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Fast Antenna Array Diagnosis
from a Small Number of Far-Field Measurements

Benjamin Fuchs, Member, IEEE, Laurent Le Coq, and Marco Donald Migliore, Member, IEEE

Abstract— The fast diagnosis of antenna arrays from a small
number of far-field measurements is addressed. With the a
priori knowledge of the failure-free array radiation pattern,
it is possible to reformulate the diagnosis problem such as
only the faulty elements or the localized field differences have
to be retrieved. Efficient and readily available sparse recovery
algorithms can then be applied to identify the failures from a
small number of measurements compared to standard diagnosis
techniques, and hence speed up the diagnosis. More specifically,
three regularization procedures namely the minimization of the
`1, Total Variation and the mixed `1/`2 norm are used to solve
the ill-posed array diagnosis problems. These approaches are
compared to two standard fault identification techniques: the
back-propagation algorithm and the matrix inversion method for
the diagnosis from simulated and measured data. The simulation
of a 10×10 waveguide array in realistic conditions of noise and
taking into account the potential scaling factor between two
measurements is first presented. Then, a reflectarray composed
of 193 cells with metallic strips to emulate phase failures is
considered. Both numerical and experimental results confirm
the effectiveness of the sparse recovery algorithms and the
importance of prior information on the source.

Index Terms— Antenna measurements, Arrays, compressive
sensing.

I. INTRODUCTION

The identification of failures in large antenna arrays is
a theoretically and practically relevant topic with important
applications both for civilian and military market. Indeed,
many existing and upcoming technologies require the use of
sophisticated phased or active arrays with a large number of el-
ements. One can cite the large arrays used in modern RADAR
systems, the massive MIMO and full MIMO systems that are
currently under development [1], [2] and the huge development
of personal communication devices that calls for the design of
always more complex antenna arrays. Consequently, there is
and will be an important need for the fast testing and diagnosis
of these complex antenna systems.
A powerful method for array testing is based on far-field
measurements. The acquired data are successively elaborated
to identify possible failures in the radiating elements of the
Antenna Under Test (AUT). A commonly used technique
is the back-propagation algorithm (BPA) [3]. The BPA can
be applied to planar arrays and is based on the Fourier
relationship between the radiated far-field and the field on
the array aperture. A generalization of the BPA is the Matrix
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Method Algorithm (MMA) [4], [5]. The MMA is based on
standard tools of linear algebra to stabilize the inversion of the
matrix relating the field on the array aperture to the radiated
far-field.
Both the BPA and the MMA requires a large number of
measurements, and consequently a long measurement time in
case of arrays with a large number of elements. One way to
overcome this drawback is to use the a priori knowledge of
a failure-free array radiation pattern so that only the faulty
array elements have to be identified. The use of a differential
scenario combined with sparse recovery algorithms has been
applied in [6]–[11] to retrieve the element excitations and
perform the array diagnosis. This approach leads to a small
number of unknowns, but it requires a detailed model of the
array and an accurate knowledge of the radiating element
patterns to provide relevant results.
In this paper, the problem is not considered at the element
excitation level but the distribution of the field on the array
aperture is estimated. It allows to identify the modifications of
the field aperture distribution due to phenomena that cannot
be modelled as simple element failures, such as the diffraction
contributions from the edges of the array or the multiple
reflections between the reflectarray and its feed. The price
to pay to get a more complete information on the AUT is
the number of unknowns that is then much larger. However,
for sparse recovery based approaches, the number of required
measurements slowly increases (in a logarithmical way) with
the number of unknowns [12]–[14]. Therefore, the strategy
of field reconstruction takes fully advantage of the main key
feature of sparse based techniques.
The so-formulated diagnosis problem can be solved using
readily available routines whose computation times are slightly
higher than those of standard approaches. It is important to
point out that the overall time taken to achieve the antenna
diagnosis depends mostly on the measurement time, the post-
processing time being several order of magnitude faster. This
is why the proposed sparse recovery approaches, that require
a small number of measurements, enable a fast antenna diag-
nosis.

Three different strategies based on sparse recovery to per-
form antenna diagnostic are presented in this paper. More
specifically, the minimization of the `1 norm, the Total Vari-
ation (TV) norm, and the mixed `1/`2 norm are used as
regularizers to solve the inverse problem. It is then possible
to derive, from the fields reconstructed on the array aperture,
a proper array diagnosis. These methods are first applied to
the far-field simulated data of a 100 elements array. The
diagnosis performances are assessed and compared to two
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Fig. 1. Array and reference system. (a) Reference Antenna without failures (RA) or golden array. (b) Antenna Under Test (AUT). (c) Differential Antenna
(DA). In this representation, the number of failures is S = 2 and the total number of elements is N = 24.

standard fault identification techniques (the BPA and MMA
algorithms) in various realistic conditions. Then, the proposed
approaches are applied to the measured the far-field data of
a reflectarray antenna in which failures have been added on
purpose. This antenna has already been used [10], [11] to
analyze the performance of the `1 minimization algorithm.
Here, new regularization schemes are introduced and applied
at the electric field distribution level to further improve the
antenna diagnosis as confirmed by the comparisons with BPA
and MMA techniques. Though applied on planar radiating
structures, the proposed procedure can be used to perform the
diagnostic of any type of arrays including conformal ones.

II. THE PROBLEM OF ARRAY DIAGNOSIS

A. Differential Setup

Let us consider a planar array radiating in free space. The
field radiated by the array is measured (in amplitude and
phase) in the far-field zone. This array, represented in Fig.
1(b) is called the Antenna Under Test (AUT). The quantities
related to the AUT are denoted by the superscript ’d’. In
particular, Ed(x, y) is the tangential field on the array aperture,
i.e. Ed(x, y) = Edx(x, y)x̂ + Edy (x, y)ŷ, wherein Edx(x, y)
and Edy (x, y) are respectively the x and y components of
the electric field on Σ. The far-field Fd(r, θ, φ) is the field
measured on a portion of an hemispherical surface (0 ≤ θ ≤
π/2, 0 ≤ φ ≤ 2π) at a distance r from the phase center of the
AUT, such as r > 2D2/λ where D is the maximum dimension
of the antenna and λ is the free space wavelength.
We assume that the far-field (amplitude and phase) of a golden
array represented in Fig. 1(a), i.e. an array without failures, is
available. This array is the Reference Antenna (RA) and the
quantities related to the RA are denoted by the superscript ’r’.
In particular, Er(x, y) is the field on the RA aperture Σ and
Fr(r, θ, φ) is the radiated far-field.
The Differential Antenna (DA) is represented in Fig. 1(c).
Its tangential field distribution E(x, y) on Σ is equal to the

difference between the RA and AUT distributions, and its far-
field F(r, θ, φ) is given by the difference between the RA and
AUT far-field:

E(x, y) = Er(x, y)−Ed(x, y) (1)

F(r, θ, φ) = Fr(r, θ, φ)− Fd(r, θ, φ) (2)

The use of this differential setup allows to have an equivalent
problem in which only the area corresponding to a field
modification (due to failures) radiates. A visual inspection of
the field distribution on the DA allows the identification of the
problems affecting the AUT.

B. Conventional diagnosis approaches

A widely adopted method to identify the failures is the
back-propagation algorithm (BPA). The BPA is based on the
Fourier relationship between the tangential components of the
field distribution on the DA surface E(x, y) and the far-field
F(r, θ, φ) radiated by the DA. As well known, the spatial
resolution on the array aperture is practically limited to λ/2. A
smaller number of unknowns would lead to an undersampling
of the tangential field distribution on the aperture. Thus, in
case of an array of dimensions 2a× 2b, the minimum number
of unknowns is N ' ab/λ2. A larger number of unknowns
does not increase the accuracy of the reconstruction, but acts
as an oversampling of a band-limited function which leads to
an interpolation of the data.
Another method proposed to identify the failures of large
antenna arrays is the matrix method algorithm (MMA). The
MMA is based on the linear relationship between the vec-
tors x ∈ CN and y ∈ CM collecting the sampled val-
ues of E(x, y) and F(kx, ky) respectively, wherein kx =
k0 sin(θ) cos(φ), ky = k0 sin(θ) sin(φ), k0 = 2π/λ. The linear
operator is modeled by the radiation matrix A which leads to:

y = Ax. (3)
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The matrix A is, in general, ill-conditioned and regularization
methods are required to restore the stability of the solution
[15]. A common approach, used in this paper, is the truncated
Singular Value Decomposition (SVD) [16], [17].

C. On the number of measurement points

Both the BPA and MMA techniques require a large number
of measurements. In a differential setup, we can reasonably
assume that the field on the DA is localized which means that
the unknown to be retrieved is highly sparse as schematized
in Fig. 1(c). In general, there is indeed a small number
of failures S compared to the total number of radiating
elements N , or similarly the field differences between the
RA and the AUT are localized. The use of sparse recovery
approaches allows the estimation of x from a number of
measurements significantly smaller than the one required by
standard inversion approaches. A rigorous analysis in terms
of information content of the electromagnetic field [17], [18]
shows that the amount of information is reduced from O(N) to
O(S logN/S), wherein O(·) is the Landau symbol. Accord-
ingly, it is at least theoretically possible to obtain a similar
reduction in the number of data.

III. RESOLUTION VIA COMPRESSED SENSING / SPARSE
RECOVERY BASED APPROACHES

A standard approach for matrix inversion regularization
is to introduce a priori information in the inversion. An
effective method to achieve this regularization is to minimize
an appropriately chosen norm p of the solution vector x. The
optimization problem to solve is then:

min
x
‖x‖p subject to ‖y −Ax‖2 ≤ ε (4)

where ‖.‖p stands for the `p norm, and ε depends on the noise
and uncertainties affecting the data.
It is important to note that there are many readily available
routines to solve efficiently convex optimization problems such
as (4), e.g. [19], [20].
Three different norms `p, chosen according to the a priori in-
formation about the differential setup of the diagnosis problem,
are now described to regularize the inversion. They are applied
in Section IV and V to perform the diagnostic of simulated
and measured radiating structures respectively.

A. `1-norm

As previously discussed, it is reasonable to suppose that the
solution x is sparse. Consequently, the search space can be
drastically reduced by introducing this a priori information in
the inversion. In particular, the `1-norm (‖x‖1 =

∑
k |xk|) is

the best convex surrogate of the proper measure of the sparsity
of a vector, i.e. the quasi-norm `0 that counts the number of
non-zero occurrences of a vector. Consequently, the use of
`1 norm in the inversion scheme (4) is an effective strategy
to promote sparse solution [12], [21]. The so-regularized
inversion problem is:

min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ ε. (5)

Let us point out that minimizing the `1-norm enforces the
sparsity of the solution point-wise, i.e. for each sample xk of
the field on the DA.

B. Total Variation norm

We know a priori that our solution x has a few discontinu-
ities that are due to the presence of the failures. Apart from
these failures, the field x is expected to be flat and close to
zero. Thus, the use of the Total Variation norm (TV-norm)
is a good candidate to regularize X. The TV-norm is indeed
a smoothing function introduced in [22]. By minimizing the
TV-norm of a matrix, we minimize its gradient, hence the
smoothing effect. For 2D complex data X ∈ CM×N , the TV-
norm reads:

‖X‖TV =
∑
m,n

|Xm+1,n −Xm,n|+ |Xm,n+1 −Xm,n| (6)

= ‖vec(∇xX)‖1 + ‖vec(X∇y)‖1

where vec(X) produces a vector of length MN that contains
the columns of X, stacked below each other. The discrete
gradient matrices ∇x and ∇y are of size M ×M and N ×N
respectively, and equal to:

∇x =

−1 1 0
. . . . . .

0 −1 1

 and ∇y =


−1 0

1
. . .
. . . −1

0 1

 .
The optimization problem (4) becomes:

min
X
‖X‖TV subject to ‖y −Avec(X)‖2 ≤ ε. (7)

C. Mixed `1/`2-norm

We can also take advantage of the knowledge about the
structure of the problem at hand, specifically the position and
dimensions of the radiating apertures. The solution vector x is
then divided into G groups xg corresponding to each radiating
aperture g. Indeed, when one radiating element is faulty, then
all discretization points xgk included in this radiating aperture
should be faulty, i.e. non zero.
Let us divide the vector x of length MN into G non overlap-
ping groups denoted xg of size Ng such as

∑G
g=1Ng = MN .

The mixed `1/`2-norm is:

‖x‖1, 2 =

G∑
g=1

‖xg‖2 =

G∑
g=1

√
|xg1|

2
+ ...+ |xgNg

|2. (8)

It behaves like an `1-norm on the vector
[‖x1‖2, . . . ‖xg‖2, . . . ‖xG‖2] and therefore it induces
group sparsity, in this case the sparsity at a radiating aperture
level. A thorough description of group (also called structured)
sparsity-inducing norms is given in [23]. The regularized
inversion problem is then:

min
x
‖x‖1, 2 subject to ‖y −Ax‖2 ≤ ε. (9)
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IV. NUMERICAL SIMULATIONS

A. Settings

1) Full Wave Simulation Setup: Let us consider an array
composed of 10 × 10 WR90 open ended waveguides working
at 10 GHz as represented in Fig. 2. These waveguides of
aperture size 22.86×10.16 mm2 are uniformly spaced by λ
and λ/2 in the x and y directions respectively. The radiation
pattern of this array has been computed with the full wave 3D
electromagnetic software Ansys HFSS v.15.

x

y

Fig. 2. Illustration of the 100 open-ended waveguide array simulated with
HFSS for diagnostic purposes.

First, all N waveguides are fed with the same excitation value
in order to emulate a failure-free array, i.e. the RA. Then, K
failures in either amplitude δA or phase δΦ are added so as to
model the AUT.

2) Noise: In practice, measurements are contaminated by
noise, therefore a Gaussian noise n is added on both patterns
of reference and with defaults as follows: yqn = yq + nq

with q = {r, d}. The level of the noise is determined by
the Signal-to-Noise Ratio (SNR) that is defined from the
maximum received field magnitude in order to fit with the
dynamic range measurement. The noise is equal to:

nq =
N (0, 1) + jN (0, 1)√

2
.max |yq|.10−SNRdB/20.

where N (0, 1) is a gaussian random vector of mean 0 and
standard deviation 1.
The far-field considered in the inversion is then: yn = yrn−ydn
and the problem (4) becomes:

min
x
‖x‖p subject to ‖yn −Ax‖2 ≤ ε. (10)

3) Measurement Scaling Factor: One practical problem in
measurements is that there can be a complex scaling factor γ
between the measurement of the AUT and the one of the RA:
yd = γyr. This scaling factor is also present if the RA data are
available from simulation instead of measurement. Therefore,
it is of interest to suppose that the differential far-field is:

y = γyr − yd (11)

where γ is the unknown complex scalar that simulates the in-
evitable scaling (not due to element failures) in both amplitude
and phase between the measurements yr and yd.
The unknown scaling in amplitude |γ| can be overcome by

normalizing both yr and yd with respect to the total radiated
power ‖yr‖2 and ‖yd‖2 respectively. The small number of
failures should indeed not impact in a significant way the total
amount of radiated power. To compensate the scaling in phase
∠γ, we compute the global phase shift difference ∆Φ between
yr and yd as follows:

∆Φ =
1

M

M∑
m=1

(∠yrm − ∠ydm).

B. Recovery Performances

In order to quantify the diagnostic performances let us intro-
duce the following indicator. We first sum up the magnitudes
of the field samples xk included on each radiating aperture g:
αg =

∑
g |x

g
k|, for g = 1, ..., G. By doing so, we get a positive

number per radiating element g from which we compute the
difference ∆FA between the level of the lowest failure and
highest false alarm. The value of ∆FA gives the margin to set
a threshold to discriminate true failures from false alarms as
represented in Fig. 3. The higher the margin ∆FA is, the easier
the diagnostic is. A negative ∆FA means that the diagnostic
is not correctly performed since a false alarm is then higher
than a failure.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

∆FA

α
k

radiating element k

Fig. 3. Illustration of an array diagnostic result: the values αk are the level
per radiating element k and the distance ∆FA is the margin between the
lowest of the 5 errors (all assumed to be correct here) and the highest false
alarm.

C. Results

For each configuration, the simulation is repeated 100 times
with a Gaussian white noise. All presented results are average
values over these 100 simulations in order to get meaningful
results. The following number of far-field data is considered
to ensure the best possible reconstruction in all investigated
configurations of noise and errors: 25 = 1024 for the BPA,
30 × 30 = 900 for the MMA and 12 × 12 = 144 for the
sparse recovery based approaches. Whereas choosing a higher
number of points do not improve the recovery, a reduced
number of data could be employed in a few specific cases
involving important errors and a high SNR.
The parameter ε in the data fitting constraint of the sparse
based approaches (4) is chosen to be higher than the noise
level. We typically set ε to be equal to 1.1‖n‖2. In the case of
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TABLE I
WAVEGUIDE ARRAY DIAGNOSTIC RESULTS - K=5 AMPLITUDE ERRORS

Config. SNR [dB] Method ∆FA

δA=1 60 BPA 0.44
MMA 0.54
`1 min 0.59
TV. min 0.53
`1/`2 min 0.79

40 BPA 0.40
MMA 0.47
`1 min 0.44
TV. min 0.14
`1/`2 min 0.67

δA=0.1 100 BPA 0.45
MMA 0.54
`1 min 0.59
TV. min 0.45
`1/`2 min 0.72

60 BPA 0.33
MMA 0.34
`1 min 0.21
TV. min 0.00
`1/`2 min 0.70

measurements, an estimation of the SNR is used to determine
ε. Our anechoic chamber exhibits a SNR of about 60 dB and
the value of ε is set accordingly.
An example of reconstruction results is given in Fig. 4. They
illustrate the particularities of each inversion approach, namely
the point-wise sparsity of the `1 minimization with visible
localized ‘hot spots’ (Fig. 4(c)), the flat regions produced
by the TV-norm minimization (Fig. 4(d)) and the group-wise
sparsity provided by the `1/`2 minimization in which the
shape of the waveguide apertures are clearly reconstructed
(Fig. 4(e)).

1) Amplitude Failures: We consider that K = 5 waveg-
uides are fed with an amplitude of 1-δA instead of 1 in order
to simulate failures in amplitude. To assess the recovery, we
compute the margin ∆FA for various SNR. The results are
reported in Table I.
As expected, it is easier to perform the diagnostic when the
error in amplitude is more important. Generally speaking,
for the same SNR, ∆FA is greater when δA = 1 than for
δA = 0.1. The diagnostic result obtained by BPA, MMA and
`1 minimization are quite similar. The diagnostic is not correct
when the SNR is lower than 40 and 60 dB for an amplitude
error δA of 1 and 0.1 respectively. Let us point out that thanks
to the a priori sparsity knowledge, the `1 minimization requires
significantly less measurement points than the BPA and MMA
as already discussed and shown in [6], [10], [11]. The TV-
norm works less well than the other approaches when the
SNR decreases, this is probably because the noise smooths
the contrast required for a proper diagnostic. The highest
∆FA, i.e. the best diagnostic performances, are obtained when
applying `1/`2-norm minimization, that uses stronger a priori
information compared to the other compressive sensing based
techniques.

2) Phase Failures: We consider that K = 5 waveguides
are fed with an amplitude of ejδΦ instead of 1 in order to
simulate failures in phase. To assess the recovery, we compute

TABLE II
WAVEGUIDE ARRAY DIAGNOSTIC RESULTS - K=5 PHASE ERRORS

Config. SNR [dB] Method ∆FA

δΦ=60 ˚ 60 BPA 0.56
MMA 0.55
`1 min 0.65
TV. min 0.47
`1/`2 min 0.81

40 BPA 0.50
MMA 0.45
`1 min 0.45
TV. min 0.10
`1/`2 min 0.64

δΦ=10 ˚ 100 BPA 0.57
MMA 0.56
`1 min 0.62
TV. min 0.44
`1/`2 min 0.85

60 BPA 0.55
MMA 0.51
`1 min 0.59
TV. min 0.38
`1/`2 min 0.78

the margin ∆FA for various SNR. The results are reported in
Table II.
The comments made for amplitude failures hold in the case
of phase failures. As we must expect, a large phase error
δΦ=60 ˚ is easier to diagnose than a small one δΦ=10 ˚ . In
addition, the diagnostic is not correct when the SNR is
lower than 40 and 60 dB for a phase error δΦ of 60 ˚ and
10 ˚ respectively. The best diagnostic results are also obtained
when using the group-sparsity regularizer.

3) Scaling Factor: We investigate the effect of the scaling
factor and the efficiency of the compensation procedure de-
scribed in Section IV-A.3. For that purpose, let us consider the
BPA inversion technique and the case of K = 5 failures with
various SNR. We set a complex scaling factor α of random
amplitude between 0 and 10 and random phase between 0 and
2π.
The diagnostic results (average value over 100 iterations)
without and with compensation procedure are reported in Table
III as well as the estimation of the phase shift error |∠α−∠α̂|.
Without compensation, the diagnostic always fails since
∆FA < 0 for all investigated configurations. We observe that
the compensation procedure helps significantly to improve the
diagnostic. Of course, the diagnostic results are less good than
in absence of scaling. We also note that the phase shift due to
the scaling is fairly well estimated in case of important errors
(δA = 1 and δΦ=60 ˚ ) and very well approximated in case
of small failures (δA = 0.1 and δΦ=5 ˚ ) because the induced
phase shift between yrn and ydn is then small. In conclusion,
the proposed compensation approach turns out to be efficient
but a calibration (if possible) between the measurements of
yr and yd remains important to improve the quality of the
diagnostic.
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Fig. 4. Reconstructed excitation errors for the case of K = 5 amplitude failures with δA = 1 and SNR=60 dB obtained by: (a) BPA, (b) MMA, (c) `1-norm
minimization, (d) TV-norm minimization and (e) `1/`2-norm minimization.
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Fig. 5. (a) Normalized measured far-field radiated by the reflectarray without default at 12 GHz. Normalized (b) amplitude and (c) phase apodisation on the
reflectarray due to the horn.

V. EXPERIMENTAL RESULTS

A. Measurement Settings

The proposed diagnostic approaches are now applied to
measured data. The AUT is a reflectarray of 193 cells, re-
radiating a beam tilted in both planes as shown in Fig. 5(a).
This antenna has been designed by Thales Alenia Space in
the framework of the project R3MEMS. A total number of
5536 co-polar and cross-polar data have been measured on a
far-field half-sphere at 12 GHz.
Seven radiating elements have been covered by metallic square
patches in order to emulate a phase failure on the element, as
shown in Fig. 6. The so-induced phase errors are also reported
in this figure.
The reflectarray is illuminated by a directive horn which causes
a non uniform illumination of the cells as shown in Fig. 5(b,c).
The horn apodisation is compensated before performing the
inversion.
From the above data, the failures can be divided into three
groups: two ‘important’ failures with a large phase difference
and a strong horn illumination (specifically the failures hav-

ing phase difference equal to 100◦and 114◦), two ‘medium’
failure with large phase difference but low illumination (the
failure having phase difference equal to 102◦and -143◦) and
three ‘less’ important failures, with small phase difference or
medium phase difference but low amplitude illuminations (i.e.
the failure with 72◦, 23◦, 14◦phase difference).

B. Reconstruction Results

As a first step, the MMA method is applied using a large
number of measured data collected on a grid that is as close
as possible to a 30× 30 uniformly spaced grid in the spectral
domain. The results, obtained using these 900 measurement
points, are plotted in Fig. 7(b). The two ’important’ failures
and one ’medium’ failure are clearly visible. This result is the
best field amplitude that can be reconstructed, and an increase
of the number of measurement points does not lead to any
improvement. Some variations in the aperture field amplitude
can be noticed in other parts of the reflectarray. The BPA
method is also applied using these 900 measurement points
in order to check these results. The aperture field distribution,
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Fig. 7. Reconstructed field on the aperture of the reflectarray obtained by: (a) BPA from 25 = 1024 measurement points; (b) MMA from 30× 30 = 900
measurement points; and the sparse recovery based approaches from 12×12 = 144 measurements points: (c) `1-norm minimization, (d) TV-norm minimization,
(e) `1/`2-norm minimization.

TABLE III
INFLUENCE OF THE SCALING COMPENSATION - K=5 FAILURES

no compensation with compensation
config. SNR [dB] ∆FA ∆FA |∠α− ∠α̂| [deg]

δA = 1 100 -0.74 0.28 17.7
60 -0.72 0.27 17.9
40 -0.76 0.14 24.2

δA = 0.1 100 -0.29 0.46 0.2
60 -0.29 -0.03 2.4
40 -0.33 -0.46 16.7

δΦ=60 ˚ 100 -0.19 0.23 17.0
60 -0.19 0.24 16.9
40 -0.21 0.01 24.4

δΦ=5 ˚ 100 -0.22 0.23 1.7
60 -0.22 -0.04 3.0
40 -0.25 -0.42 18.3

shown in Fig 7(a), confirms the general observation obtained
using the MMA. Notably, the presence of similar field dif-
ference in areas wherein artificial failures where not imposed
should be pointed out. Similar field mappings are obtained
with the three proposed compressive sensing based inversion
techniques using only 12× 12 = 144 measurement points, as
shown in Fig. 7(c,d,e).

C. Number of Measurement Points

The number of measurement points impact the quality of
the field reconstruction and hence the diagnostic. In Fig. 8,

 

 

 

  

 

  

23°
-143°

100° 14°

114°

72°102°

Fig. 6. Picture of the reflectarray with metallic strips to create 7 faulty
elements. The induced phase errors are reported.

the fields reconstructed on the aperture of the reflectarray by
the MMA and the three compressive sensing based approaches
are compared in case of only 9 × 9 = 81 and 8 × 8 = 64
measurements. It appears clearly that the MMA manages to
retrieve only the two main failures whereas the three proposed
approaches are able to image the three main ones. The pro-
posed technique behave well in spite of a significant reduction
of measurement data because of the added information on the
sparsity of the solution or the derivative of the solution for the
TV-norm minimization which helps the inversion procedure.
The calculations are done on a 2.8GHz-CPU 8.0Go-RAM
Xeon x64 and the computation times are also reported in this
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Fig. 8. Reconstructed field on the aperture of the reflectarray obtained from 9×9 and 8×8 measurement points using the MMA, `1-norm minimization,
TV-norm minimization, `1/`2-norm minimization with the associated computation times.

figure. Although the three proposed approaches are more time
consuming than the MMA, this increase remains very small
with respect to the measurement time cost.
Among the three sparse recovery techniques, the `1/`2 norm
minimization is the one that leads to the best mapping results.
In this specific case, a priori information on the structure of the
sparsity, specifically the geometry of the cells, are also added
which is not the case for the `1 and TV norm minimization.
This extra information further reduces the optimization space
and thereby eases the inversion from a smaller number of
measurement points.

VI. CONCLUSION

Three methods for array diagnosis based on sparse re-
covery have been discussed and tested on simulated and
measured antenna arrays. The results confirm that the proposed
approaches allow to significantly decrease the number of
measurements required for the diagnosis compared to two
standard techniques: the Back-Propagation and the Matrix
Method algorithms. For these antenna diagnosis procedures,
the post-processing time (at most a few seconds) is negligible
compared to the measurement time. Therefore, the proposed
techniques that only calls for readily available routines, enable
a faster antenna diagnosis compared to standard approaches.
Both numerical and experimental results show that the mixed
`1/`2 norm minimization approach gives the best performance
in terms of identification of radiating elements using a small
set of data. This regularizer is indeed the one that uses the
most a priori information about the radiating structure and
specifically the positions of the reflectarray cells in order to
define the groups of field samples.

The proposed approaches have been applied to perform the
diagnosis of planar radiating structures but they can be
straightforwardly extended to conformal antennas. Moreover,
other types of unknown can be employed. The formulation
using the electric field on the aperture can, for instance, be
replaced by equivalent currents.
Finally, although many papers deal with sparse recovery
algorithms in electromagnetism including array diagnosis pro-
cedures [24], only few of them report experimental data which
are, in the end, the ground truth to test any procedure.
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