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This paper proposes an multilinear discriminant analysis net work (M LDANet) for the recognition of multidimensional objects, knows as tensor objects. The MLDANet is a variation of linear discriminant analysis network (LDANet) and prin cipal component analysis network (PCANet), both of which are the recently proposed deep learning algorithms. The ML DANet consists of three parts: 1) The encoder learned by MLDA from tensor data. 2) Features maps obtained from de coder.

3) The use of binary hashing and histogram for feature pooling. A learning algorithm for MLDANet is described. Evaluations on UCFll database indicate that the proposed MLDANet outperforms the PCANet, LDANet, MPCA+LDA, and MLDA in terms of classification for tensor objects.

INTRODUCTION

One key ingredient for the success of deep learning in visual content classification is the utilization of convolution archi tectures [START_REF] Bengio | Learnin .,.g deep architectures for AI[END_REF][START_REF] Lecun | Gradient-based learning applied to document recogni tion[END_REF][START_REF] Krizhevsky | Image net classification with deep convolutional neural networks[END_REF], which are inspired by the structure of human visual system [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF]. A convolution neural network (CNN) [START_REF] Lecun | Gradient-based learning applied to document recogni tion[END_REF] consists of multiple trainable stages stacked on the top of each other, following a supervised classifier. Each stage of CNN is organized in two layers: convolution layer and pooling layer. the dictionary in the convolution layer and the pooling lay er is composed of the simplest binary hashing and histogram. The PCANet leads to some pleasant and thought-provoking surprises: such a basic network has achieved the state-of-the art performance in many visual content datasets. Meanwhile, Chan et al. [START_REF] Chan | P canet: A simple deep learning baseline for image classi fication?[END_REF] proposed linear discriminant analysis network (LDANet) as a variation of PCANet.

However, PCANet and LDANet are deteriorated when dealing with visual content, which is naturally represent ed as tensor objects. That is because when using PCANet or LDANet, the multidimensional patches, taken from visual content, are simply converted to vector to learn the dictionary. It is well known that vector representation of patches breaks the natural structure and correlation in the original visual content. Moreover, it may also, suffers from the so-called curse of dimensionality [START_REF] Shakhnarovich | Face recogni tion in subspaces[END_REF].

Recently, there is growing interest in the tensorial exten sion of deep learning algorithms. Yu et al. [START_REF] Yu | The deep tensor neu ral network with applications to large vocabulary speech recognition[END_REF] proposed deep tensor neural network, which can be seen as a tensorial ex tension of deep neural network (DNN), outperforms DNN in large vocabulary speech recognition. Hutchinson et al. [START_REF] Hutchinson | Tensor deep s tacking networks[END_REF] p resented the tensorial extension of deep stack neural network, which has been successfully used in MNIST handwriting im age recognition, phone classification, etc. However, the simi lar tensorial extension research has not been reported for deep learning algorithms with convolutional architecture.

In this paper, we propose a simple deep learning algorith m for tensor object classification, that is, multilinear discrim inant analysis network, which is a tensorial extension of P CANet and LDANet. The simulation on UCF 11 database [START_REF]UCF11[END_REF] demonstrates that the MLDANet outperforms PCANet and L DANet in terms of classification accuracy for tensor objects.

REVIEW OF MLDA

In this section, we briefly review MLDA [10], which is a mul tilinear extension of LDA. The MLDA obtains discriminative features through maximizing the Fisher's discrimination cri terion, which is described as follows.

An Nth tensor object is denoted as X E R / l X I 2 X ... X I N .

It is addressed by N indices i n , n = 1,2, ... ,N, and each i n addresses the n-mode of X. The n-mode tensor product of X by a matrix U E n J " xI " is defined as: ( X x."U)(i" .. ,i"_l,j,,,i,,+l, .. ,iN) = L X (i1, .. ,iN rU(j,,,i,,)• (1) The projection from tensor X E n I t xI 2 x•••xI N to a s calar Y can be described as follows:

(2)

where { u ( n ) T }t:=1 is a set of unit projection vectors. This ten sor to scalar projection is called elementary multilinear pro jection (EMP), which consists of one projection vector in each mode. An EMP of a tensor X E R /,XI 2 XI 3 is illustrated in Fig. 1.

The tensor-to-vector projection (TVP) from a tensor X E n I t xI 2 x ... xI N to a vector Y E R P is to find a vector set { u � n ) 1', n = 1, ... , N}:=l' which are able to do P times EM P. The process can be described as:

-X N { ( n ) 1' -N} P Y -X n =l u p ,n -1, ... , p=l , ) 1' { u � n ,n = 1, ... ,N } = arg max F;

(5)

THE ARCHITECTURE OF MLDANET

Fig. 3 shows the architecture of MLDANet for third-order tensor objects classification. It contains two convolutional layers and one pooling layer. The filter bank in each convolu tional layer is learned independently. We use binary hashing and histogram as pooling operation for the features extracted from the first two convolutional layers.

1. The first stage of MLDANet

For the given M third-order tensor objects {Xm}�=l E R / l X I t X I 3 , which contains C classes, we take tensor patch es around the I-mode and 2-mode by taking all 3-mode elements of mth tensor object, i.e., the tensor patch size is k1 x k2 X 1 3 , we collect all (overlapping) It x 12 ten sor patches from Xm. The tensor patches have the same class with Xm. We put these tensor patches into a set tm = { tm ,q E n k , x k 2 X I s } ��� I 2 . By repeating the above process for every tensor objects, we can get all tensor patches t = { t m}�=l for learning filter bank in the first stage. Let L1 be the number of filters in the first stage. We apply 

1 L { (I) ( 2 ) ( 3 ) } L l MLDA to t to
F ml = mat(t x3 _ { u ( n ) T }) E n J,xI2 m,q n -1 I , q = 1, ... ,h X 12, (6) 
where mat( v ) is a function that maps v E n 1 , h on a matrix FEnJ ,xI 2.

For each tensor object, we can obtain L1 feature map s of size h x 12. We denote these feature maps of mth tensor object in the first stage with {F ml E nJ ,xI 2,1 = 1, ... , L1};;; = 1. The feature maps of each tensor object cap ture the main variation of original data.

The second stage of MLDANet

Through the first stage, the tensor object is already mapped into low-dimensional tensor feature, the dimension of the 3mode is much lower than that of the I-mode and 2-mode. That is to say, the redundancy of 3-mode has been greatly reduced. Therefore, for the simplicity of computation and the conve nience of building network, we use the conventional LDA in the second stage to learn the filter bank. The number of filters in the second stage is L2.

Around each pixel, we take a k1 x k2 patch, and col lect all (overlapping) patches of all the feature maps F ml, .

{ } J,Xh nk ,x k 2 h h d t th

I .e., rml,q q =l E l'v we re eac rml,q eno es e qth vectorized patch in the lth feature map of mth tensor ob ject. We then subtract the patch mean from each patch, and construct the matrix R ml = [rml,l, rml,2,• .. , rml,I , XI 2 ] for them, where R ml belongs to the same class with the mth ten sor object. Let S e is the set of matrix R ml in class c. We then compute the class mean f e and the mean of class f as follows:

So, the within-class scatter matrix and the between-class scatter matrix are defined respectively as follows: 

C m 1 h = R ml * v h,h = 1, ... ,L 2,1 = 1, ... ,L 1, (11) 
where * denotes 2D convolution [START_REF] Lecun | Gradient-based learning applied to document recogni tion[END_REF], and the boundary of R ml is zero-padded before convolving with V h so as to make Cm 1 h have the same size as R ml. The number of output feature maps of the second stage is L1L2. One or more additional stages can be built if a deep architecture is found to be bene ficial.

The pooling layer in MLDANet

First, we binarize each feature map by using Heaviside step function H ( . ), whose value is one for positive entries and zero otherwise. The binarized feature maps are denoted by C m 1 h E { O , 1 }J, X 12. Owing to every feature map capture d ifferent variations by Vh. Cmlh should be weighted to convert into a single integer-valued feature map:

L2 W ml = L 2 h -1 cmlh . (12)
h =l note that each entry of feature map w ml are integers in the range [0,2L2 -1].

Next, we partition w ml into B blocks, and then compute the histogram (with 2L2 bins) of the decimal values in each block. All the B histograms are concatenated into one vector as the lth feature vector Bhis t (w ml ) of tensor object X m. The final feature of input tensor object Xm is then defined as the set of feature vector, i.e., fm=[Bhis t (w m1 ), Bhis t (W m2 ), ... , Bhis t (W m L, )]. (13) Note that the local block can be either overlapping or non overlapping depending on applications [START_REF] Chan | P canet: A simple deep learning baseline for image classi fication?[END_REF].

EXPERIMENTAL RESULTS

We evaluate the performance ofMLDANet on UeFll dataset for tensor object classification. UeFll is a sport action video dataset which contains 11 action categories: basketball shoot ing, biking, diving, golf swinging, horseback riding, soccer juggling, swinging, tennis swing, trampoline jumping, vol leyball spiking, and walking with a dog. All videos in UeFll are manually collected from YouTube and their sizes are all 240 x 320 pixels. For each category, the videos are grouped into 25 groups with more than 4 action clips in it. The video clips in the same group have COlmnon scenario. This video dataset is very challenging in classification due to large vari ations in camera motion, object appearance and pose, object scale, viewpoint, cluttered background, illumination, etc.

In this experiment, we only choose the first ten groups in each category. The total number of experimental videos is For each group, half videos are randomly selected for training and others for testing. Every video is resized to 48 x 64 in order to reduce the computational complexity. Almost every videos have variation in frames. For those frame larger than 20, we only choose the first twenty frames. For a few videos, whose frames are less than 20, we just copy the last frame to fill them.

We then compare the proposed MLDANet with PCANet [START_REF] Chan | P canet: A simple deep learning baseline for image classi fication?[END_REF], LDANet [START_REF] Chan | P canet: A simple deep learning baseline for image classi fication?[END_REF], MPCA+LDA [START_REF] Lu | M pca: Multilinear principal component analysis of tensor objects[END_REF], and MLDA [10]. The model parameters of MLDANet, PCANet, and LDANet all include the patch size k1 x k2, the number of filters in each stage L1, L2, the number of stages, overlapping ratio of block, and the block size. Chan et al. [START_REF] Chan | P canet: A simple deep learning baseline for image classi fication?[END_REF] have shown that the ap propriate number of filters L1, L2 in PCANet and LDANet is L1 = L2 = 8. By considering that MLDA is the ten sorial extension of conventional LDA. Thus, we always set L1 = L2 = 8 for all networks. The patch size k1 x k2 are changed from 3 x 3 to 7 x 7 and three block sizes 6 x 8, 12 x 16, 24 x 32 are considered here. The overlapping ratio is set to 50%. Unless stated otherwise, we use linear SVM classifier. The recognition rates of above networks averaged over 5 different random splits are shown in Fig. 4 (a)-(c).

For conventional tensor object classification by using MP CA+LDA, we change the dimensions of input feature of LDA from 10 to 100. The dimensions of feature vector extract- ed from MLDA vary from 10 to 100. We draw the recog nition accuracy of MPCA+LDA and MLDA in Fig. 4(d).

The best performance of MLDANet, PCANet, LDANet, MP CA+LDA, and MLDA are listed in Table 1.

We see that all one-stage networks outperform two con ventional tensor object classification algorithms, that is, M PCA+LDA and MLDA. The reason is that the convolution al architecture imitate the brain networks, which can provide more robust feature than other methods for visual content [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF]. LDANet-l achieves the best performance in the one-stage networks, but the improvement from LDANet-l to LDANet-2 is not larger as that ofMLDANet. PCANet-l performs worse than those based on LDA algorithm networks like LDANet and MLDANet. It is because that LDA type algorithm pro vides the features which have the best classification perfor mance, however, PCA maximize the directional variation in the features. MLDANet-l is not as good as LDANet-l be cause the feature extracted from MLDANet-l is not appropri ate as the direct input of linear SVM. For two-stage network s, MLDANet-2 achieves the best performance. Surprisingly, the performance of PCANet-2 increase not more than 18.24% compared to that of PCANet-l, but it is better than that of LDANet-2.

CONCLUSION

In this paper, we have proposed and implemented a novel deep learning architecture, that is, MLDANet, which takes full advantage of the structure information in tensor objects by convolutional architecture. MLDANet is composed of t wo convolutional layers, which use MLDA and LDA to learn filter banks respectively and one pooling layer. We have e valuated the performance of the MLDANet on UCFll and show that our model performs well in tensor object classifica tion. This work provides the inspiration for other convolution al deep architectures in tensor object classification. As future works, we will focus on the tensorial extension of CNN.
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Table 1 .

 1 The best performance of MLDANet, LDANet, P CANet, MPCA+LDA and MLDA.

	Methods	Accuracy
	MLDANet-l	64.55
	MLDANet-2	78.93
	LDANet-l	73.58
	LDANet-2	76.59
	PCANet-l	58.68
	PCANet-2	76.92
	MPCA+LDA	45.15
	MLDA	38.46
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