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This paper addresses the estimation of accurate long-term dense motion fields from videos of complex scenes. With computer vision applications such as video editing in mind, we exploit optical flows estimated with various inter-frame distances and combine them through multi-step integration and statistical selection (MISS). In this context, managing numerous combinations of multi-step optical flows requires a complexity reduction scheme to overcome computational and memory issues. Our contribution are twofold. First, we provide an exhaustive analysis of available single-reference complexity reduction strategies. Second, we propose a simple and efficient alternative related to multi-reference frames multi-step integration and statistical selection (MR-MISS). Our method automatically inserts intermediate reference frames once matching failures are detected to re-generate the motion estimation process and re-correlates the resulting dense trajectories. By this way, it reaches longer accurate displacement fields while efficiently reducing the complexity. Experiments on challenging sequences reveal improved results compared to state-of-the-art methods including existing MISS schemes both in terms of complexity reduction and accuracy improvement.

Introduction

Estimating accurate long-term dense correspondence fields is a fundamental task for many computer vision applications.

A key tool in this context is optical flow whose early formulations come from the early 80s [START_REF] Lucas | An iterative image registration technique with an 974 application to stereo vision[END_REF][START_REF] Horn | Determining optical flow[END_REF]. Significant progress has been made to improve both robustness and spatial consistency of the flow by introducing respectively more sophisticated data models than the classical brightness constancy assumption and robust discontinuity-preserving smoothness constraints.

However, most of state-of-the-art optical flow estimators focus on estimating dense motion between two consecutive frames only. They seldom consider that sequences comprise series of images that are inter-related. When tackling motion estimation over a video sequence, object-based [START_REF] Pérez | Color-based probabilistic 979 tracking[END_REF] or sparse [START_REF] Shi | Good features to track[END_REF] motion estimation is usually sufficient (visual servoing, surveillance, gestural human-machine interface, video indexing...).

However, other applications explicitly require a dense and longterm description of how the video content evolves in time. Such applications include scene segmentation [START_REF] Brox | Object segmentation by long term analysis of point tra-984 jectories[END_REF][START_REF] Lezama | Track to the future: Spatio-987 temporal video segmentation with long-range motion cues[END_REF], trajectory analysis [START_REF] Wang | Action recognition by dense 991 trajectories[END_REF] or video editing tasks like 2D-to-3D video conversion [START_REF] Cao | Semi-automatic 2D-to-3D conversion using dispar-994 ity propagation[END_REF] or graphic elements insertion where each pixel of a given area needs to be tracked over many frames to be properly replaced by the corresponding pixel of the inserted element. Thus, we focus on this challenging issue: how to construct dense fields of point correspondences over extended time periods? Establishing dense long-term correspondences requires to compute dense motion fields between distant frames and therefore to simultaneously handle small and large displacements.

Optical flow is the appropriate tool for this task but classical optical flow assumptions which may fail between consecutive 30 frames are even less valid between non-consecutive frames.
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When dealing with multiple frames and their associated point [START_REF] Brox | Object segmentation by long term analysis of point tra-984 jectories[END_REF][START_REF] Sundaram | Dense point trajectories by GPU-997 accelerated large displacement optical flow[END_REF][START_REF] Wang | Dense trajectories and mo-1000 tion boundary descriptors for action recognition[END_REF], trajectorial regulariza-38 tion [START_REF] Werlberger | Anisotropic Huber-L1 optical flow[END_REF][START_REF] Salgado | Temporal constraints in large optical flow estima-1005 tion[END_REF], particle representation [START_REF] Sand | Particle video: Long-range motion estimation using 1007 point trajectories[END_REF], subspace constraints 39 [START_REF] Irani | Multi-frame correspondence estimation using subspace con-1010 straints[END_REF][START_REF] Garg | A variational approach to video registra-1012 tion with subspace constraints[END_REF] as well as multi-step strategies [START_REF] Crivelli | From optical flow to dense 1015 long term correspondences[END_REF][START_REF] Crivelli | Multi-step flow 1018 fusion: Towards accurate and dense correspondences in long video shots[END_REF][START_REF] Conze | Dense motion estimation 1021 between distant frames: Combinatorial multi-step integration and statis-1022 tical selection[END_REF][START_REF] Conze | Dense long-term motion 1025 estimation via statistical multi-step flow[END_REF]. poral integration [START_REF] Butcher | Numerical methods for ordinary differential equations[END_REF]. This strategy has been exploited in many 44 works [START_REF] Brox | Object segmentation by long term analysis of point tra-984 jectories[END_REF][START_REF] Sundaram | Dense point trajectories by GPU-997 accelerated large displacement optical flow[END_REF][START_REF] Wang | Dense trajectories and mo-1000 tion boundary descriptors for action recognition[END_REF] but may lead to large error accumulation result-45 ing in a substantial drift over extended periods of time. Results

A C C E P T E D M

A N U S C R I P T sumptions and motion model considerations which may fail in complex situations but does not achieve full density.

Since trajectories of points belonging to an object are correlated even with strong deformations, subspace constraintsbased methods assume that the set of all flow fields reside in a low-dimensional subspace [START_REF] Irani | Multi-frame correspondence estimation using subspace con-1010 straints[END_REF]. Therefore, a low-rank space is built to constrain optical flow estimation which provides additional information to solve the ambiguity in regions that suffer from the aperture problem. In [START_REF] Garg | A variational approach to video registra-1012 tion with subspace constraints[END_REF], Garg et al. perform dense multi-frame optical flow estimation in a variational framework using 2D trajectory subspace constraints [START_REF] Garg | A variational approach to video registra-1012 tion with subspace constraints[END_REF]. This approach generates dense trajectories starting from a reference frame in a non-rigid context. Trajectories are estimated close to a lowdimensional trajectory subspace built through Principal Component Analysis (PCA) or Discrete Cosine Transforms (DCT).

Nevertheless, this method requires strong a priori assumptions on the scene content. Moreover, only trajectories starting from a fixed reference frame are considered. The computation of motion fields starting from subsequent frames and going back to the reference frame is not under consideration.

The alternative concept of multi-step flow (MSF) [START_REF] Crivelli | From optical flow to dense 1015 long term correspondences[END_REF][START_REF] Crivelli | Multi-step flow 1018 fusion: Towards accurate and dense correspondences in long video shots[END_REF] focuses on how to construct long-term dense fields of correspondences using multi-step optical flows, i.e. optical flows computed between consecutive frames or with larger inter-frame distances. MSF sequentially merges a set of displacement fields at each intermediate frame, up to the target frame. This set is obtained via concatenation of multi-step optical flows with displacement vectors already computed for neighbouring frames.

Multi-step estimations can handle temporary occlusions since they can jump occluding objects. Contrary to [START_REF] Garg | A variational approach to video registra-1012 tion with subspace constraints[END_REF], MSF considers both trajectory estimation between a reference frame and all the images of the sequence (from-the-reference) and motion estimation to match each image to the reference frame (to-thereference). Two set-ups can be then considered: information pushing from the reference frame or information propagation over each frame by pulling it from the reference frame.

Despite its ability to handle both scenarios, MSF has two main drawbacks. First, it performs the selection of displacement fields by relying only on classical optical flow assumptions such as the brightness constancy constraint that may fail between distant frames. Second, the candidate displacement fields are based on previous estimations. It ensures a certain temporal consistency but can also propagate estimation errors along the subsequent frames of the sequence, until a new available step gives a chance to match with a correct location again.

These limitations can be solved by considering the multistep integration and statistical selection (MISS) introduced in [START_REF] Conze | Dense motion estimation 1021 between distant frames: Combinatorial multi-step integration and statis-1022 tical selection[END_REF][START_REF] Conze | Dense long-term motion 1025 estimation via statistical multi-step flow[END_REF] for the estimation of from-the-reference and to-thereference long-term dense motion correspondences between a reference frame I re f and all the other frames I n of a video sequence. Based on pre-computed multi-step optical flows, similarly to MSF [START_REF] Crivelli | Multi-step flow 1018 fusion: Towards accurate and dense correspondences in long video shots[END_REF], MISS algorithm processes each pair of frames {I re f , I n } via both multi-step integration and statistical selection. Multi-step integration builds a large set of candidate displacement fields via the generation of multiple motion paths made of concatenated multi-step optical flows. Then, the statistical selection consists in selecting among the resulting set of candidate displacement fields the optimal one based on statis-116 tics and spatial regularization. 

T 0,3 (x 0 ) = {x 3 0 , x 3 1 , x 3 2 ,x 3 3 }.
These optical flows are computed between consecutive frames or with larger steps [START_REF] Crivelli | From optical flow to dense 1015 long term correspondences[END_REF], i.e. larger inter-frame distances. Let The starting point of multi-step integration consists in initially generating all the possible step sequences, i.e. combinations of steps, in order to join I n from I re f . Each generated step sequence defines a motion path which links each grid point x re f of I re f to a non-necessary grid position in I n through multiple concatenations of un-occluded multi-step optical flow fields.

S n = {s 1 , s 2 , . . . , s Q n } ⊂ {1, . .
Let Γ re f,n = {γ 0 , γ 1 , . . . , γ K-1 } be the set of K possible step sequences γ i between I re f and I n . A step sequence γ i =

{s i 1 , s i 2 , . . . , s i K γ i
} is defined by a set of K γ i steps s i k which once cascaded join I n from I re f . The set of K possible step sequences Γ re f,n is computed by building a tree structure (Fig. 1a) where each node corresponds to an optical flow field assigned to a given frame for a given step value, the node value. Going from the root node to leaf nodes of this tree structure gives Γ re f,n , the set of K possible step sequences from I re f to I n .

Once all the possible step sequences

γ i ∀i ∈ [[0, . . . , K -1]]
between I re f and I n are generated, the corresponding motion paths are constructed through motion vector concatenation.

Starting from each pixel x re f ∈ I re f and for each step sequence γ i , this integration performs the accumulation of optical flow fields following the steps which form the current step sequence, i.e. s i 1 , s i 2 , . . . , s i K γ i (Fig. 1b). Let f i j = re f + j k=1 s i k be the current frame number during the construction of motion path i from I re f where j is the step index within the step sequence γ i .

For each γ i ∈ Γ re f,n and for each step s i j ∈ γ i , the integration starts from x re f to iteratively compute the successive positions of motion path i along the sequence:

x i f i j = x i f i j-1 + v f i j-1 , f i j (x i f i j-1 ) (1) 
Once all the steps s i j ∈ γ i have been run through, one gets x i n , the corresponding position in I n of x re f ∈ I re f obtained with step sequence γ i . A large set of candidate positions in I n is finally reached by considering all the step sequences of Γ re f,n (Fig. 1b) and this for each pixel x re f ∈ I re f . Thus, to each pixel x re f of

I re f is associated a large set of candidate positions in I n defined as T re f,n (x re f ) = {x i n } ∀i ∈ [[0, . . . , K x re f -1]] where K x re f is the cardinal of T re f,n (x re f ).

Statistical selection 209

The statistical selection aims at selecting the optimal candi- possible between all the steps arising from a given frame. until N max step sequences are chosen.

210 date position x * n in T re f,n (x re f ) = {x i n } i∈[[0,...,K x re f -1]] ,
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The limitation wich such guided random selection is that it is 

is γ i ∈ Γ * re f,n . d re f,n will contribute to establish T re f,n (x re f ) = 342 {x i n } i∈[[0,...,K x re f -1]]
, the set of candidate positions in I n obtained 343 for each x re f of I re f . By browsing the tree as described above, Our approach follows the same spirit of [START_REF] Rubinstein | Towards longer long-range motion 1033 trajectories[END_REF] whose aim is to re-correlate short-range sparse pieces of trajectories, called tracklets, estimated with respect to different starting frames in order to go towards longer long-range trajectories. We propose to exploit this concept of tracklets combinations in the context of dense motion estimation.

MR-MISS overview

We consider a long video shot

{I n } n∈[[0,...,N]] of N + 1 RGB
images including the first frame I 0 considered as the main reference frame and denoted as I re f 0 . Our goal is to perform longterm dense motion estimation both starting from and with respect to a free-form ROI Ω re f 0 ∈ Z 2 provided by the user in I re f 0 .

In this context, we aim at determining with high accuracy and for each pair of frames

{I re f 0 , I n } with n ∈ [[0, . . . , N]] re f 0 :
-from-the-reference displacement vectors d re f 0 ,n between pixels x re f 0 ∈ Ω re f 0 in I re f 0 and non-necessary grid posi- 455

tions
d re f 0 ,n (x re f 0 ) = d re f 0 ,re f 1 (x re f 0 )+ dre f 1 ,n (x re f 0 +d re f 0 ,re f 1 (x re f 0 )) (3)
If this resulting new version of T(x re f 0 ) fails again, at I f ail 1 for 456 instance, we insert a new reference frame referred to I re f 2 at 457 I f ail 1 -1 and we perform SR-MISS with respect to I re f 2 (Fig. 2). We finally obtain new estimates of the displacement vectors

{d re f 0 ,n (x re f 0 )} for n ∈ [[re f 2 + 1, . . . , N]]:
d re f 0 ,n (x re f 0 ) = d re f 0 ,re f 1 (x re f 0 ) + dre f 1 ,re f 2 (x re f 0 + d re f 0 ,re f 1 ) + dre f 2 ,n (x re f 0 + d re f 0 ,re f 1 + dre f 1 ,re f 2 ) (4) 
We apply an exactly similar processing each time T(x re f 0 ) fails again, up to the end of the sequence. More generally, by defining I re f q as the last intermediate reference frame inserted before a given frame I n , the refined from-the-reference displacement vector between x re f 0 of I re f 0 and I n becomes:

d re f 0 ,n (x re f 0 ) = d re f 0 ,re f 1 (x re f 0 ) + q-1 l=1 dre f l ,re f l+1 (x re f l ) + dre f q ,n (x re f q ) (5) 
where x re f k defines the successive positions of T(x re f 0 ) in the intermediate reference frames {I re f k } k∈[[1,2,...,q]] :

x re f k = x re f 0 + k-1 l=0 dre f l ,re f l+1 (x re f l ) (6)

Selection of intermediate reference frames

We suggest to insert new reference frames based on the detection of tracking failures during the computation of T(x re f 0 ).

It can be performed either automatically or interactively through the study of the temporal evolution of matching cost

C(x re f 0 , d re f 0 ,n (x re f 0 )) and inconsistency Inc(x re f 0 , d re f 0 ,n (x re f 0 )) quality features (Appendix B) associated to displacement vec- tors {d re f 0 ,n (x re f 0 )} with n ∈ [[1, . . . , N]].
In practice, binary matching costs and inconsistency values obtained by thresholding C(x re f 0 , d re f 0 ,n (x re f 0 )) and Inc(x re f 0 , d re f 0 ,n (x re f 0 )) respectively by C and Inc can inform about the quality of T(x re f 0 ). Once at least one of these thresholds is reached, the current from-the-reference displacement vector is considered as erroneous and the process automatically adds a new reference frame at the previous frame.

To extend the tracking failure detection to the whole set of trajectories starting from pixels x re f 0 ∈ Ω re f 0 in I re f 0 , we can focus on the percentage of pixels x re f 0 whose corresponding displacement vector is either inaccurate according to binary matching cost or inconsistent according to binary inconsistency value (or both). Thus, we define a threshold % on this percent- 

516 d n,re f 0 (x n ) = d n,re f q (x n ) + q l=1 dre f q-l+1 ,re f q-l (x re f l ) (7) 
where x re f k defines the successive positions in the intermediate

517 reference frames {I re f k } k∈[[q,q-1,...,1]] : 518 x re f k = x n + d n,re f q (x n ) + q l=k+1
dre f q-l+1 ,re f q-l (x re f l ) (8) tween I 0 and I 60 (Fig. 5), MPI-S1 between I 115 and I 165 (Fig. 6)

Comparison of MR-MISS with SR-MISS
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and Hope between I 5036 and I 5111 (Fig. 7).
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The thresholds related to tracking failure detection are set to In Tab. 

  32 correspondences, another key aspect is the temporal consis-33 tency of the flow vectors which must depict temporal smooth-34 ness along trajectories. In this context, several recent studies 35 have extended optical flow to the purpose of (semi-)dense long-36 term motion estimation. State-of-the-art deals with consecu-37 tive optical flow concatenation

40

  Optical flows estimated between consecutive frames can41 straightforwardly be concatenated to construct motion trajecto-42 ries along a video sequence through Euler or Runge-Kutta tem-43

117

  The statistical selection performs the displacement field se-118 lection by studying the redundancy on the large candidate set 119 resulting from multi-step integration. For distant frames, it 120 provides a more robust indication than classical optical flows 121 assumptions involved in MSF[START_REF] Crivelli | Multi-step flow 1018 fusion: Towards accurate and dense correspondences in long video shots[END_REF]. Moreover, contrary to 122 MSF[START_REF] Crivelli | Multi-step flow 1018 fusion: Towards accurate and dense correspondences in long video shots[END_REF] which sequentially relies on previously established 123 correspondences, MISS algorithms independently process each 124 pair of frames {I re f , I n } to prevent error propagation. Tempo-125 ral consistency is handled a-posteriori through robust temporal 126 smoothness constraints [19]. 127 Each time the multi-step integration stage processes a given 128 pair {I re f , I n }, only a subset of all the possible motion paths be-129 tween I re f and I n can be generated and kept in memory due to 130 computational and memory issues. For instance, the number 131 of possible motion paths for a distance of 30 frames and with 132 steps 1, 2, 5 and 10 is... 5877241! Up to a few hundreds can be 133 actually built and kept in memory with current computer capa-134 bilities. To avoid these issues, the multi-step integration stage 135 must include a computational complexity reduction strategy to 136 prevent a cumbersome exhaustive motion paths generation pro-137 cess. This complexity reduction scheme must cleverly select 138 a subset of all possible motion paths to minimize the tracking 139 failure probability while increasing the trajectory lifetime. 140 In this direction, we aim at covering and extending the spec-141 trum of MISS introduced in [18, 19] in the context of long-term 142 dense motion estimation. After a brief overview of the baseline 143 method (Sect.2), two main contributions are addressed. First, 144 given the computational and memory issues mentioned above, 145 we identify and study the available single-reference complexity 146 reduction schemes adapted to the multi-step integration stage 147 of MISS (Sect.3). Second, we propose a new, simple and ef-148 ficient complexity reduction strategy based on an automatic 149 multi-reference frames processing (Sect.4). It reaches longer 150 accurate displacement fields while efficiently reducing the com-151 plexity. Its ability to go towards longer long-term dense motion 152 estimation is assessed through comparisons with state-of-the-153 art methods on challenging sequences (Sect.5).

154 2 .

 2 Multi-step integration and statistical selection (MISS) 155The baseline multi-step integration and statistical selection 156 (MISS) method[START_REF] Conze | Dense motion estimation 1021 between distant frames: Combinatorial multi-step integration and statis-1022 tical selection[END_REF][START_REF] Conze | Dense long-term motion 1025 estimation via statistical multi-step flow[END_REF] can be, at first glance, studied without 157 any complexity reduction considerations. Let us overview both 158 multi-step integration and statistical selection steps in the con-159 text of exhaustive motion path generation. For the sake of clar-160 ity, complexity reduction is addressed only starting from Sect.3.

161 2 . 1 .Figure 1 :

 211 Figure1: Multi-step integration: (a) Generation of step sequences from I 0 to I 3 with steps 1, 2, and 3 by creating a tree structure: Γ 0,3 = {{1, 1, 1}, {1, 2}, {2, 1}, {3}}; (b) Generation of motion paths following all the step sequences of Γ 0,3 which gives for each pixel x 0 of I 0 a set of candidate positions in I 3 : T 0,3 (x 0 ) = {x 3 0 , x 3 1 , x 3 2 ,x 3 3 }.

3 . 3 .

 33 277 multi-step optical flow concatenations which may lead to an 278 important motion drift. The goal of removing largest step se-279 quences is more precisely to reduce the effects of the three dif-280 ferent error types [21]. First, intrinsic error propagation which 281 deals with accumulation of displacement error along the video 282 sequence. Second, interpolation error which is inherent to the 283 interpolation process since successive motion path positions are 284 non-necessary grid points. Third, motion bias which is bias in 285 motion computation since successive estimated motion path po-286 sitions are different from the true ones. However, it does not 287 solve the imbalance tree issue due to random selection. 288 Step occurrence-based guided random selection 289 To avoid this issue, uniformizing for all intermediate frames 290 I c with re f ≤ c ≤ n the contributions of all steps assigned to I c 291 is required. In this context, one can constrain the selection using 292 a step occurrence criterion. The idea is to assign a occurrence 293 number to each step of the tree and to update it each time the 294 current step is used in a selected step sequence. The constraint 295 is to tend to make this occurrence of appearance as uniform as 296

316

  too computationally complex to select a different subset of step 317 sequences for each grid point x re f of I re f (i.e. one step sequence 318 tree per pixel x re f ). Indeed, during motion path construction, it 319 would require to successively load in memory a different set 320 of multi-step optical flow fields once a long-term displacement 321 vector starting from a new x re f is under computation. Thus, the 322 N max selected step sequences of Γ * re f,n are the same for all grid 323 points x re f to allow to build densely and in only one pass all the 324 motion paths starting from all grid points x re f . 325 In practice, each node of the tree obtained through the 326 occurrence-based guided random selection stores an associ-327 ated dense multi-step optical flow field. Thus, a given node 328 of node value s i defined from frame I c stores the field v c,c+s i . 329 Motion paths are built densely by concatenating for each se-330 lected step sequences the corresponding multi-step optical flow 331 fields along the tree. For step sequence γ i ∈ Γ *

344

  an optical flow field assigned to a given step used in more than 345 one step sequence of Γ * re f,n is stored and read only one time.346Another limitation is that the intrinsic quality of either optical 347 flows or combinations of optical flows is not taken into account 348 to guide random step sequence selection. A given subset of step 349 sequence may better suit to a given grid point than its neighbor. 350 To overcome both limitations, we propose to explore an al-351 ternative to the step occurrence-based guided random selection 352 which relies on a multi-reference frames processing.

  353A C C E P T E D M A N U S C R I P T4. MR-MISS: multi-reference frames MISSWe propose a new complexity reduction scheme based on multi-reference frames processing which is relevant for two main reasons. First, it efficiently reduces the complexity during multi-step integration by guiding the step sequence selection using quality criteria which are used to introduce mandatory passage points within the tree of step sequences. Second, it allows to update the appearance of the points under tracking and therefore to make quality criteria more robust to assess the quality of displacement vectors during statistical selection.As the quality of motion/trajectory fields starting from two given separate areas of I re f temporally decreases differently along the sequence, we cannot anymore compute the same subset of step sequences Γ * re f,n for all grid points of I re f . For this reason, we target the issue of performing a long-term dense motion estimation with respect to a free-form region of interest (ROI) defined in the reference frame I re f and belonging to the same object. Tackling this context is relevant since applications such as video editing tasks often focus on distinct spatial areas.Logo insertion and propagation is a characteristic example. The proposed algorithm is called multi-reference frames multi-step integration and statistical selection (MR-MISS). It mainly relies on the insertion of new reference frames each time the set of trajectory/motion vectors to be computed start to fail. To reach long-term motion estimation requirements, a MISS strategy (referred to single-reference MISS or SR-MISS in what follows in opposition to MR-MISS) is performed from each inserted reference frames and the resulting multi-reference frames displacement vectors are finally concatenated.

420

  estimation process with respect to I re f 0 as far as possible. Ob-421 viously, the intermediate reference frame insertion task can be 422 also performed manually under the operator control, as for spe-423 cific post-production applications requiring the most realistic 424 viewing experience. 425 In the following, we describe the MR-MISS strategy by fo-426 cusing on three aspects: the concatenation of multi-reference 427 frames displacement vectors (Sect.4.2), the reference frames 428 insertion task (Sect.4.3) and the processing of to-the-reference 429 displacement vectors (Sect.4.4). Then, we explain in Sect.4.5 430 how MR-MISS can be also seen as a robust complexity reduc-431 tion method in the context of MISS and how it improves long-432 term dense motion estimation compared to SR-MISS.

433 4 . 2 .

 42 Combination of multi-reference frames vectors 434 Let us focus on the estimation of the trajectory T(x re f 0 ) 435 starting from the grid point x re f 0 ∈ Ω re f 0 of I re f 0 . T(x re f 0 ) is 436 defined by a set of from-the-reference displacement vectors 437 {d re f 0 ,n (x re f 0 )} n∈[[1,...,N]] which must be accurately estimated for 438 the whole long video shot. Toward this task, we start by apply-439 ing the SR-MISS algorithm with respect to I re f 0 . Let us assume 440 that it fails at I f ail 0 with f ail 0 < N (Fig.2). We propose to intro-441 duce a new reference frame at I f ail 0 -1 , i.e. at the instant which 442 precedes the tracking failure and for which d re f 0 , f ail 0 -1 (x re f 0 ) has 443 been well estimated. 444 Once this new reference frame, referred to I re f 1 , has been in-445 serted, we run again the SR-MISS algorithm starting from the 446 position x re f 0 + d re f 0 ,re f 1 (x re f 0 ) of I re f 1 between I re f 1 and each 447 subsequent frames I n with n ∈ [[re f 1 + 1, . . . , N]] (Fig.2). Thus, 448 we obtain the set of displacement vectors { dre f 1 ,n } n∈[[re f 1 +1,...,N]] 449 defined with respect to x re f 0 + d re f 0 ,re f 1 (x re f 0 ) in I re f 1 where . 450 denotes a displacement interpolated at a non-necessary grid po-451 sition. We can now obtain a new version of the displacement 452 vectors {d re f 0 ,n (x re f 0 )} with n ∈ [[re f 1 + 1, . . . , N]] by concate-453 nating d re f 0 ,re f 1 estimated with respect to I re f 0 and dre f 1 ,n we just 454 computed with respect to I re f 1 :

Figure 2 :

 2 Figure 2: The proposed multi-reference frames MISS strategy (MR-MISS) through insertion of reference frames once trajectories diverge. A robust long-term dense motion estimation is reached by concatenating accurate multi-reference frames displacement vectors (solid vectors) while rejecting motion outliers (dashed vectors).

488

  age to determine from which instants new intermediate refer-489 ence frames are needed. 490 Note that with MR-MISS, the ROI must be un-occluded in 491 each intermediate reference frames. Nevertheless, handling 492 temporally occlusions within any temporal section [I re f k , I re f k+1 ] 493 is still possible since multi-step optical flows are able to jump 494 between distant frames and therefore to continue the matching 495 process when the entity to be tracked re-appears.

496 4 . 4 .

 44 To-the-reference estimation 497 If the application under consideration requires the estima-498 tion of to-the-reference displacement vectors d n,re f 0 (x n ) ∀n ∈ 499 [[1, ..., N]] and with x n + d n,re f 0 (x n ) ∈ Ω re f 0 , as for texture in-500 sertion and propagation for instance, we cannot apply the MR-501 MISS strategy starting from each frame I n and running back 502 to I re f 0 for computational issues. We propose to keep the pro-503 cessing in the from-the-reference direction from I re f 0 and there-504 fore to decide the introduction of intermdiate reference frames 505 with respect to the quality of from-the-reference displacement 506 vectors only. A certain correlation between the quality assess-507 ment of from-the-reference displacement vectors and the effec-508 tive quality of to-the-reference displacement vectors is ensured 509 by using inconsistency quality features (Sect.4.3). Inconsis-510 tency deals with from/to-the-reference consistency and simul-511 taneously addresses the quality of both vector types. Thus, 512 to-the-reference displacement vectors can benefit from the in-513 troduction of these intermediate reference frames anyway. In-514 deed, unaccurate displacement vectors d n,re f 0 (x n ) starting from 515 the grid point x n of I n can be refined as follows:

519A

  We aim at comparing SR-MISS and MR-MISS strategies by520 showing both how MR-MISS belongs to the MISS framework 521

Figure 3 :5. Experimental results 606 5 . 1 .

 351 Figure3: Comparison between SR-MISS and MR-MISS through long-term motion estimation with respect to x 0 ∈ I re f 0 = I re f for the pairs of frames {I re f , I n } with n = {3, 4, 5}. We assume that only steps 1, 2 and 3 are available from each frame. Moreover, due to computational and memory issues, the maximum number of step sequences to be selected is set to N max = 3 and the maximum number of steps within each step sequence is K max = 3. Both trees of step sequences and motion paths are presented. Black and grey colors correspond respectively to SR-MISS and MR-MISS. Bold step sequences deal with the N max = 3 selected ones. Stars (*) and exclamation marks (!) respectively indicate accurate and unaccurate selected match with respect to ground-truth. Double lines (//) highlight the step sequences which cannot be considered by SR-MISS due to the the maximum concatenation number constraint (K max = 3).

Figure 4 : 5 . 2 .Sect. 5 . 1 .

 45251 Figure 4: Assessment of the warping quality induces by from-the-reference displacement vectors estimated either via SR-MISS or MR-MISS for a free-form ROI (yellow shape inserted in Fig.5) between I 0 and I 25 of the Walking Couple sequence. The warping quality is studied via PSNR for a varying number of motion paths simulating limited computational and storage capacity. Black and grey colors correspond to SR-MISS and MR-MISS respectively. Crosses indicate PSNR for each realization whereas curves focus on mean PSNR over the 7 realizations performed for each motion paths number. Bars are drawn from worse to best PSNR values in order to highlight the warping quality variability.

693

  MISS aspect tends to achieve long-term requirements even with 694 smooth color or illumination variations along the sequence. 695 5.3. Video editing 696 Three video editing examples are provided to qualitatively 697 assess the good performance of MR-MISS in comparison to 698 SR-MISS for different types of complex scenes. The exper-699 iment consists in propagating a logo/texture inserted in I re f 700 across the sequence using SR/MR-MISS to-the-reference dis-701 placement vectors to bring back inserted data into each current 702 frame. Three sequences are considered: Walking Couple be-703

706C = 3 ,

 3 Inc = 1 and % = 0.5. In addition, N max = 90, K max = 7 707 and N opt = 3. The input optical flow estimators and the set 708 of steps are specified for each experiment. Small steps from 1 ture is inserted within the shirt of the woman exhibiting peri-722 odic structures, highly non-rigid motion as well as illumination that a hole appears in I 31 (upper right part of the texture) and 728 grows gradually due to bad motion estimation of the periodic 729 structures. It also appears that the compacity of the initial tex-730 ture is lost from in I 48 . The texture diverges abnormally above 731 and to the right of the correct texture position.732The third and the fifth rows illustrate how MR-MISS per-733 formed with respect to reference frames {I 0 , I 27 , I 42 } propagates 734 the texture up to I 60 . Despite small holes, the results appear 735 to be much better than the ones obtained with SR-MISS.736The propagation is clearly performed without any disturbing 737 artefacts. We can also notice that the occlusion due to the arm 738 of the woman is well handled by our method. Occluded parts 739 of the texture are not propagated, as one expects. 740 741 MPI-S1. A logo is inserted in an un-textured area which 742 undergoes strong illumination variations as well as a non-743 rigid transformation due to the rotation of the woman (Fig.6). 744 Additionally to I 115 , three intermediate reference frames 745 ({I 135 , I 155 , I 160 }) are inserted for MR-MISS. 2D-DE [24] optical 746 flows as used as inputs with steps {1, 2, 3, 4, 5, 8, 10, 15, 20}. 747 The first row shows good results for the 16 first frames. 748 Then, by comparing the second and the third row, we notice 749 that SR-MISS makes the logo progressively distorted from 750 I 139 and finally not at all recognizable (I 151 ). On the contrary, 751 MR-MISS keeps the logo in a compact form and accurately 752 follows the non-rigid motion of the woman. Finally, the fourth 753 row indicates that it is possible with MR-MISS to rely on good 754 motion estimates for a temporal distance of 50 frames. 755 756 Hope. Fig.7 shows logo insertion in a uniform area of I 5036 and 757 propagation along the Hope sequence up to I 5111 . SR-MISS 758 from I 5036 and MR-MISS with {I 5036 , I 5063 , I 5073 } as reference 759 frames are performed using 2D-DE optical flows with steps 760 {1, 2, 3, 4, 5, 8, 10, 15, 20}. We notice that SR-MISS makes 761 holes appear and highly distorts the initial logo shape from 762 I 5103 . On the contrary, visual results with MR-MISS reveal a 763 better consistency over time, up to I 5111 . 764 765 The two last video editing experiments reveal good accuracy 766 with the 2D-DE [24] optical flow which has not been designed 767 especially to be more robust to large movements than common 768 optical flow algorithms, contrary to LDOF [23]. The perfor-769 mance reached by MR-MISS is obviously related to the input 770 optical flow estimator. However, results suggest that MR-MISS 771 is robust enough to extend the ability of its input estimator to 772 go towards longer long-term dense motion estimation.

773 5 . 4 .AFigure 5 :Figure 6 :Figure 7 :Figure 8 :

 545678 Figure 5: Texture insertion in I 0 and propagation along the Walking Couple sequence up to I 60 . We compare SR-MISS [19] and the proposed MR-MISS strategy using {I 0 , I 27 , I 42 } as reference frames. Both methods use LDOF input optical flows from [23].
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 910919928929930111 Figure 9: RMS endpoint errors for each pair {I re f , I n } along Flag sequence[START_REF] Garg | Robust trajectory-space TV-L1 optical 1041 flow for non-rigid sequences[END_REF] with LDOF direct, LDOF acc, MSF[START_REF] Crivelli | From optical flow to dense 1015 long term correspondences[END_REF][START_REF] Crivelli | Multi-step flow 1018 fusion: Towards accurate and dense correspondences in long video shots[END_REF], SR-MISS[START_REF] Conze | Dense long-term motion 1025 estimation via statistical multi-step flow[END_REF] and our multi-reference frames strategy MR-MISS with {I 1 , I 20 } as reference frames.

  the set of 211 candidate positions in I n obtained for each pixel x re f of I re f .For a given pair of frames {I re f , I n }, let N max be the maxi-

	246	sequences and therefore associated motion paths starting from	
	247	each pixel x re f of I re f . In what follows, we review the existing	
	248	algorithmic single-reference strategies which can be considered	
		to perform such computational complexity reduction.	
	250		
	251	mum number of motion paths which can be built for each pixel	
	252	x re f ∈ I re f according to storage capacity. Limited storage ca-	
	253	pacity requires the selection of only N max step sequences among	
	254 255 256	the K possible step sequences Γ re f,n = {γ 0 , γ 1 , . . . , γ K-1 }. It leads to Γ * re f,n , a set made of N max step sequences selected among Γ re f,n with N max << K.	
	257 258 259 260 261 262 263 264 265 266	212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 M The straightforward approach consists in a simple random 3.1. Random selection selection of N max step sequences among Γ re f,n . However, it in-duces a systematic bias towards the more populated branches of the tree since the steps assigned to a given intermediate frames between I re f and I n do not appear with the same frequency. Smallest steps appear more frequently than larger ones among the K possible step sequences and therefore lead to more popu-lated tree branches. In Fig.1a, step 1 assigned to frame I 0 is used in two step sequences ({1, 1, 1},{1, 2}) contrary to steps 2 and 3 A N U S C R I P T The selection of the optimal candidate position is performed by combining a statistical processing applied for each pixel x re f in-dependently as well as a global optimization method introduc-ing spatial regularization into the candidate selection process. For each x re f ∈ I re f , the statistical processing is applied to T re f,n (x re f ) to select the N opt best candidates of the distribution based on spatial density and intrinsic candidate quality. Then, the fusion moves algorithm citelempitsky2010fusion fuses the resulting N opt dense candidate displacement fields pair by pair up to obtain the optimal displacement field between the distant frames I re f and I n . These fusions are performed via global opti-mization [18] and involve both matching cost and inconsistency quality features described in Appendix B. The key aspect of the statistical selection relies on the se-which leads to only one step sequence (respectively {2, 1} and
		A C C E P T E D	227 228 229 230 231 232 233 234	lection of the N opt optimal candidate positions through statisti-cal processing. To select these N opt candidates, it exploits the statistical information on the point distribution as well as in-formation relative to intrinsic candidate quality. Based on the Maximum Likelihood Estimator (MLE) estimator for which the mean operator has been replaced by the median operator to be more robust to outliers, the choice of the N opt optimal candidate positions in T re f,n (x re f ) is recursively performed following: x * n = arg min x i n med j i x j n -x i n 2 2 (2)

249 267 {3}). After purely random selection, smallest steps may conse-268 quently play a more important role than largest steps among the 269 chosen N max step sequences and it finally may lead to highly 270 correlated resulting candidate displacement vectors. 271 3.2. Largest step sequences removal 272 To make the selection more clever, one can remove the 273 largest step sequences in terms of number of constituting steps 274 [18, 19]. In practice, a threshold of K max number of steps can 275 be set and only step sequences γ i = {s i 1 , s i 2 , . . . , s i K γ i } for which 276 K γ i ≤ K max are kept. Indeed, too many steps means too many

  in I n , -to-the-reference displacement vectors d n,re f 0 from I n to I re f 0 , starting from pixels x n ∈ I n and for which x n + d n,re f 0 (x n ) belongs to Ω re f 0 .

	These displacement vectors must be accurately computed even if I 415 416 417 418 419	ing on a robust quality assessment of trajectories starting from pixels x re f 0 of Ω re f 0 . By this way, we add a new intermediate reference frame each time the trajectories under computation diverge. Thus, we continue motion estimation from intermedi-ate sound frames in order to temporally extend the trajectory

n is very distant temporally and if strong content modifications occur between I re f 0 and I n . Instead of relying on a SR-MISS strategy (Sect.3) only referring to the reference frame I re f 0 , we suggest to both: -perform SR-MISS from I re f 0 as well as from M intermedi-408 ate reference frames cleverly inserted within the sequence 409 and referred to I re f k with k ∈ [[1, 2, . . . , M]], 410 -concatenate the resulting multi-reference frames displace-411 ment vectors. 412 With MR-MISS, we give a key role to the quality assessment 413 of trajectory fields. The insertion of the M intermediate refer-414 ence frames {I re f k } k∈[[1,2,...,M]] is performed automatically by rely-

Table 1 :

 1 MR-MISS{I 0 , I 19 } {I 0 , I 30 } {I 0 , I 35 } {I 0 , I 40 } {I 0 , I 41 } {I 0 , I 42 } Assessment of the gain reached by the MR-MISS appearance update (AD) via mean PSNR scores averaged over 7 realizations for several pairs from {I 0 , I 19 } to {I 0 , I 42 } of the Walking Couple sequence (ROI corresponding to the yellow shape inserted in Fig.5). Best results are in bold. for several pairs from {I 0 , I 19 } to {I 0 , I 42 }. The 689 PSNR is better for all pairs with appearance update in I 18 . In 690 addition, the trend is that the PSNR gain rises up with the tem-

		without AD	17.78	15.37	15.24	16.25	16.12	15.47
		with AD	17.82	15.47	15.51	16.40	16.45	15.72
	685	undergone any changes contrary to the original preset which
	686	updates the content appearance in I 18 .		
	687	To compare from-the-reference displacement vectors coming
	688	from both presets, Tab.1 shows mean PSNR scores averaged
	over 7 realizations 691				
		poral distance to I 0 which indicates that motion drift is delayed

692

temporally thank to the ROI appearance update. This main MR-

  2, we notice that MR-MISS outperforms SR-MISSwith a global RMS error of 0.58 pixels against 0.69. A for-

	Method	RMS error
	MR-MISS	0.58
	SR-MISS [19]	0.69
	MSF [16, 17]	1.41
	LDOF direct [23]	1.74
	LDOF acc [23]	4
	MFSF-PCA [15]	0.69
	MFSF-DCT [15]	0.80
	MFSF-PCA [25]	0.98
	MFSF-DCT [25]	1.06
	Pizarro et al. [27] direct	1.24
	ITV-L1 direct [26]	1.43

Table 2 :

 2 

RMS endpoint errors (in pixel) for different methods on the Flag benchmark dataset

[START_REF] Garg | Robust trajectory-space TV-L1 optical 1041 flow for non-rigid sequences[END_REF]

. The best result is in bold.