%0 Journal Article %T A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules %+ Institut d'Électronique et des Technologies du numéRique (IETR) %A Foglia Manzillo, F. %A Ettorre, M. %A Lahti, M.S. %A Kautio, K.T. %A Lelaidier, D. %A Seguenot, E. %A Sauleau, R. %< avec comité de lecture %@ 0018-9480 %J IEEE Transactions on Microwave Theory and Techniques %I Institute of Electrical and Electronics Engineers %V 64 %N 7 %P 2272--2283 %8 2016 %D 2016 %R 10.1109/TMTT.2016.2574313 %K Antenna feeders %K Antenna lobes %K Directional patterns (antenna) %K Electric impedance %K Microelectronics %K Microwave antennas %K Millimeter waves %K Monolithic microwave integrated circuits %K Multibeam antennas %K Multilayers %K Substrate integrated waveguides %K Temperature %K Access-point antennas %K Corporate feed network %K High data rate wireless %K Integrated solutions %K Low-temperature co-fired ceramics %K Millimeter-wave systems %K Parallel plate waveguide %K Vertical configurations %K Waveguides %Z Computer Science [cs]/Networking and Internet Architecture [cs.NI] %Z Engineering Sciences [physics]/ElectronicsJournal articles %X An integrated solution for the development of multilayer antenna modules for fifth-generation (5G) communications, based on low temperature cofired ceramic (LTCC), is presented. The design exploits the 3-D integration capabilities of the LTCC process, enabling the realization of a full-corporate feed network (CFN) in vertical configuration. A novel implementation of the CFN employing dielectric-embedded parallel plate waveguides (PPWs) is proposed. The PPW lines are delimited by via-rows. As opposed to standard substrate-integrated waveguide feed networks, guided fields are orthogonal to the via-rows and propagate along the vertical axis of the structure. The CFN feeds four long slots, without any coupling structure, and provides broadband operation. The final prototype comprises 18 LTCC tapes, with a total thickness of 3.4 mm. The measured -10-dB impedance bandwidth spans from 51.2 to 66 GHz (>25.2%). The module generates a fixed broadside beam, but multibeam operation in H-plane can be easily achieved. In the 50-66-GHz band, the peak gain is 14.25 dBi and the average first side-lobe level in H-plane is -20.6 dB. The proposed technology and the design concept are suited for highly integrated millimeter-wave systems, such as access points in the future V-band high data-rate wireless networks. © 1963-2012 IEEE. %G English %L hal-01368149 %U https://univ-rennes.hal.science/hal-01368149 %~ UNIV-NANTES %~ UNIV-RENNES1 %~ CNRS %~ INSA-RENNES %~ IETR %~ IETR_SRC %~ STATS-UR1 %~ CENTRALESUPELEC %~ UR1-HAL %~ UR1-MATH-STIC %~ UR1-UFR-ISTIC %~ IETR-BEAMS %~ IETR-ADH %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INSA-GROUPE %~ UR1-MATH-NUM %~ IETR-SUMIT %~ NANTES-UNIVERSITE %~ UNIV-NANTES-AV2022 %~ TEST3-HALCNRS