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Abstract

Purpose: It has long been known that age plays a crucial role in deterioration of microvessels. The

assessment of such deteriorations can be achieved by monitoring microvascular blood flow. Laser20

speckle contrast imaging (LSCI) is a powerful optical imaging tool that provides two-dimensional

information on microvascular blood flow. The technique has recently been commercialized, and

hence, few works discuss the postacquisition processing of laser speckle contrast images recorded in

vivo. By applying entropy-based complexity measures to LSCI time series, we present herein the

first attempt to study the effect of aging on microcirculation by measuring the complexity of25

microvascular signals over multiple time scales.

Methods: Forearm skin microvascular blood flow was studied with LSCI in 18 healthy subjects.

The subjects were subdivided into two age groups; younger (20–30 years old, n=9) and older (50–

68 years old, n=9). To estimate age-dependent changes in microvascular blood flow, we applied30

three entropy-based complexity algorithms to LSCI time series.

Results: The application of entropy-based complexity algorithms to LSCI time series can

differentiate younger from older groups: the data fluctuations in the younger group have a

significantly higher complexity than those obtained from the older group.35

Conclusion: The effect of aging on microcirculation can be estimated by using entropy-based

complexity algorithms to LSCI time series.
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I. INTRODUCTION

It has been reported that age changes the structure of the cutaneous microvasculature1,40

and plays a crucial role in cardiovascular diseases2. In recent years, optical medical imaging

has been the focus of considerable attention for the monitoring of peripheral cardiovascular

regulation, mainly microvascular blood flow. Several optical tools have emerged to monitor

microvascular blood flow3–7. Laser speckle contrast imaging (LSCI) is gaining an increased

interest in medical research due to its high performance-to-cost ratio: LSCI is a noninvasive,45

contactless, and highly reproducible technique8–10. Moreover, LSCI provides high quality

images of the microvascular blood flow at low cost11.

The principle behind the LSCI technique is based on a laser beam and a camera (a

schematic diagram of a LSCI setup is shown in Fig. 1). When a laser light illuminates the

tissue under study, the backscattered photons form a random interference pattern – called

speckle pattern – on the camera. The fluctuations in the illuminated tissue (due to the

moving particles such as red blood cells) lead to temporal changes in the speckle pattern.

These fluctuations provide information about the movements of the scatterers. The exposure

time T of the camera causes a blurring of speckle pattern, and hence, leads to a reduction in

the local speckle contrast. The speckle contrast K is used to quantify the degree of blurring12

K(x, y) =
σN

µN

, (1)

where σN and µN are the spatial standard deviation and the mean intensity, respectively,

in a square around the pixel of coordinates (x, y). In order to quantify σN and µN , a50

square window of N × N pixels is therefore chosen around the pixel P (x, y) of the speckle

raw data. The speckle contrast is computed by processing a group of pixels in one image.

The contrast is therefore the spatial contrast. However, a temporal contrast computation

can also be used by taking multiple images and following the same pixel in a time sequence13.

55

To assess the microcirculation function, a critical task is to obtain relevant physiological

information from medical images. Thus, many signal and image processing methods have

been proposed in order to allow a better understanding of the underlying physiological char-

acteristics. Among these methods, the sample entropy computation has become of great

interest in the biomedical field14. It has been used to measure the regularity of physiological60
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FIG. 1. Schematic diagram of a LSCI setup.

time series15–17. However, sample entropy is a single scale analysis, whereas the cardio-

vascular system manifests in multiple temporal scales to increase its adaptive capacity in

an evolving environment. Hence, the complexity of the cardiovascular system operates in

multiple temporal scales. Therefore, single scale entropy analyses do not provide multiple

level information on the behavior of the complex physiological system. To overcome this65

drawback, multiscale entropy (MSE, see Sec. II E) has been introduced as a useful tool to

process physiological signals in multiple time scales18,19, relying on the same principles as

sample entropy statistics. MSE analyses are widely used on data recorded from the macro-

circulation for the diagnosis of different kinds of pathologies, but also to analyze the impact

of aging18,20–22. The MSE algorithm has also been applied by Humeau-Heurtier et al.23,24 to70

LSCI data obtained from the microvascular system. In their studies, the efforts were made

to better understand the perfusion time series given by LSCI. However, no study related

to aging was performed. In addition, in our previous work25, we analyzed the aging effect

over microvascular parameters (perfusion and moving blood cells velocity from LSCI data)

and macro-circulation parameters (pulse-wave velocity), and the relationship between these75

parameters. However, the signal processing tools used in those previous studies are different

from the ones proposed in the present work. To the best of our knowledge, the impact of

aging on the microcirculation has not been studied yet by using entropy-based complexity al-

gorithms on LSCI data. The latter having good temporal and spatial resolutions, they could

be of interest in the follow-up of age-dependent microvascular alterations. Other laser-based80

studies have been conducted to study the influence of age26. Therefore, by processing laser

speckle contrast images, the purpose of this study is to determine if alterations of micro-
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circulation caused by aging can be studied through complexity measures. For this purpose,

MSE and its refined versions, composite MSE (CMSE), and refined CMSE (RCMSE), are

applied to LSCI time series. Furthermore, a comparison of the results given by MSE, CMSE,85

and RCMSE algorithms is proposed. In what follows, we first introduce the measurement

procedure and theoretical background. The experimental results are presented in Section III.

Then, a discussion is proposed in Section IV. Finally, conclusions are given in Section V.

II. MATERIALS AND METHODS

A. Subjects90

Eighteen healthy subjects without known history of disease were included in this study.

The subjects were divided into two age groups: younger and older. The younger group

included nine subjects (five women and four men), ranging from 20 to 30 years. The older

group included nine subjects (five women and four men), ranging from 50 to 68 years.

Prior to participation, all subjects gave their written, informed consent, and the study was95

conducted in accordance with the Declaration of Helsinki.

B. Experimental protocol

For the application of MSE, CMSE, and RCMSE to LSCI time series, all the perfusion

images were acquired from the ventral face of the forearm using a PeriCam PSI System (Per-

imed, Sweden). The imager has a laser wavelength of 785 nm and an exposure time of 6ms.100

In this imager, the speckle pattern in the illuminated area is monitored using a 1388× 1038

pixels CCD camera (Perimed, Sweden), and the contrast is thereafter computed spatially.

Perfusion (computed from the inverse of the contrast K) is then processed in our work.

The laser speckle contrast imaging technique is, by definition, very sensitive to move-105

ments. Therefore, the subjects were asked to be supine and avoid moving during the data

acquisition. Before processing the LSCI data with the entropy-based measures, no pre-

processing was performed to remove the possible presence of outliers (we took care to check

that outliers, if present, were very few and of low amplitude, see Fig. 2).
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FIG. 2. Relative blood flow time course computed from LSCI data during 20min at rest. LSCI

signal computed from a region of interest of 31 × 31 pixels.

The superficial blood flow was recorded in laser speckle perfusion units (LSPU) with a110

sampling frequency of 16Hz. A temperature-controlled room27 without any airstream28 was

used for this purpose. Moreover, the distance between the laser head and the forearm skin

was adjusted to 15± 1 cm29 which provided images with a resolution of around 0.45mm.

Perfusion images were stored on a computer for an off-line analysis.

115

In this work, 19000 images (around 20 minutes) for each subject were processed. This

length has been chosen to have access to low frequency oscillations already found in other

microvascular data30–32.

C. Image processing procedure

In order to analyze complexity of LSCI time series, the following image processing steps120

were used:

1. On the first perfusion image of each subject, one pixel was chosen arbitrarily, and its

perfusion was followed in time for all the 19000 successive perfusion images

2. To get a reasonable signal and reduce the spatial variability of blood flow33, an average

perfusion value was computed inside a region of interest (ROI) around each of the pixels125

chosen in step 1 and followed with time. This resulted in a new time evolution signal.

For this purpose, ROI of different sizes were analyzed as suggested by23: 1×1 pixel,

3×3 pixels, 9×9 pixels, 15×15 pixels, 23×23 pixels, and 31×31 pixels. A previous

6



work23 has reported that MSE values for ROI sizes larger than 23×23 pixels are close

to the ones obtained with an ROI of size 23× 23 pixels. This is why the largest ROI130

size chosen in our work was not larger than 31× 31 pixels

3. For each ROI size (1 × 1, 3 × 3, 9 × 9, 15 × 15, 23 × 23, and 31 × 31 pixels), MSE,

CMSE, RCMSE values were estimated and presented as a function of scale factor, τ

D. Statistical analysis

Because of the small size of the sample (only 9 subjects in each group), the normality135

of the distribution for each variable (ROI 1×1 pixel; ROI 3×3 pixels; ROI 9×9 pixels; ROI

15×15 pixels; ROI 23×23 pixels and ROI 31×31 pixels) was checked using Shapiro-Wilk

test. The results showed normal distribution for both younger and older groups, and for all

ROI sizes. Therefore, statistical analyses were performed using a t-test analysis (unpaired,

two-tailed) to compare ROI of the young group with ROI of the old group after checking140

for the equality of variances (F-test). Thus, for the two populations (young subjects and

old subjects) we computed the sum of RCMSE values over the scales studied (106 to 1684;

see below), and this for all the ROI sizes studied: 1 × 1 pixel, 3 × 3 pixels, 9 × 9 pixels,

15×15 pixels, 23×23 pixels, and 31×31 pixels. This gave an index for the two populations,

and for each ROI size. We performed a statistical analysis on this index to compare the145

results between the young subjects and the older ones, for each ROI size. For all statistical

analyses, a two-tailed p value < 0.05 was considered significant.

E. Methods

1. Multiscale entropy

The MSE approach aims at evaluating the underlying complexity of the dynamic system150

across multiple time scales. In this study, MSE was computed as initially introduced19. For

a given one-dimensional vector of data, {x1, ....., xi, ....xN}, groups of successive points are

time-binned to create a coarse-grained time series, {y(τ)}. For this purpose, the original

times series are subdivided into nonoverlapping groups of length τ . Then, an average of

the data points inside each group is performed. The steps mentioned above to generate a155
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coarse-grained time series are accomplished using the equation

y
(τ)
j =

1

τ

jτ
∑

i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ. (2)

Finally, each coarse-grained time series is evaluated by computing an entropy measure (sam-

ple entropy, SampEn)14. The result is displayed versus the scale factor, τ .

The SampEn algorithm is a conditional probability concept that two embedded subsets160

that are close to each other for m successive points, within a given tolerance r, will also

remain close to each other if one more point is embedded to each subset. For data of N

samples, N −m vectors xm(i) are constructed for {i|1 ≤ i ≤ N −m} as xm(i) = {x(i+ k) :

0 ≤ k ≤ m − 1}. The distance d between two vectors xm(i) and xm(j) is defined as

d [xm(i), xm(j)] = max{|x(i+ k)− x(j + k)| : 0 ≤ k ≤ m− 1}. Then, Bm
i (r) is computed as165

(N −m− 1)−1 times the number of vectors xm(j) within r of xm(i) where j ranges from 1

to N −m and j 6= i (self-matches are excluded). Bm(r) is thus determined as

Bm(r) = (N −m)−1
N−m
∑

i=1

Bm
i (r), (3)

where

Bm
i (r) =

nm
i (r)

(N −m− 1)
, (4)

Bm(r) is the probability that two sequences will match for m points, and nm
i represents the

number of vectors xm(j), such that d [xm(i), xm(j)] ≤ r. Bm+1(r) is the probability that two170

sequences will match for m + 1 points, and is computed in the same way as in Eq. 3. The

sample entropy (SampEn(m, r)) is then defined as

SampEn(m, r) = lim
N→+∞

{

− ln

[

Bm+1(r)

Bm(r)

]}

. (5)

For finite N , it is estimated by the statistics as14

SampEn(m, r,N) = − ln

[

Bm+1(r)

Bm(r)

]

. (6)

The SampEn algorithm has proved to be useful for relatively short and noisy datasets14.
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Thus, for each constructed coarse-grained time series mentioned in Eq. 2,

MSE(x, τ,m, r) = − ln

(

nm+1
τ

nm
τ

)

, (7)

where nm
τ represents the total number of m-dimensional matched vector pairs and is con-

structed from the coarse-grained time series at a scale factor of τ .

175

In the MSE algorithm, estimated values of SampEn are plotted versus the scale factors,

τ . These entropy values are used for assessing the complexity degree of normalized time

series. An increasing or consistent behavior of the entropy values versus an increase in scale

factors indicates that the original time series is highly complex, containing information over

multiple time scales. In contrast, a decrease in entropy values with scale factors shows that180

the original time series carries information only on the smallest scales.

Two important parameters have to be considered during the estimation of SampEn values:

the tolerance degree r, and the pattern length m. Previous studies have shown that m = 1

or 2, and r = [0.1, 0.25] of the standard deviation of the original signal are adequate to185

obtain good statistical validity for SampEn14. As used previously for microvascular data

studies34,35, m = 2, and r = 0.15 × standard deviation of the signal were chosen herein.

Furthermore, in order to reveal microvascular physiological activities, acting in a time scale

interval τT of 6.625–105.25 s30–32, a wide range of scale factors was analyzed: scale factors

τ ranging from 106 to 1684.190

2. Composite multiscale entropy

CMSE was introduced to reduce the variance of estimated entropy values of MSE at

large scale factors τ 36. Unlike MSE, CMSE generates k-child coarse-grained time series for

each scale factor τ . So, for a given discrete time series {x1, ....., xi, ....xN}, the kth-child

coarse-grained time series for scale factor τ is produced as36 y
(τ)
k = {y

(τ)
k,1 y

(τ)
k,2...y

(τ)
k,p} where195

y
(τ)
k,j =

1

τ

jτ+k−1
∑

i=(j−1)τ+k

xi, 1 ≤ j ≤ N/τ, 1 ≤ k ≤ τ. (8)

Then, for each scale factor τ , sample entropy values are estimated for all k-child coarse-

grained groups. The mean value of the τ entropy values corresponds to CMSE36.
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CMSE(x, τ,m, r) =
1

τ

τ
∑

k=1

(

−ln
nm+1
k,τ

nm
k,τ

)

, (9)

where nm
k,τ is the total number of m-dimensional matched vector pairs and is computed from

the kth-child coarse-grained time series at a scale factor τ . Different from MSE, the CMSE

algorithm provides higher entropy reliability on both synthetic and real data36.200

3. Refined composite multiscale entropy

Although CMSE provides higher reliability in entropy estimation than traditional MSE,

the probability that CMSE fails to produce an estimate of the entropy becomes higher when

the complexity measure is applied to short time series. To overcome this drawback, RCMSE

was proposed37. From Eq. (9), we can observe that when CMSE is computed, undefined205

entropy is obtained when either nm+1
k,τ or nm

k,τ is zero. Thus, the shorter the time series,

the more the probability of having an undefined entropy. Consequently, CMSE has better

accuracy estimation than traditional MSE, but at the expense of entropy estimation ability.

Therefore, RCMSE addressed this drawback based on the following equation37

RCMSE(x, τ,m, r) = −ln

(

∑τ

k=1 n
m+1
k,τ

∑τ

k=1 n
m
k,τ

)

. (10)

From Eq. (10), it is obvious that RCMSE gives rise to undefined entropy only when all210

nm+1
k,τ or nm

k,τ are zero. Accordingly, RCMSE increases the ability to estimate entropy values

compared to CMSE. RCMSE shows reduced variability and data-length dependence than

either the MSE or CMSE algorithms when applied to white and and 1/f noises37.

III. RESULTS

In Fig. 3(a) we present the mean experimental results for MSE, CMSE, and RCMSE,215

for the two groups of subjects, when the value of a LSCI single pixel time series is ana-

lyzed. From this figure we can observe that the entropy values obtained from the younger

group (blue) and from the aged group (red) are close to each other for all time scales (binning

time interval τT = [6.6–105.2] s). This is true for MSE, CMSE, and RCMSE. Furthermore,

a monotonic decrease in entropy values versus time scale is observed for the two groups.220
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The reduction in entropy values at large time scales, τT , shows that the analyzed signal is

an independent random variable, containing information only at the smallest time scales.

This behavior is close to the one of a Gaussian white noise realization19. For the analysis

of Gaussian white noise data, as the length of the windows used to build coarse-graining

time series signal increases, the average value inside each window converges to a fixed value,225

because no new pattern arises on large scales. Hence, the standard deviation dramatically

diminishes with scale factor. The same is found for MSE, CMSE, and RCMSE of LSCI

single pixel time series. This reflects that the LSCI single pixel time series have information

only at the shortest scales. However, it is worth mentioning that the application of MSE

to LSCI data shows small and rapid variations in entropy values when time scales large230

enough are analyzed. This behavior can be observed when either single pixel or ROI are

analyzed (see Figs. 3(a) to 3(f)). In contrast, CMSE and RCMSE manifest a relatively

stable decrease during the increase of time scales.

A markedly loss of complexity is observed with aging when a ROI large enough is cho-235

sen (see Fig. 3(f)). The difference is hardly visible with a ROI size of 3 × 3 pixels (see

Fig. 3(b)) and increases when ROI size increases (see Fig. 3(f)). There were no significant

differences between the younger and older groups on the entropy index values obtained

from RCMSE of LSCI single pixel and 3 × 3 pixels (p = 0.649, and p = 0.259, respec-

tively). In contrast, the entropy index values of RCMSE LSCI 9 × 9 pixels, 15× 15 pixels,240

23× 23 pixels, and 31× 31 pixels for the younger group are significantly different from the

ones obtained from older group (p = 0.02, p = 0.008, p = 0.007, and p = 0.008, respectively).

From Fig. 3(a), we observe that when MSE and CMSE are applied to experimental LSCI

single pixel time series, the probability of undefined entropy was zero. This was not the case245

after a spatial averaging over neighboring pixels (see Figs. 3(b) to 3(f)). It is obvious from

these figures that the validity of both MSE and CMSE is worse when larger scale factors are

used. Therefore, the probability that the entropy estimate will be undefined increases as the

scale factor increases. It has been shown that the probability that the estimate of MSE and

CMSE is undefined increases as the entropy of the time series increases37. In MSE, when250

large scale factors are used to build the coarse-grained time series, the variance increases

very fast that may lead to underestimation of entropy (i.e., spike increases observed in
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Mean experimental entropy values for the two healthy groups of subjects: younger group

(blue) and older group (red) with 9 subjects in each group. For each subfigure, three methods

are shown: MSE (top), CMSE (middle), and RCMSE (bottom). Results for LSCI times series

are obtained from (a): 1×1 pixel; (b): 3×3 pixels; (c): 9×9 pixels; (d): 15×15 pixels; (e): 23×23

pixels; (f): 31×31 pixels. A scale factor interval from τ = 106 to τ = 1684 is analyzed, which

provides a binning time interval from τT = 6.625 s to τT = 105.25 s.
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FIG. 4. MSE, CMSE, and RCMSE of LSCI 31×31 pixels time series recorded on healthy subjects.

Results are the mean entropy values of 9 younger subjects. A scale factor interval from τ = 106 to

τ = 1684 is analyzed, which provides a binning time interval from τT = 6.625 s to τT = 105.25 s.

entropy values over all the patterns of the MSE), or even undefined entropy values—no

template vectors are matched to one another. In contrast, CMSE reduces the variance.

This leads to more accurate estimation of entropy values36. As it is obvious from Figs. 3(b)255

to 3(f), CMSE gradually provides higher entropy reliability, and better separability between

younger and older groups than MSE. However, CMSE increases the probability of undefined

entropy due to the reasons mentioned in Sec. II E, in particular for large time scales37. By

opposition, and as shown in Fig. 4, RCMSE shows better validity than MSE and CMSE.

Therefore, in what follows, RCMSE will be used to present the remaining findings due to260

its better validity compared to MSE and CMSE.

Within the range of time scales analyzed, one can hypothesize that the strong rhythmic

behavior of the peripheral cardiovascular activities may lead to low entropy values. There-

fore, peripheral cardiovascular activities could be identified according to their regularities265

and time-related values. In this respect, we can distinguish two physiologically-linked ar-

eas over the pattern of RCMSE, extending between 6.625 s and 105.25 s for the younger

subjects (see Fig. 5). First, the entropy values reach a local minimum for binning time

interval τT around 31–42 s. The temporal fluctuations around this interval are considered

as the first area that has high regularity. The second physiologically-related area is observed270

around binning time interval of 60–80 s. From Fig. 5 we observe that for the younger group,
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FIG. 5. RCMSE of LSCI 31 × 31 pixels time series recorded on healthy subjects. Results are the

mean entropy values of two groups; younger group (blue) and older group (red) of 9 subjects each.

A scale factor interval from τ = 106 to τ = 1684 is analyzed, which provides a binning time interval

from τT = 6.625 s to τT = 105.25 s. This is an enlarged version of the RCMSE plot in Fig. 3(f).

the processes acting around this interval of 60–80 s have a high regularity. In contrast,

the physiologically-linked areas over the pattern of RCMSE for older group have weaker

features. From Fig. 5, the first local minimum for the older group can be observed around

48 s, whereas a second global area is between 60–70 s, and another close to 90 s.275

IV. DISCUSSION

From Figs. 3(a) to 3(f), we have observed that the application of MSE to LSCI data shows

small and rapid variations in entropy values when time scales large enough are analyzed.

The same behavior of small and rapid variations in entropy values at large scale factors has280

been observed by the application of MSE to successive signals of a pulse wave velocity38.

In MSE, the variance increases as large scale factors are used to build the coarse-grained

time series, that may lead to underestimation of entropy. Furthermore, from Figs. 3(b) to

3(f), we observe that choosing larger ROI sizes modifies the behavior of MSE, CMSE, and

RCMSE. The modifications of MSE, CMSE, and RCMSE trends with ROI show that LSCI285

ROIs do not behave as Gaussian white noise. The signal-to-noise ratio increases as the ROI

increases23.
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We have mentioned above from Figs. 3(b) to 3(f) that the validity of both MSE and

CMSE is worse when large scale factors are used. This experimental finding is in agreement290

with the theoretical study of Wu et al.37, where correlated and uncorrelated noises were

analyzed. They found that the validity degree of the MSE and CMSE depends on the time

series length, and entropy values of the time series: the larger the scale factors, the shorter

the coarse-grained time series. Our signals contain 19000 data points, and therefore, the

shortest coarse-grained time series contain 11 points. As a result to all mentioned above,295

MSE, CMSE, and RCMSE are able to estimate the underlying complexity of LSCI signals.

However, RCMSE provides better validity for short time series.

We demonstrate that the application of MSE, CMSE, and RCMSE to microvascular

data (LSCI time series) can remarkably differentiate between younger and older groups:300

the fluctuations of the younger group show higher complexity than those obtained from

the older group. The loss of complexity within the microvascular blood flow signal may be

explained as a consequence of changes occurring within the cardiovascular system. We have

previously mentioned that macro- and microcirculation are correlated systems25. It has

been reported that the cardiac fluctuations of healthy young subjects are highly complex,305

but this complexity decreases with aging39–42.

A living organism system is a highly complex system. This complexity comes from a wide

range of adaptive reactions to different physiological variables within the external environ-

ment. Therefore, physiological complexity of the living system reflects its ability to adapt310

to the ever-changing circumstances, that will be needed to merge multiscale processes. Al-

ternatively, under baseline condition, a continuous decrease in complexity reflects damaged

physiological responses of the living organism to changes in the external environment18. By

the application of MSE to macrovascular data, a loss of the complexity in cardiac signal has

been observed due to aging18. A reduction in signal complexity with aging has also been re-315

ported when nonlinear measures are applied to successive signals of a pulse wave velocity43.

Furthermore, it has been shown that aging has a crucial role on the interconnection network

of the cardiovascular system44,45. For example, several modifications in cardiac electrophys-

iology, including an increase in sympathetic nervous system activity46, or alterations in the

muscular tissue of the heart, appear with aging47. Wu et al.48 demonstrated a reduction320
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of complexity with age of both the heart and blood vessels signals. Diminished functional

responses to stimuli have been reported by many authors as a distinctive attribute of age-

related pathology49–51. Other authors have recently mentioned that the relation between

QT and RR interval variability derived from the heart deteriorates with aging52. Our first

finding confirms a general complexity loss with aging on LSCI data (microvascular blood325

flow). Furthermore, we demonstrate that the entropy-based complexity measures when

applied to microvascular signal (LSCI time series) can differentiate between younger and

older groups.

Alterations in microvascular activities with aging have been reported in many previous330

studies53,54. A reduction in the amount of oxygen reaching the tissues, and unbalance in

constructive and destructive metabolism processes may occur with aging55–57. Furthermore,

a reduction in functioning capillary numbers, and a defect in their basic functions may

appear with aging due to phenomena such as vascular rarefaction, regularity loss, vascu-

lar destruction, irregular calibration, and attenuation of angiogenesis processes53,58–61. It335

has been pointed out that vascular destruction and oxidant stress contribute to capillary

rarefaction62. Aging is associated with inhibition of endothelial function and cellular chem-

ical processes, deterioration of the sympathetic innervation63,64. Moreover, aging leads to

a deterioration in nitric oxide, prostanoid, endothelium derived hyperpolarizing factor(s)

and endothelin-1 pathways62. It has also been shown that collagen and elastic fibers are340

damaged with aging65,66. Furthermore, one might hypothesize that the reduced complexity

of the older group may be connected with age-related structural changes in the skin. It

has been reported that a number of physiological features vary with age, including collagen

structure, water accumulation, and the thickness of the epidermis, dermis, and the skin as

a whole (see Ref.67 for review).345

It is worth mentioning that, from Fig. 5, the profiles of RCMSE of the younger group

are slightly different from the ones of the older group. These differences could be due to

the following reasons: 1) the movement artifacts. LSCI is highly sensitive to movements.

Therefore, it is difficult to have long acquisitions without any movement artifacts. However,350

it has been shown that a signal contaminated by a small percentage of outliers may remark-

ably change the standard deviation but not substantially alter the temporal structure of

16



the time series18. Another algorithm dedicated to signals with outliers could also be used to

process LSCI data68; 2) the average entropy values computed from the seven subjects. Each

microvascular activity does not fluctuate at exactly the same period time for each subject.355

These fluctuations may lead to different patterns in entropy values.

Finally, in the present contribution, we identified two physiologically-linked areas accord-

ing to their regularities and time-related values. The first area is related to binning time

interval between 31 s and 42 s for younger group, and around 48 s for older group. It has360

been shown that the neurogenic activities are linked to this time interval of 31–48 s69,70.

The second area that has a high regularity is observed around the binning time interval of

60–80 s for younger group, and around 60–70 s, and another close to 90 s for the older group.

The interval between 60–90 s has been previously observed in blood flow signals using time-

frequency analyses30, and as well as in HRV signals31. The periodic process around this365

interval is considered as a marker of endothelial activity30.

V. CONCLUSION

To the best of our knowledge, this study is considered as the first one conducted to

analyze the effect of aging on microcirculation of healthy subjects by applying entropy-

based complexity measures to LSCI time series. The MSE, CMSE, and RCMSE algorithms370

are able to differentiate the younger group from the older group. RCMSE is a simple method

for evaluating the complexity of the physiological signal through short time series. It could

be interesting now to conduct a similar study on data recorded from another body site (such

as the leg or the contra-lateral forearm). Furthermore, it may be of utility in the clinical

research to analyze RCMSE values of LSCI data recorded in pathological subjects.375
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