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Network science has helped to understand the organization principles of the interactions among the con-
stituents of large complex systems. However, recently the high resolution of the data sets collected has allowed
to capture the different types of interactions coexisting within the same system. A particularly important ex-
ample is that of systems with positive and negative interactions, a usual feature appearing in social, neural and
ecological systems. The interplay of links of opposite sign presents natural difficulties for generalizing typical
concepts and tools applied to unsigned networks and, moreover, poses some questions intrinsic to the signed na-
ture of the network, such as how are negative interactions balanced by positive ones so to allow the coexistence
and survival of competitors/foes within the same system? Here, we show that synchronization phenomena is an
ideal benchmark for uncovering such balance and, as a byproduct, to assess what nodes play a critical role in the
overall organization of the system. We illustrate our findings with the analysis of synthetic and real ecological
networks in which facilitation and competitive interactions coexist.

PACS numbers: 02.50.-r, 87.23.-n, 89.65.-s, 89.75.-k

In the last decade network science has provided the
ideal benchmark to encode, analyze and understand the
complex relationships that are stablished in large scale sys-
tems of nature as disparate as the Internet or the brain. As
databases become more abundant and complete we face
the challenge of analyzing networks containing multiple
types of connections. Here we tackle the case of signed
networks, where the interactions can be either positive or
negative. On one hand we illustrate how synchronization
processes capture the organization of this kind of graphs
into a set of modules interacting negatively among them.
With this in mind, we apply the synchronization bench-
mark to real systems. In particular, we characterize the
ecological balance between facilitation and competition in
plant communities and analyze the role of species in their
organization.

I. INTRODUCTION

Synchronization is perhaps the most paradigmatic example
of collective behavior as it is recurrently found at different
levels of complexity [1–3]. In fact, the emergence of sponta-
neous synchronization in systems of coupled dynamical units
is at the core of many coordinated tasks, from cognitive pro-
cesses in the brain, to the unfolding of collective behaviors in
social systems [4–6]. In the last decade network theory has
unveiled that the topology of the interactions in a complex
system has important effects on the development of collective
behaviors [5, 7]. Following this direction, the study of syn-
chronization in networks has attracted a lot of attention [8] to
shed light on the role that the network structure plays on the
emergence of synchronized states [9–17].

The typical setting of the former works consists on associ-
ating a dynamical system to each node, whereas the couplings
between pairs of dynamical units are mediated by the links of
the network. However, other studies have also covered adap-
tive networks [18] whose structure is shaped by the micro-
scopic synchronization patterns [19–22] or systems of mobile
oscillators moving in a continuous space [23–27]. With rela-
tively few exceptions [28–36], the hypothesis of these works
is that the interactions between units are positive, so that the
existence of a link between two coupled dynamical systems
implies that they are prone to synchronize as the interaction
between them is increased.

In this work, we address the scenario in which positive and
negative interactions between nodes coexist in the same net-
work. In this way, the increase of the interaction strength
causes the attraction among those dynamical units interacting
via positive links and a repulsive effect between those con-
nected through negative edges. As shown recently by Ander-
son and co-workers [36], the stable equilibrium reached con-
sists in a dynamical partition of the network in which nodes
sharing positive connections synchronize together while they
avoid being dynamically close to those with whom negative
interactions are at work. Here, our goal is to use this partition
to extract information about the organization of networks for
which positive and negative relationships between nodes inter-
play. In particular we will analyze plant communities where
usually both facilitation (positive interaction) and competition
(negative interaction) coexist [37], playing a key role in the
structure and organization of these communities [38–41]. We
will show that synchronization provides a efficient way to un-
veil how species sharing facilitative interactions group into
blocks, allowing the identification of the species that play a
major role in the structure of the plant community.
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The article is organized as follows. First in Sec. II and Sec.
III we review the main results about the Kuramoto model of
coupled phase oscillators and its studies in signed networks
respectively. Then, in Sec. IV we analyze a toy model in
which two networked systems of attractively coupled oscilla-
tors interact repulsively. This allow us to tackle the charac-
terization of real plant communities in Sec. V exploring the
emergence of facilitation groups and the competitive interac-
tions established among them. Finally, in Sec. VI we round
off the article by drawing the concluding remarks.

II. THE KURAMOTO MODEL

In the following, we rely on the paradigmatic Kuramoto
model [42–44] (KM) of coupled limit circle oscillators as it is
the most used dynamical framework for the study of synchro-
nization phenomena in complex networks [8]. In a complex
network of size N , the Kuramoto model considers that each
node i is characterized by a phase θi ∈ (0, 2π] whose time
evolution is given by:

θ̇i = ωi + λ

N∑
j=1

Aij sin(θj − θi) . (1)

The above equation thus describes a set of phase-oscillators
coupled with uniform strength λ as dictated by the adjacency
matrix of the network A, whose terms are Aij = Aji = 1 if
nodes i and j are connected and Aij = 0 otherwise. Note that,
in the original Kuramoto model [42], each node i interacts
with all the others nodes, so that Aij = (1− δij). The natural
frequencies of the oscillators, {ωi}, are, in principle, different
and they are assigned following a frequency distribution g(ω),
that is usually considered to be uni-modal and even around the
mean frequency Ω of the population.

In the uncoupled regime (λ = 0) each node i de-
scribes limit-cycle oscillations with characteristic frequency
ωi. However, by increasing the coupling strength λ, the net-
work undergoes a phase transition at some critical value λc

that, for an arbitrary network topology described by an adja-
cency matrix A, is given by λc = 2/[πg(Ω)Λ(A)] [45] where
g(Ω) is the density of oscillators with natural frequency equal
to the average one, Ω, and Λ(A) is the maximum eigenvalue
of the adjacency matrix.

To monitor the synchronization transition Kuramoto intro-
duced the following order parameter:

r(t)eiΨ(t) =
1

N

N∑
j=1

eiθj(t) , (2)

which is the averaged sum of the unit vectors associated to
the phases of each oscillator in the complex plane. The mod-
ulus of the resulting complex number is the order parameter,
r(t) ∈ [0, 1], that measures the coherence of the collective
motion of the oscillators. In this way, r = 1 when the net-
work is fully synchronized whereas r = 0 stands for the in-
coherent solution. In addition, the value of Ψ(t) accounts for
the average phase of the ensemble of oscillators.

III. THE KURAMOTO MODEL IN SIGNED NETWORKS

The extension of the KM, Eq. (1), to address the possibil-
ity of positive and negative interactions was initially proposed
by Daido [28] more than twenty years ago. There he con-
sidered an all-to-all Kuramoto model with random interaction
weights (or equivalently random entries Aij) including pos-
itive and negative ones. From this study a debate about the
glassy behavior of the system was opened and its solution still
remains unclear [29, 30]. Recently, the combination of posi-
tive and negative interactions in a network of Kuramoto oscil-
lators has recovered the attention of researchers [32–35]. For
instance, in [32] the authors show that the addition of negative
links to networks can enhance the stability of the synchronized
state, while Hong and Strogatz [33–35] studied two different
coarse-grained versions of the Daido model to shed light on
the aforementioned debate.

Here we will revisit the KM in the following way. Instead
of working with weighted adjacency matrices we allow the
weights of the links to take one out of three values. Namely,
Aij = Aji = 1 if the interaction between i and j is positive,
Aij = Aji = −1 if the link between i and j is negative and
Aij = Aji = 0 if no interaction between i and j is present.
This is equivalent to work with two adjacency matrices, one
encoding all the positive interactions, A+, and another one,
A−, accounting for the negative ones. In this way we have
A = A+ −A−, and the KM, Eq. (1), can be rewritten as:

θ̇i = ωi +λ
N∑
j=1

[
A+

ij sin(θj − θi) +A−
ij sin(θi − θj)

]
. (3)

The above equation is the most simple generalization of the
KM in a complex network to the case of signed graphs. How-
ever, it can be applied to many real situations in which positive
and negative interactions coexist within the same system. A
familiar case is that of social networks, in which the acquain-
tances of an individual can be classified as friends and foes.
In this latter case, the focus has been the test of social bal-
ance theory [46, 47] in large scale social networks [48] where
complex structures mixing positive and negative ties appear.

As anticipated, here we will focus on a different real world
example where the interplay between negative and positive in-
teractions appears naturally: ecological networks. We rely on
recent data sets about the interaction between vegetal species
[49, 50] in which the nature of the interactions between the
different species was derived by analyzing their local spatial
association patterns. Although an approximation to real bi-
otic interactions, spatial association between plant species is
considered as a valid proxy for studies including all species
in a community [39, 51, 52]. These interactions can be of
three types: neutral (no interaction, species associate at ran-
dom in space), facilitation (positive interaction, species co-
occur in space more than expected) or competition (negative
interaction, species segregate in space more than expected).
In this way, the two matrices A+ and A− can be constructed
straightforward.
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IV. A SIMPLE SYSTEM: TWO INTERCONNECTED
NETWORKS

The KM has been used to unveil the modular organization
of unsigned networks [12, 53–56] relying on the observation
that synchronization is first attained among those nodes be-
longing to the same module, or community, and then spreads
to the rest of the network. This provides a fast an efficient way
to detect the modular structure of the network. For signed net-
works, Anderson et al. [36] analyzed the behavior of a sys-
tem composed of M large groups of coupled Kumamoto os-
cillators, so that the interactions within members of the same
group are positive whereas those between oscillators belong-
ing to different groups are negative. To illustrate their results
we consider here the simplest case of M = 2 (analyzed in
[57–59] for unsigned networks) groups, see Fig. 1. Thus, as
in [36], we assume that there is a perfect partition of the sys-
tem into two sub-populations that we know a priori. Our aim
is to observe how synchronization patterns are organized so
to gain insight for the application to real systems in which the
sub-population structure, if any, is unknown.

As shown in Fig. 1 we consider a toy multilayer network
[60, 61] composed two fully-connected graphs of identical
size N , while the probability that two nodes belonging to dif-
ferent networks are connected is equal to p. In this way, each
network contains N(N − 1)/2 positive links while, on aver-
age, the two networks are interconnected via pN2 links. Thus,
the system contains N2 positive and pN2 negative links. Con-
sidering the probability of connection p between two nodes of
different populations, the KM for the system of two intercon-
nected networks can be approximated as:

θ̇αi = ωα
i + λ

N∑
j=1

sin(θαj − θαi )− pλ

N∑
j=1

sin(θβj − θαi ) , (4)

where θαi and ωα
i are the phase of oscillator i (i = 1, ..., N ) in

population α and its natural frequency respectively. Note that
in Eq. (4) α = 1, 2 and β = 2, 1 respectively.

FIG. 1: Two interconnected networks of 5 nodes each. Each network
is a fully connected graph. The links among nodes of the same net-
works are positive (solid) whereas the 4 links connecting nodes of
different networks are negative (dashed).

In addition to the Kuramoto order parameter r it is useful
to define a synchronization parameter associated to each pop-
ulation α. In analogy to Eq. (2) this order parameter reads:

rα(t)eiΨα(t) =
1

N

N∑
j=1

eiθα
j (t) , (5)

where rα ∈ [0, 1] accounts for the degree of synchronization
in population α whereas Ψα defines the average phase of os-
cillators belonging to network α. With the help of Eq. (5) we
can re-write Eq. (4) as:

θ̇αi = ωα
i +Krα sin(Ψα − θαi )− pKrβ sin(Ψβ − θαi ) , (6)

where K = Nλ, recovering the usual mean-field form of the
KM [42–44]. Assuming, without loss of generality, a refer-
ence frame rotating with the mean frequency Ω of the system
(or analogously considering Ω = 0) and whose position is set
so that the mean phase of the oscillators in one of the networks
is Ψα = 0, the equation for the locked, θ̇αi = 0, oscillators
reads:

ωα
i = Krα sin(θαi ) + pKrβ sin(Ψβ − θαi ) . (7)

The above equation is only fulfilled for a set of oscillators
in each of the populations having a natural frequency close
enough to the average one Ω = 0.

Due to the high symmetry of the two populations and under
the assumption that the frequency distribution is the same for
both networks, gα(ω) = gβ(ω), we can can establish a map
between a locked oscillator i in population α, with its coun-
terpart, say i, in population β so that ωα

i = ωβ
i . In this way,

for each pair of locked oscillators we have:

sin(θαi )+ p sin(θβi ) = sin(θβi −Ψβ)+ p sin(θαi −Ψβ) (8)

where we have considered, again invoking the symmetry of
the system and that gα(ω) = gβ(ω), that the degree of syn-
chronization of the two populations is identical, rα = rβ , for a
given value of K. The self-consistent set of equations (8) has
two solutions: Ψβ = 0 (θαi = θβi ) and Ψβ = π (θαi = θβi −π).
It can be easily shown (see Appendix A for a simple argument
and the Supplemental Material [62] for a proof) that the first
solution (Ψα = Ψβ = 0) is unstable whereas the second one
(Ψα = 0,Ψβ = π) is stable, pointing out that although syn-
chronization can be attained within each of the populations
they tend to be in anti-phase so that the degree of synchro-
nization of the whole system r falls to zero.

In Fig. 2 we show this phenomenon by considering two
networks of N = 500 nodes and an interconnection prob-
ability of p = 0.4. The natural frequencies are randomly
assigned from an homogeneous (flat) distribution within the
range ωα

i ∈ [−1/2, 1/2]. In the top panels, (a)-(c), we show
the distribution of the phases in the unit circle of the complex
plane for K = 0, K = 0.5 and K = 1. It is shown how syn-
chronization within the groups, pointed by the concentration
of the circles, is attained as K is increased. From these panels
it is also observed that the synchrony groups are in anti-phase.
Panel (d), in the bottom, shows the evolution of the degree of
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FIG. 2: Panels (a)-(c) show the distribution of the values eiθαi in
the unit circle of the 2N (N = 500) oscillators for K = 0 (a),
K = 0.5 (b) and K = 1 (c). The color of each circle denotes the
natural frequency ωα

i of each oscillator: the darker the more different
from the average frequency (Ω = 0). In panel (d) we show the
evolution of the synchronization of the system, r, and each of the
networks, rα (α = 1, 2), as a function of the coupling K. The
system is composed of two fully-connected networks interconnected
with probability p = 0.4.

synchronization within the groups, r1 and r2, and that of the
whole system, r, as a function of K. It becomes clear that
the anti-phase alignment of the synchrony groups observed
above makes r decrease to 0 while the values rα increase for
K > Kc ≃ 0.45.

Now we focus on the onset of synchronization Kc for the
two populations. By considering the stable solution of Eq. (8)
in Eq. (6) we can express the evolution for the phase of an
oscillator i in population α as:

θ̇αi = ωα
i − (1 + p)Krα sin(θαi ) . (9)

The above equation is exactly the same to the original KM
with the exception of the (1 + p) correction in the coupling
strength. Thus, within a population α synchronization shows
up at some critical coupling λc = Kc/N where

Kc =
KKM

c

(1 + p)
=

2

πg(0)(1 + p)
. (10)

In Fig. 3 we show the degree of synchronization within a
network, rα, as a function of the coupling constant K normal-
ized to the corresponding value in the original KM, KKM

c .
Obviously, for p = 0 we have two independent fully con-
nected networks, i.e., two systems obeying the original KM,
and thus the onset is reached exactly at KKM

c . As predicted
from Eq. (10) as p increases, so that negative links between
networks appear, the onset of synchrony is anticipated, reach-
ing half of the original value, KKM

c , when p = 1.
Apart from the knowledge gained from the analysis of the

toy multilayer network, the anticipation of the onset of syn-
chronization within each population as p increases constitutes
a apparently counterintuitive result: the more repulsive links

FIG. 3: Degree of synchronization within a population α as a func-
tion of K for different values of interconnection probability p. The
value of K is normalized to that of the original Kuramoto model
KKM

c . The agreement with the theoretical prediction for the syn-
chronization onset, Eq. (10), is excellent. The interconnected system
is the same as in Fig. 2.

we add the easier synchronization is attained between nodes
sharing attractive interactions. Translated into a social context
this implies that two friends tend to become more similar as
the number of common foes increases. This result constitutes
a nice theoretical example of the importance that negative in-
teractions have on the collective behavior, here synchroniza-
tion, of complex systems.

V. UNCOVERING THE STRUCTURE OF REAL SIGNED
NETWORKS

Now we address the characterization of two real ecological
networks in which negative and positive interactions interplay.
These networks capture the relationships established between
vegetal species by measuring the spatial associations among
them [49, 50]. Spatial associations are derived by analyzing
the deviations with respect to the expected co-ocurrence fre-
quency when plants are randomly distributed in space. In this
way, those pairs of species co-occurring more than expected
are considered to interact positively (facilitation), whereas
those pairs co-occurring less than expected are considered to
interact negatively (competition).

Area N ⟨k⟩ ⟨k⟩+ ⟨k⟩− Nc S

Cabo de Gata (Almerı́a) 42 2.476 1.381 1.095 2 40
Monegros (Aragón) 46 3.347 2.695 0.652 2 44

TABLE I: Main properties of the networks analyzed. For each net-
work (named as the area where data were collected) we show the
number of nodes (species), N , the average degree of nodes, ⟨k⟩, the
average number of positive (negative) connections per node, ⟨k⟩+
(⟨k⟩−), the number of connected components, Nc, and the size of
the largest one, S.
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FIG. 4: Analysis of the Cabo de Gata ecosystem. The first panel (a) shows the evolution of the degree of synchronization r of the whole
network as a function of the coupling strength K. Panel (b) shows the evolution, as a function of K, of the phase difference of node i with
respect to node 1, ∆θi. Finally, panel (c) shows the network of interactions [facilitation links in black while negative ones appear in grey
(orange in the color version)] by grouping the nodes in six groups as revealed from panel (b).

The two studied networks correspond to two typical Iberian
semi-arid locations, Cabo de Gata (Almerı́a) and Monegros
(Aragón), being both placed in Spain. The main properties
of both networks are collected in Table I. In both networks
positive interactions dominate over negative ones, a typical
property of plant communities under stressful environmental
conditions where positive interactions are hypothesized to be
more important than negative ones [63, 64]. The main differ-
ence between these two networks lies on their different den-
sity of links, being the Monegros networks the most wired
one. A possible explanation is the presence of high live-
stock grazing intensity in the plant community of Cabo de
Gata (0.65 ind/ha, for an area where grazing carrying capac-
ity is 0.39-0.57 ind/ha, [65]). Overgrazing is known to have
a deep impact in the structure of semi-arid plant communi-
ties, particularly breaking the spatial organization of vegeta-
tion patches and randomizing the associations between plant
species [66, 67]. Thus, the network is expected to present less
linkage density. Nevertheless, the differences between the two
networks allow us to validate the partitioning method in real
communities with different properties.

To analyze how competitive and facilitation relationships
among species interplay and shape the interaction network we
proceed as follows. We set all the initial phases of the os-
cillators as θi(0) = 0 ∀i and assign nearly identical natural
frequencies ωi = 0 + ξ (with ξ being a random variable ho-
mogeneously distributed in the interval [−10−3, 10−3]). Then
we start to increase adiabatically the value of the interaction
coupling K by small increments δK and monitor how the dy-
namical equilibria reached for each value of K evolve from
small to large values of the coupling strength. Note that, at
variance with the system analyzed in Section 4, here we do not
know the partition, if any, of the network so that our goal is to
detect how groups show up from the synchronization clusters.

A. Cabo de Gata Ecosystem

In Fig. 4 we analyze the synchronization patterns of the first
network (Cabo de Gata). The first insight is provided by the
evolution of the degree of synchronization, r, of the network
as a function of the coupling K (see Fig. 4.a). Given the initial
conditions described above for K ≪ 1, the oscillators remain
fully synchronized (r = 1) as a product of the very small de-
viation in their natural frequencies. However, as K increases
there is a sudden drop of r due to the repulsive effect of neg-
ative interactions and finally, for K > 0.2, the equilibrium
state remains unaltered displaying a degree of synchrony of
r ≃ 0.89.

Once each dynamical equilibrium is reached for a value of
K we look at the distribution of the steady phases {θ⋆i } of the
oscillators in the unit circle. In particular, we measure the rel-
ative phase of an oscillator i with respect to that of oscillator
1 (the most connected node in the network): ∆θi = θ⋆i − θ⋆1 .
In Fig. 4.b we observe that as soon as the coupling strength
K is large enough a stable organization of the network into
clusters of oscillators having the same dynamical state shows
up. According to Fig. 4.b we can distinguish 6 clusters, de-
noted from I to VI in the right vertical axis Fig. 4.b. At first
sight it becomes clear that all the species in groups II to V
are strongly repelled by cluster I since these latter clusters are
placed around ∆θi = −π. In fact, by looking at the composi-
tion of cluster I we notice that this is composed by only node
1 (the hub of the system) whose interactions are all repulsive.
Thus, node 1 appears as a very competitive species which play
a central role structuring the plant community.

Taking advantage of the partition of the network provided
by the Kuramoto dynamics we can organize the nodes of the
network as in Fig. 4.c so to understand the composition and
role of the remaining clusters II to VI. First we notice that all
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FIG. 5: Analysis of the Monegros ecosystem. A sin Fig. 4 the first panel (a) shows the evolution of the degree of synchronization r of the
whole network as a function K. Panel (b) shows the evolution of ∆θi as a function of K, pointing out the existence of 10 groups. Finally,
panel (c) shows the network of interactions [facilitation links in black while negative ones appear in grey (orange in the color version)] by
grouping the nodes in the 10 groups derived from panel (b).

the members of cluster V are either direct competitors of node
1 (cluster I) or neighbors of these competitors, suggesting a
large group of species that associate among them in the spa-
tial gaps left by species 1. This result agrees well with the
distribution shown in Fig. 4.b since cluster V is placed just
at ∆θi = −π whereas clusters II, III and IV, although also
containing competitive interactions with node 1, are displaced
in such a a way that ∆θi > −π for the nodes they contain.
The reason for such displacement comes from the competi-
tion of cluster II with cluster VI (composed of nodes 2 and
3) which, in its turn, also competes with cluster I (node 1).
In fact, the competition between clusters I, II and VI mani-
fests in their respective disposition observed in Fig. 4.b where
they appear in such way that nearly maximize their relative
distance. The organization of these clusters reveals the exis-
tence of two other competitors (cluster VI) not as strong as
node 1 but with an specific negative effect on the species of
cluster II. In principle, if these clusters I, II and VI had no in-
teractions with clusters IV and III they would appear placed at
∆θi = 0, −2π/3 and −4π/3 respectively. However, cluster
II has positive interactions with cluster III which, in its turn,
interacts negatively with cluster I. Thus, as a result of the at-
traction between clusters II and III, the positions of the nodes
in these clusters appear displaced from ∆θi = −2π/3 and
−π respectively. Finally, the displacement of nodes in clus-
ter III from ∆θi = −π originates a (smaller) displacement of
nodes in cluster IV from ∆θi = −π due to the facilitation
links (21, 13) and (23, 11).

B. Monegros Ecosystem

Now we proceed to analyze the second network corre-
sponding to the Monegros location. As shown in Table I and
discussed above, this system is richer than that of Cabo de
Gata in terms of the number of interactions and, at variance
with the first network, facilitation interactions appear signifi-
cantly more frequently than competitive ones. The analysis is
done in the same fashion as for the first network (see Fig. 5).
In Fig. 5.a we show the evolution of the degree of synchro-
nization of the system as a function of K. This provides us
a first insight about the minimum coupling strength needed to
reach an equilibrium in which the competition between neg-
ative and positive interactions is manifested. This happens
for K > 0.25. The evolution with K of the phase differ-
ence of each node i with respect to the most connected node
(again node 1), ∆θi, is shown in Fig. 5.b and corroborates
that for K < 0.25 there is a self-organization of the phases
into groups that become stable for K > 0.25.

Fig. 5.b clearly shows the organization of the species
(nodes) into 10 groups (named as I, II,..., X) that are shown in
the representation of the network in Fig. 5.c. The first group is
composed by node 1 and all the species that interact (directly
or indirectly) with it via positive links. Thus, node 1 plays
a key role structuring the community by isolating species in
group I from the rest of system. In this case, node 1 is clearly
a nurse species responsible of patch formation. These patches
act as shelters against the harsh environmental conditions, in-
creasing the chances of survival of the species in cluster I.

The remaining nodes in the network compete (directly or
indirectly) with node 1, and represent the species that are
established outside the patches including species 1. How-
ever, this second part of the system appears fragmented into 9
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FIG. 6: Coarse-grained description of the Cabo de Gata (a) and Mon-
egros (b) ecosystems as obtained from the Kuramoto partitions. The
nodes of these networks represent groups of species whereas a pos-
itive (negative) link between a pair of groups exists if, at least, one
positive (negative) interaction between two species belonging to each
group is present in the original network. Solid (dashed) links reprsent
positive (negative) interactions.

groups due to the internal competition links between the mem-
bers of these groups. As competitors of node 1, the members
of group V appear, as shown in Fig. 5.b, placed at ∆θi = −π,
whereas groups II to X are displaced from this antagonist po-
sition. The reason for the displacement lies on the compet-
itive interactions launched from groups X and II which are
competitors of group I as well. For instance, group X is com-
petitor of groups I, III, IV, V so that it automatically implies
that, considering the position of groups I (∆θi = 0) and V
(∆θi = −π), the positions of groups III and IV lie in the
range ∆θi ∈ (0,−π) as they are also competitors of group I
and are positively linked to group V.

The role of groups III and V would be identical (as given
from their respective interactions with groups I, V and X) if it
were not for the competitive interactions that group III shares
with groups VII and VIII that, in their turn, are positively con-
nected to group V. These negative links become evident from
the position of group III in Fig. 5.b (∆θi > −π) whereas
group IV, not having these competitive interactions, lies close
to group V (∆θi ≃ −π). The negative interactions of group
III with groups VII and VIII automatically set their position at
∆θi < −π while being close to group V with whom share fa-
cilitation links. Moreover, the positive interactions of groups
VII and VIII with groups IX and VI respectively set the latter
close to the former, being group VI the closest to ∆θi = −π
of the four due to its positive link to group V. On the other
hand, group IX is the farthest one due to the negative interac-
tion with group II (another competitor of group I) which, as a
consequence, appears in the region ∆θi > −π.

C. Unveiling the Organization of modules

With the partition obtained above one can easily analyze
the organization that facilitation and competitive interactions
provides to the system. In Fig. 6 we show the coarse-grained
representation of the Cabo de Gata (a) and Monegros (b) net-
works where the nodes account for the detected groups and

the interactions between them are positive or negative depend-
ing on the nature of the interactions between the nodes each
group contains. This picture provides a valuable tool to iden-
tify groups of species which present the same interaction be-
havior in the system. For example, a group of species which
share positive interactions represents a particular type of veg-
etation patch in the community (as group I in the Monegros
ecosystem). Let us remark that none of the pairs of connected
groups share mixed interactions, i.e., the links between groups
are either positive or negative. Thus, the partitions obtained
from synchronization clusters allow us to interpret unambigu-
ously the relationships between the different groups of species
in an ecosystem.

For the first network (see Fig. 6.a), it is easy to notice the
critical role that group VI has on the organization of the net-
work. In fact, by deleting group VI the role played by II,
III and IV would be identical so that they would merge into
one single group and, analogously, this new resulting group
would have an analogous role to that of group V implying a
new merging of groups that would turn the system into a net-
work of two competing populations. This conclusion can be
easily reached by looking directly to the corresponding net-
work of interactions between species (see Fig. 4.c). However,
the analysis of the Monegros network (see Fig. 5.c) becomes
more difficult.

In ecological terms, the pattern of interactions between the
groups in the Monegros ecosystem, shown in Fig. 6.b, sug-
gests the existence of a complex competition pattern among
the modules competing with module I, probably related to
the particular life histories of the species composing them.
Specifically, by considering groups II to X we observe that
groups II and X are monospecific so that the two species (22
and 20 respectively) establish themselves outside the vegeta-
tion patches composed of species belonging to groups I and
III to IX. However, from Fig. 6.b it becomes clear that vege-
tation patches containing species from groups III to IX can be
composed of species belonging to group V together with some
species belonging to groups III, IV, and VI-IX. Specifically,
the negative interactions that species in module III share with
those in modules VII and VIII suggest that species in these
groups limit the establishment of other species when they are
already present in the patch.

Interestingly, the coarse-grained network of the Monegros
ecosystem (Fig. 6.b) provides useful insights about the re-
sponse of the system under certain perturbations. For in-
stance, the aforementioned fragmentation into several groups
of the population competing with group I can be seen as a
product of the two unbalanced triads, (III-V-VIII) and (III-V-
VII), in the coarse grained network. Thus, one can ask what
are the effects associated to the removal of group III or, alter-
natively, the absence of species 33, as it is the one responsi-
ble of the unbalanced triads created in the network of species
(Fig. 5.c). To this aim we have studied the Kuramoto dynam-
ics with and without species 33 for K = 1. In this way, we
evolve in time the Kuramoto dynamics of the whole system
and at some point we remove node 33 in order to monitor how
a new partition of the network shows up.

In Fig. 7 we report the original equilibrium distribution of
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FIG. 7: Panels (a) and (b) show the distribution at equilibrium of
the phases of each species in the unit circle. The panels show these
distribution in the Monegros ecosystem before (a) and after (b) re-
moving group III. Finally, panel (c) shows the time evolution of the
values ∆θi of the nodes in groups IV-IX before (t < 0) and after
(t > 0) removing group III.

the phases of the 44 species in the unit circle in the Monegros
system (a) and the one after removing group III (b). The re-
sult is that the population passes from being partitioned into
10 groups to have 6 modules. One module (III) is trivially
removed, however, as a byproduct other 3 groups have dis-
appeared or, better said, three new groups have emerged from
the mixing of six (IV-IX) old ones. The merging of the 6 mod-
ules is shown in Fig. 7.c by monitoring the evolution of ∆θi
for the nodes in groups IV-IX. At time t = 0 we remove group
III and subsequently a reorganization of the species into new
three groups takes place. The composition of the most pop-
ulated of the new groups is highlighted in Fig. 5.c and, as
shown, it comprises former groups IV, VI, VII and VIII and
species 16 from group V.

In a nutshell, the absence of species 33 creates a much
larger coalition of species competing with those contained in
group I. This result illustrates the critical role played by group
III in the organization of the system and, in particular, in the
fragmentation of the original coalition. In ecological terms,
the suppression of species 33 would foster the formation of
vegetation patches mixing species from former modules IV,
VI, VII and VIII, that, in the original system, were highly con-
ditioned by the presence of species 33.

VI. CONCLUSIONS

The analysis carried out in both Cabo de Gata and Mone-
gros locations unveils that the interplay between negative and
positive interactions yields an effective partition of signed net-

works that can be detected by analyzing the synchronization
patterns between the nodes. Importantly, this analysis can be
done straightforward without any a priori information about
the number and size of groups in the system and avoiding
computationally expensive optimization algorithms.

The method introduced here is along the same line as the
one reported in [12, 53–56] for the case of community detec-
tion in complex (unsigned) networks by means of the classi-
cal attractive Kuramoto model. Very recently [68], another
dynamical clustering based on the dynamics of a deformed
KM has been implemented to analyze the structure of signed
social interactions. Here, after illustrating in Sec. IV the pat-
terns that the interplay between attractive and repulsive inter-
actions introduces in the stable equilibrium of Kuramoto os-
cillators in ideal modular signed networks [36] by analyzing
the case of two interconnected groups, in Secs. V.A and V.B
we have tackled the problem of partitioning ecological signed
networks with both competition and facilitation by simply an-
alyzing the equilibrium distributions and compositions of the
synchronization clusters. The identification of modules within
the community and the position of species within those mod-
ules is central to understand the structure and functioning of
ecological networks, independently of the type of biotic inter-
actions considered [69].

The application of synchronization to group partitioning in
ecological networks also provides useful insights about the
nodes and groups which play a major role structuring the com-
munity. As shown in Sec. V.C, this information help us to
explain the diversity and composition of vegetal patches and,
more importantly, to anticipate the possible changes that the
removal of species introduce in this organization. In this re-
gard, the analysis of synchronization patterns allows to mon-
itor how is the transition between the original organization to
the emerging new one, thus providing a fast and useful frame-
work to assess the resilience of ecological networks and to de-
sign accurate and focused conservation/restoration strategies.
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APPENDIX A: LINEAR STABILITY OF THE
SYNCHRONIZED SOLUTIONS IN THE TWO

POPULATIONS SYSTEM

From the Kuramoto equations, Eq. (6), we can write the lin-
earized equations governing the time evolution of small per-
turbations ϵαi ≪ 1 to the phases θαi as:

ϵ̇αi =

N∑
j=1

Krα cos(Ψα − θαi )

[
∂Ψα

i

∂θαj
− δij

]
ϵαj

+
N∑
j=1

K sin(Ψα − θαi )
∂rα

∂θαj
ϵαj

+ pKrβ cos(Ψβ − θαi )ϵ
α
i

−
N∑
j=1

pKrβ cos(Ψβ − θαi )
∂Ψβ

i

∂θβj
ϵβj

−
N∑
j=1

pK sin(Ψβ − θαi )
∂rβ

∂θβj
ϵβj , (A1)

where δij is the Kronecker’s delta function defined as δij = 1
if i = j and δij = 0 otherwise.

Now we consider an initial perturbation of the form
ϵαi (0) = δ and ϵβi (0) = −δ (with α = 1, 2 and β = 2, 1
respectively), i.e., we perturb all the phases in one population
in the same way while the opposite perturbation is applied to
all the phases in the other one. This way, the perturbations in
population α initially evolve as:

ϵ̇αi = 2pKrβ cos(Ψβ − θαi )δ , (A2)

whereas those in population β initially follow:

ϵ̇βi = −2pKrα cos(Ψα − θβi )δ . (A3)

Let us note that we have used these two equalities:

N∑
j=1

∂rα

∂θαj
= 0 , (A4)

N∑
j=1

∂Ψα

∂θαj
= 1 . (A5)

Now we consider the first of the solutions to Eq. (8), Ψα =

Ψβ = 0 (θαi = θβi for those oscillators with the same identical
frequency ωα

i = ωβ
i ), and set (by invoking the symmetry of

the two populations system) that rα = rβ . Then we obtain
from Eqs. (A2) and (A3): ϵ̇αi = −ϵ̇βi > 0, so that the phases
of the oscillators θαi and θβi separate from each other, thus
pointing out that Ψα = Ψβ = 0 is an unstable equilibrium.

Instead, substituting in Eqs. (A2) and (A3) the solution
Ψα = 0 and Ψβ = π (θαi = θβi − π for those oscillators with
the same identical frequency ωα

i = ωβ
i ), yields: ϵ̇αi = −ϵ̇iβ <

0, so that the phases in both populations tend to recover their
original position, i.e., they are stable.
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