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Abstract—A methodology to solve the phase retrieval problem
arising in microwave linear array is proposed. The goal is to re-
cover the complex array excitations from phaseless measurements
of the far field. An approach combining convex optimization
(to solve the phase retrieval problem) and two measurement
runs (to mitigate the ambiguity problem) has been developed
and numerically assessed in various representative examples.
These results show that under appropriate conditions of noise
and sampling, it is possible to uniquely retrieve the complex
excitations of linear arrays from phaseless measurements.

Index Terms—phase retrieval, antenna measurements, phase-

less measurements, convex optimization.

I. INTRODUCTION

In microwaves, measuring accurately the phase may be a
costly and difficult task in particular at high frequencies. There
is therefore an important interest in developing amplitude-
only measurement methods and several ones have already been
proposed for antenna metrology [1]-[3], array diagnosis and
imaging [4]-[6]. Phaseless measurements are indeed attractive
because they require less accurate positioning systems and
receivers (such as detectors or scalar network analyzers) that
are much cheaper than those needed for amplitude and phase
measurements.

Mathematically, the phase retrieval problem is notoriously very
challenging. On the one hand, it requires the development of
efficient and reliable reconstruction algorithms. On the other
hand, the phase retrieval problem is often ill-posed since its
solution is, in general, not unique.

In this paper, we focus our investigation on the phase retrieval
for microwave 1-D (linear) arrays. Our objective is to retrieve
the complex array element excitations from its radiated far
field magnitude measurements. An efficient approach combin-
ing convex programming (to solve the phase retrieval problem)
and two measurement runs (to mitigate the non uniqueness of
the solution) is proposed. The goal is to empirically show that
under appropriate conditions (of sampling and noise level), it
is possible to uniquely recover the excitations of 1-D array
from phaseless far field data.

II. PHASE RETRIEVAL PROBLEM FORMULATION

The phase retrieval seeks to reconstruct N complex excita-
tions x given only the magnitude of M linear measurements
y. It can be formulated as follows:

find x subject to |4x| =y (D

where 4 € CM*N s the sensing matrix,x € C¥ andy € RM,
The geometry of the investigated problem, i.e. the imaging of
a linear array, is represented in Fig. 1. The problem to solve
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Fig. 1. Geometry of the linear array imaging problem with the notations.

can then be rewritten:
()

where y,, = p(0,) and () is the Hermitian trans-
pose. The steering vector a(f,,) is denoted: a,, =
[f1(Opn)ed Srisintm (g, Yed SN sinfm] where A is the
free space wavelength, r,, and f,(6,,) are the position and
the far field pattern in the direction 6, of the n-th antenna
respectively.

The radiated field is thus related to the excitations by a discrete
Fourier transform in the case of equi-spaced and isotropic
sources. The phase retrieval problem is in general ill-posed
since many different sets of excitations have the same Fourier
transform magnitude. Moreover, it is difficult to solve because
the set of real or complex numbers with a given magnitude is
non-convex.

The ways (a) to solve the non-convex phase retrieval problem
and (b) to mitigate the non-uniqueness (also called ambigui-
ties) of the solution in order to uniquely recover the underlying
excitations are addressed in Section III and IV respectively.

find x subject to |ame|2 =y2, form=1,..,M

III. RESOLUTION VIA CONVEX RELAXATION

The first convex relaxation of the phase retrieval problem
has been introduced by Candeés et al. [7]-[9]. He observed that
the non-convex measurements y on vectors x become linear



measurements on matrices X = xx. The measurements can
indeed be rewritten:

y2, = x"4,,x = Tr(4,,X)

H H

where A4,, = a,,a,,"”" are Hermitian matrices and X = xx** is
a rank-one Hermitian matrix.

The phase retrieval problem (2) becomes:

find X

subject to  Tr(4,,X) =42, m=1,...M ®
X=0
rank(X) =1

that is equivalent to:

minimize  rank(X)

subject to  Tr(4,,X) =2, m=1,... M 4)
X=0

since there exists by definition a rank-one solution.

The problem (4) is a combinatorially hard problem. However,
for positive semidefinite matrices, i.e. in this case since X > 0,
the rank functional can be approximated by a convex surrogate,
the trace norm as proposed in [10]. The problem (4) becomes:

mini}nize Tr(X)
subject to  Tr(4,,X) =2, m=1,...M (5)
X=0

which is a semidefinite program that is convex and therefore
efficiently solvable. The original vectorial phase retrieval prob-
lem is thus convexified by lifting” it up to a matrix recovery
problem hence the name PhaseLift given in [7], [8].

In practice, the measurements are contaminated by noise:

Ym = lamT x + 0|, form=1,--- M

where n,, is a noise term. The equalities in (5) no longer hold
in presence of noise. The following formulation has then been
proposed in [9]:
M
minimize Z_l ‘ T ( ) — s, ’

subject to X >~ 0.

(6)

In words, solving (6) amounts to find the positive semidefinite
matrix X that beAst fits the observed data in an ¢; sense.

If the solution X of (6) happens to have rank one (this is
not the case in general), then X = x+" and x is the optimal
solution of the original phase retrieval problem (2). Otherwise,
one extracts the best rank one approximation of X by taking its
top eigen-pair (A1, u1), where A is the largest eigenvalue of
X and u; is the associated eigenvector. The vector X = v/ A1 u;
is then an approximate solution of (2).

The convex relaxation problem (6) can be optimally and
efficiently solved by freely available software such as CVX
[11]. Of course, there is a price to pay in turning a problem that
is originally hard to solve into an efficiently solvable one. The

lifting procedure transforms a vector into a matrix problem
which implies a much larger representation of the state space
and consequently a higher computational cost.

IV. APPLICATION TO ARRAY IMAGING PROBLEMS

A. Non-uniqueness of the Solution

The solution to the phase retrieval problem (1) is, in general,
not unique and many approaches have already been proposed
in the literature to mitigate the potential ambiguities. In order
to be easily applicable to microwave measurements, we use a
procedure that is similar to what is done in holography [12].
Let us assume that we have a reference antenna whose com-
plex radiation pattern 3"/ () (the vector y"¢/ of dimension
M after discretization) is known. We measure the magnitude
of the far field radiated by:

- the array under test yAUT = |44UTx| and

- the interference between the array under test and the refer-
ence antenna yAUTHrel — |44V x 4 qyrel|

where « is the excitation (not necessarily known) of the
reference antenna.

This simple procedure allows to mitigate the ambiguities and
the excitations are then determined up a global phase. If
in addition the phase of the excitation « is known (after a
calibration for instance), then the solution x is unique.

B. Recovery Performances

1) Recovery Error: The phase retrieval algorithm (6) com-
putes an approximate solution X from y = |4x|. Its per-
formance is assessed by calculating the relative “distance”
between the exact solution x and the recovered one x. Special
care must be taken since a solution may be unique up to a
global phase. Thus, the error in excitation denoted €(x, Xx) can
be computed as:

H

S H
[l —xx7 ||

(7

x|
where ||.||p stands for the Frobenius norm. The error over the
measured field amplitudes is:

oy L lAx] — Ax] |2

e(|Ax], |4x|) = : (®)
[ Al

In order to appreciate the results with more physical insights,

we can also compute the mean values of the excitation

amplitude ratio and phase difference (denoted i, (x,X) and

1p(x, X) respectively):

|

N
. 1 )
o, (X, X) = i E O With 0, = 9

i=1 il
1 N
pp(X,%) = > [8pi] with 8 = (L& — Ag) — Lx;
=1

where A¢ the global phase shift between x and X is equal to
Ao = 5 30 (L& — Lxi).



We derive from (9) the standard deviation in amplitude and
phase (o, (x,X) and o, (x,X) respectively):

LN 1/2
Um(xvfc) = lﬁ Z (5mi - Mm(xv'%))2‘| (10)

i=1

L X 1/2
Up(xv';c) = [N Z (5101' - pp(x,&))2]
i=1
in order to measure the degree of confidence in the retrieved
excitation magnitudes and phases.

2) Noise: The reconstruction of the excitations in pres-
ence of noise is crucial for practical applications. In our
experiments, the magnitude measurement y,,, is polluted by a
Gaussian white noise n,,, as follows: ¥, = |@,,, ! x+n,,|. The
level of this noise is quantified by the Signal-to-Noise Ratio
(SNR) SNRyg = 10 loglo(Psignal/Pnoise) where Psignal =
max,,—1,... a(|@m®? x|2) is the maximum measured power.
In order to estimate the SNR of a far field measurement in
an anechoic chamber, both the full equipment system (noise
floor of the receiver, transmitted power and losses due to the
cables and rotary joints) and the reflectivity of the chamber
itself must be taken into account. A SNR value of 60 dB, that
corresponds to a reasonably good anechoic chamber, will be
considered for the numerical applications of Section V.

V. NUMERICAL RESULTS

The goal of this Section is to numerically assess the

recovery performances of the phase retrieval algorithm (6).
In the retrieval procedure, the element positions and radiation
patterns of the array under test, i.e. of the sensing matrix A,
and the reference antenna y"¢/ are assumed known.
For each configuration, the simulation is repeated 100 times
with different random excitations (whose magnitude and phase
are chosen uniformly between [0, 1] and [0, 2] respectively),
different random measurement vectors (whose angle are cho-
sen uniformly such that —1 < sin # < 1) and a Gaussian white
noise in order to get meaningful results. All presented results
are average values over these 100 simulations.

A. Linear Array of Isotropic Sources

1) Settings: We consider a linear array composed of N
isotropic half wavelength spaced elements that are excited
by a random amplitude and phase z,. A reference antenna
(also isotropic) with an arbitrary excitation (fixed but chosen
randomly in the simulations) is placed at an arbitrary distance
(2 A in the simulations) from the extremity of the array under
test. It has been checked numerically that both the position
and excitation value of this source with respect to the array
under test do not impact the recovery performances.

2) Influence of the Sampling: The influence of the ratio
M/N (number of measurement points over number of excita-
tions to retrieve) on the recovery performances is investigated.
The error in excitations €(x,X) is plotted as a function of the
sampling for linear arrays of various elements N in Fig. 2.

In absence of noise, there is a clear transition between ‘bad’
and ‘good’ recovery at M = 2N. In presence of a realistic
noise (SNR=60dB), a less sharp transition also exists around
M = 2N. Generally speaking, for a given sampling M/N,
the recovery performances are better for a small number of
array elements V.
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Fig. 2. Error in the retrieved excitation amplitudes as a function of the

sampling for linear array of various elements (IN=5, 10, 20, 30, 40).

To evaluate the reconstruction quality as a function of the
sampling, let us plot in Fig. 3 the reconstruction errors in
amplitude and phase for a linear array of N=10 elements in
presence of noise (SNR=60dB). We retrieve, as seen above,
the significant improvement in recovery performances when
M = 2N. Then, the oversampling helps to further improve
up to a certain extent the recovery performances as shown in
Fig. 3 for M > 2N.
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Fig. 3. Recovery performances for a linear array of N=10 isotropic sources:

influence of the sampling (M /N) for measurements with a SNR of 60 dB.

3) Robustness to Noise: Let us choose a sampling M = 2N
in order to see the influence of the noise on the excitation
recovery.

The influence of the SNR on the retrieved excitations and field
amplitudes (e(x, X) and €(|Ax]|, |Ax|) respectively) is plotted in
Fig. 4. There is clearly a linear behavior between these errors
and the SNR with a log-log scale. This graceful degradation
shows that the convex approach provides a stable recovery in
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Fig. 5. Recovery performances for a linear array of N=10 isotropic sources
with a sampling M = 2N: influence of the SNR.

VI. CONCLUSION

A procedure has been proposed to efficiently retrieve
the complex excitations of microwave linear arrays from
amplitude-only measurements. Promising results stable with
respect to noise have been obtained. They must be confirmed
by experimental validations. More details and numerical ap-
plication examples about the proposed approach will be given
at the conference and can be found in [13].
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