 0 5.5e−8 4.9e−13 1.1e3 10.3 13.3

DPA4S3
395 n/a 7.0e−5 1.9e−5 4.9e−8 4.4 10.3 53.1
350 n/a 1.4e−5 9.0e−6 1.3e−8 7.1 10.5 53.1
300 n/a 0 2.7e−7 2.3e−11 1.1e2 10.4 53.0

Table 1: Experimental Results. P is exact probability, when available. SMC (IS)

indicates crude Monte Carlo (importance sampling). σ̂2
is is empirical variance of

likelihood ratio. Gain estimates true improvement of IS at 1 second CPU time.
Mem. reports memory use. Model DPAxSy contains x processes and y tasks.

7 Conclusion

Our approach is guaranteed to reduce estimator variance, but it incurs addi-
tional storage and simulation costs. We have nevertheless demonstrated that
our framework can make substantial real reductions in computational effort when
estimating the probability of rare properties of stochastic timed automata. Com-
putational gain tends to increase with rarity, hence we observe marginal cases



where the performance of IS and SMC are similar. We hypothesise that it may be
possible to make further improvements in performance by applying cross-entropy
optimisation to the discrete transitions of the reachability graph, along the lines
of [9], making our techniques more efficient and useful for less-rare properties.

Importance splitting [11, 15] is an alternative variance reduction technique
with potential advantages for SMC [10]. We therefore intend to compare our
current framework with an implementation of importance splitting for stochastic
timed automata, applying both to substantial case studies.
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