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The cross-correlation of a diffuse wavefield converges toward the difference between the anti-
causal and causal Green’s functions between two points. This property has paved the way to
passive imaging using ambient noise sources. In this letter, we investigate Green’s function retrieval
in electromagnetism. Using a model based on the fluctuation dissipation theorem, we demonstrate
theoretically that the cross-correlation function strongly depends on the absorption properties of
the receivers. This is confirmed in measurements within a reverberation chamber. In contrast to
measurements with non-invasive probes, we show that only the anti-causal Green’s function can be
retrieved with a matched antenna. Finally, we interpret this result as an equivalent time-reversal
experiment with an electromagnetic sink.

The Green’s function retrieval technique is now widely
used for passive imaging from ambient noise. It is based
on the cross-correlation of a diffuse wavefield with an
array of receivers. The fluctuation-dissipation theorem
(FDT) shows that the cross-correlation at two points
of a field at thermal equilibrium is proportional in the
frequency domain to the imaginary part of the Green’s
function between them [1–5]. This property has been
extended to non-thermal noise sources for which the
equipartition principle is fulfilled [4–9]. In the time do-
main, the anti-causal and causal Green’s function are ob-
tained so that the impulse response between two receivers
can be reconstructed for sufficiently broadband signals.
The Green’s function can be reconstructed from thermal
radiations in a cavity [4, 10] and for a diffuse field gener-
ated by uncorrelated random sources evenly distributed
in a volume [7, 8, 11, 12]. In chaotic cavities [4, 13–
15] and in random media [5, 16–18], multiple scattering
increases the convergence rate of the cross-correlation to-
ward the Green’s function with respect to the number of
noise sources. The ballistic waves and the first echoes
which are usually of interest for imaging purposes can
therefore be estimated within disordered media even with
a small number of noise sources.

The ambient noise correlation method has paved the
way for spectacular results in seismology [19, 20] (see e.g.
Ref.[21] for a review). It has also been demonstrated with
acoustic [4, 22, 23], elastic [15] and electromagnetic waves
in microwave [10] and optical frequency ranges [24].

Studies on Green’s function retrieval have so far fo-
cused on non-invasive measurements of the field, which
is for instance the case of seismic stations. This means

that the wavefield is barely modified by the presence
of the sensor. In this case, the cross-correlation of an
equipartitioned field probed with point-like receivers is
a symmetrical function in the time domain. In electro-
magnetism, efficient antennas are however absorbing and
scattering receivers. For radio frequency waves, antennas
are characterized by their internal impedance Z11. The
maximum power is extracted from the field when the
receiving antenna is matched with the load impedance
ZL, ZL = Z∗11. In optics, the field can be probed
with quantum dipoles or nanoantennas [25]. An ana-
log impedance concept is increasingly used to model the
properties of these nano-devices (absorption, resonance
...)[26–28]. Those sensors may be used to measure the
cross-density of states (CDOS) which characterizes the
coherence of a wavefield independently of the source dis-
tribution [29]. The CDOS is proportional to the imag-
inary part of the trace of the Green’s tensor between
two points. Similarly to Green’s function estimation, the
CDOS can be obtained from the cross-correlation of an
equipartitioned field between two positions [18]. However
the presence of these nano-devices may strongly modify
the field and may therefore induce an important discrep-
ancy from the theoretical predictions of the CDOS in-
volving only the electromagnetic fields E and H.

In this letter, we investigate the cross-correlation
C(t) = s1(−t) ⊗ s2(t) of two signals s1(t) and s2(t) ob-
tained by measuring an equipartioned field at two po-
sitions with absorbing receivers. We demonstrate using
the FDT that probing the wavefield with antennas with
different impedances gives an asymmetrical signal in the
time domain. We show that in the case of a first matched
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antenna and a second non-invasive probe, C(t) even van-
ishes at positive times and is proportional to the anti-
causal Green’s function between them, C(t) ∼ G12(−t).
Those theoretical results are confirmed in measurements
in a chaotic cavity. We take advantage of the diffuse field
generated by a single source in a mode-stirred reverber-
ation chamber (RC) to retrieve the impulse response be-
tween two receivers. Those results illuminate the central
role of antenna absorption. Furthermore since the cross-
correlation can be interpreted as a time reversal (TR)
process, we show that it implies that the incoming en-
ergy of a time-reversed wavefront is completely absorbed
by a single matched antenna.

The FDT expresses the cross-correlation at frequency
ω of two voltages U1 and U2 at thermal equilibrium in
terms of the mutual impedance matrix Z between the
ports [2, 30],

C12(ω) = 2
[
Z1,2 + Z∗2,1

]
kBT (ω). (1)

Here T (ω) is the temperature of the system. This rela-
tion is an extension to multiport systems of the power
spectral density of the Johnson noise measured by a re-
sistor R0 given by 4R0kBT (ω) [31]. For a reciprocal sys-
tem, the real part of the mutual impedance matrix is ob-
tained, C12(ω) = 4kBT (ω)Re{Z2,1}. This result not only
holds for electrical systems, but also as soon as probes
linearly convert a wavefield into quantities such as volt-
age/current for electromagnetic waves or force/material
velocity for acoustic waves. It is of great interest for
passive imaging since the cross-correlation of voltages at
thermal equilibrium measured with two antennas in their
open-circuit modes is similarly given by Eq. (1). The
mutual impedance of two resonant antennas in electro-
magnetism is Z2,1 = i

∫
nT
2 (x2)G(x1,x2)n1(x1)d3x1d

3x2

where G is the electric dyadic Green’s function and
nj(xj) is the normalized distribution of the current
within the antenna j. For two dipoles of lengths l1 and l2
small compared to the wavelength, l1, l2 � λ, the FDT
therefore writes

C12(x1,x2, ω) = 4l1l2kBT (ω)
G(x1,x2, ω)−G∗(x1,x2, ω)

2i
,

(2)
with G(x1,x2, ω) = nT

2 (x2)G(x1,x2, ω)n1(x1). This
equation is the classical expression of the cross-
correlation function for non-invasive pointlike probes [7–
9].

For absorbing antennas, the model of a system at ther-
mal equilibrium cannot be used since the part of the en-
ergy that is absorbed by the antenna is not compensated
by a corresponding immediate thermal emission. Eq. (1)
can hence not be applied in its form. Nevertheless the
correlation matrix C(ω) can be obtained from the FDT
using Thevenin’s theorem [32]. The two ports system is

equivalent of two noise voltage sources that are loaded
with the mutual impedance matrix Z. Fully taking into
account the coupling between the ports yields [33],

C(ω) = 2kBT (ω)Q [Z + Z∗]Q†, (3)

where the matrix Q is given by, Q = ZL(Z + ZL)−1.
The load impedance ZL is a diagonal matrix whose first
and second elements are the load impedance of the two
antennas ZL1 and ZL2, respectively. For non-invasive
probes, the currents in the antennas are weak since ZL1

and ZL2 are much larger than the elements of Z. This
gives Z + ZL ∼ ZL and C12(ω) reduces to Eq. (1) as
expected.

We now investigate the interesting case of the cross-
correlation between an absorbing antenna with internal
impedance Z11 and a non-invasive probe. Straightfor-
ward calculations using Eq. (3) yield,

C12(ω) = 2kbT (ω)
Z∗L1

Z∗L1 + Z∗11
(Z∗1,2 + ΓZ1,2). (4)

Here Γ = (ZL1−Z∗11)/(ZL1 +Z11) is the usual reflection
parameter due to the impedance mismatch between the
load impedance ZL1 and the internal impedance of the
first antenna. When the first antenna is matched, Z∗11 =
ZL1 (Γ = 0), with a small reactive part (Im{Z11} �
Re{Z11}), C12(ω) = kbTZ

∗
1,2. Only the anti-causal

Green’s function between the antennas is hence retrieved.
This phenomenon occurs because the power dissipated by
the load impedance is equal to kbT (ω).

The analogy with time reversal [34] provides an elegant
way to interpret the result of the cross-correlation [16].
The cross-correlation of a diffuse field is indeed equivalent
to a TR process in which the field emitted by the first
antenna at x1 is time-reversed by the noise sources and
the field is measured on a second antenna at x2. For non-
invasive receivers, the time reversed field is the superpo-
sition of the converging wave proportional to G∗(x1,x2)
followed by a diverging wave which is in opposition of
phase −G(x1,x2), ψTR(x2) ∼ G∗(x1,x2) − G(x1,x2).
Their interference suppresses the singularity at the source
and the focal spot has a width given by the diffraction
limit. However when the initial source antenna is ab-
sorbing, a part of the incident energy is dissipated in
the load in the second step of the TR process. Eq.
(4) demonstrates that the time-reversed field ψTR(x2) ∼
G∗(x1,x2) − ΓG(x1,x2) is not symmetrical in the time
domain because of the virtual emission of an electric field
proportional to (1 − Γ)G(x1,x2) due to the current cir-
culation within the antenna.

A matched antenna (Γ = 0) fully absorbs the energy of
the incoming field and ψTR ∼ G∗(x1,x2). This relation
is identical to the “acoustic sink” model that shows that
it is possible to focus waves with sub-wavelength resolu-
tion [35]. Such a perfect absorption has also been shown
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FIG. 1. Normalized cross-correlation C(t) obtained from
measurements of the field with a non-invasive electro-optical
probe translated at two positions.

possible with a lossy object illuminated with a properly
designed wavefront [36, 37]. These results illustrate that
a matched antenna acts as a coherent passive sink in a TR
process. We emphasize that a perfect absorption can be
detected in measurements only with a non-invasive prob-
ing of the time-reversed field. When a second absorbing
antenna is used to probe the field at x2, the incoming
wavefront can be strongly modified and is not the per-
fect time-reversed field of the source. The second pulse
at positive times is then retrieved.

Those results are now confirmed in measurements in
the microwave range. Measurements are carried out
within a chaotic cavity, here a reverberation chamber
(RC) of volume V = 93.3m3. We aim to reconstruct the
impulse response between two receiving antennas at loca-
tions x1 and x2 from the diffuse wavefield generated by a
single source, a third antenna at x3. The equipartitioned
field is not generated from thermal radiations but from
multiple scattering at the boundary of the chaotic cavity
and satisfies an equipartition-like relation [38, 39]. We
measure the transmission coefficients s13(ω) and s23(ω)
with a network analyzer in the [2-4] GHz frequency band
with steps of δf=100 kHz. This frequency range is well
above the first mode resonance of the RC (43 MHz) so
that the field is expected to be statistically isotropic, uni-
form and depolarized [40]. The cross-correlation of the
two signals is given by C(ω) = s13(ω)s∗23(ω)V 2

0 (ω) where
V0(ω) = V0 is the excitation voltage on port 3.

The emitting antenna is located near a corner of the
RC to reduce the contribution of the ballistic waves. To
enhance the contribution of late arrivals, we compensate
the exponential decrease of the envelopes of the signals
in the time domain. The inverse Fourier transform of
s13(ω) and s23(ω) are multiplied by exp(t/τa) , where
τa = 1.8µs is the average damping time of the RC, and
then cross-correlated. Despite the self-averaging prop-
erty of the cross-correlation in reverberating media [41],
C(t) is dominated by strong spurious fluctuations be-
cause i) a single source is used; and ii) τa is small com-
pared to the Heisenberg time of the cavity, τH ∼ 8ms,

which is estimated from the modal density per Hertz
given by Weyl’s formula. We then average the cross-
correlation over fifty positions of a stirrer made of 6 alu-
minium blades with surfaces of ∼ 750λ2. Its rotation
provides statistically independent realizations of the dif-
fuse field [42] so that we expect that C(t) converges to-
ward the average Green’s function of the RC consisting
of the direct wave between the antennas and the first
echoes that are not scattered by the stirrer. In Eq. (1),
Z2,1 must therefore be replaced by its average over the
positions of the stirrer, 〈Z2,1〉. This change is implicit in
the following analysis of the measurements.

The cross-correlation C(t) is first measured by trans-
lating at two positions an electro-optical probe of length
of order of a tenth of the wavelength. The probe allows
a non-invasive measurement of the field. Its translation
barely modifies the diffuse field within the chamber so
that C(t) is equivalent to the cross-correlation recorded
with two similar probes. C(t) is seen in Fig. 1 to be a
symmetrical function consisting of two pulses at -1.2 ns
and 1.2 ns, in agreement with Eqs. (1)-(2).
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FIG. 2. (a) Normalized cross-correlation C(t) for a horn an-
tenna and a non-invasive probe. (b) Ratio of the maximum
amplitude at negative times and maximum amplitude at pos-
itive times with the impedance mismatch Γ for a UWB horn
antenna (star), two other horn antennas (circle and cross), a
discone antenna (square) and a log-periodic dipole antenna
(triangle). The straight line is R = Γ. (c) Normalized cross-
correlation C(t) for the same receiving horn antennas facing
each other.
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The cross-correlation is then performed between a horn
antenna and the probe with the same polarization. A
strong asymmetry is seen in Fig. 2a despite the isotropic
nature of the wavefield within the cavity. This result
may seem surprising at first glance regarding previous
works which mainly consider non-invasive receiver since
a strong asymmetry usually reveals a non-uniform spa-
tial distribution of the field [20, 43, 44] which is definitely
not the case here. However this asymmetry is fully pre-
dicted by Eq. (4). It shows that the amplitude of C(t) at
positive times relative to its amplitude at negative times,
R = max[|C(t > 0)|]/max[|C(t < 0)|], is expected to be
equal to Γ. Γ can be evaluated from the S11 parameter
(Γ = |S11|). From Fig. 2a, we find R = 0.35 which is in
good agreement with the average over the bandwidth of
Γ = 0.38. R and Γ are then measured for other antennas
(a horn antenna, a discone antenna and a log-periodic
dipole antenna) in various frequency ranges and are seen
to be close in Fig. 2b. We find ratios R typically slightly
smaller than the theoretical predictions because Eq. (4)
does not include losses which are ∼10% for those anten-
nas.

We also compute the cross-correlation for two similar
horn antennas facing each other in Fig. 2c. The sym-
metry is obtained as for non-invasive probes but is now
related to the use of similar scattering and absorbing an-
tennas. More generally, it can be shown using a com-
puter algebra system that the ratio of the amplitudes at
positive and negative times is given by the ratio of the
impedance mismatches of the two antennas, Γ1/Γ2 . Note
that retrieving the Green’s function with those aperture
antennas was not trivial regarding previous studies con-
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FIG. 3. (a) Colormap representation of C(t) when the dis-
tance between the horn antenna and the probe increases from
0.55m to 1m. (b) dC(t)/dt (blue) taken at negative times is
compared to the impulse response (red).
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FIG. 4. The time-reversed signal is plotted for three load
impedances: a 50 Ω load (blue), an open-circuit load (red)
and a short-circuit load (black).

sidering non-invasive receivers. Noise sources that con-
tribute to the cross-correlation have indeed been shown
to be in the stationary phase region [20, 43, 44] that is
located in the alignment of the receivers. However, those
contributions are weak for horn antennas because of their
directivity patterns. The coupling between antennas is
the key to interpret C(t).

We show in Fig. 3 that we accurately retrieve the
impulse response averaged over the positions of the stir-
rer between two receivers, here a horn antenna and the
probe. The delay time of the two ballistic pulses is seen
in Fig. 3a to correspond to the travel time between the
two receivers. The normalized derivative of the cross-
correlation dC(t)/dt at negative times is seen in Fig. 3b
to be in very good agreement with the impulse response
over more than 25 ns. Not only the direct impulse re-
sponse but also the first echoes in the cavity that are
of interest for imaging applications are retrieved as seen
around 18 ns.

To further illustrate the influence of absorption in the
load, we first measure the impulse response between the
first horn antenna and the third antenna. We then mod-
ify the load impedance at the connector of the source an-
tenna in the second step of a TR experiment. The time-
reversed field is measured with the non-invasive probe.
We successively add a 50Ω load which is almost matched
to the antenna internal impedance, an open-circuit (OC)
load and a short-circuit (SC) load. The causal part of
the time-reversed signal is seen in Fig. 4 to be strongly
enhanced for the OC and SC loads (|Γ| ∼ 1) in compari-
son to the 50Ω load (Γ ∼ 0). The signals corresponding
to the scattering from the OC and SC loads are in phase
opposition [45]. This confirms that the decrease of the
signal at positive times is due to absorption by the load.

In conclusion, we have demonstrated Green’s function
retrieval in electromagnetism within a chaotic cavity with
a single source. By modifying the modes of the cav-
ity with a stirrer, the cross-correlation of the wavefield
converges toward the average impulse response between
the receivers. The theoretical and experimental results
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provide a new insight into passive imaging experiments
using two absorbing receivers. They illuminate the rela-
tions between cross-correlation of random wavefields and
scattering, absorption and impedance properties of the
receivers. Our approach also provides a new framework
for applications such as antenna directivity patterns mea-
surements. In particular, it makes it possible to measure
the coupling between two antennas that can be used in
their receiving or transmitting modes only.
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