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In this work we analyze the spatial and temporal features of electromagnetic X-waves propagating
in free space and generated by planar radiating apertures. The performance of ideal X-waves are
discussed and compared to practical cases where the important effects related to the finiteness of the
radiating aperture and the wavenumber dispersion are taken into account. In particular, a practical
device consisting of a radial waveguide loaded with radiating slots aligned along a spiral path is
considered for the practical case in the millimeter-wave range. A common mathematical framework
is defined for a precise comparison of the spatiotemporal properties and focusing capabilities of
the generated X-wave. It is clearly shown that the fractional bandwidth of the radiating aperture
has a key role in the longitudinal confinement of an X-wave in both ideal and practical cases. In
addition, the finiteness of the radiating aperture as well as the wavenumber dispersion clearly affect
both the transverse and the longitudinal profile of the generated radiation as it travels beyond the
depth-of-field of the generated X-wave. Nevertheless, the spatiotemporal properties of the X-wave
are preserved even in this ‘dispersive-finite’ case within a defined region and duration related to the
nondiffractive range and fractional bandwidth of the spectral components of the generated X-wave.
The proposed analysis may open new perspectives for the efficient generation of X-waves over finite
radiating apertures at millimeter waves where the dispersive behavior of realistic devices is no longer
negligible.

PACS numbers: 41.20.Jb, 42.25.Fx, 42.60.Jf, 84.40.Ba, 89.20.Kk

I. INTRODUCTION

In the last decades the generation of localized electro-
magnetic waves has gained a growing interest among dif-
ferent research communities. Nondiffracting waves [1] (or
localized waves [2] as well) are exact solutions to the wave
equation that do not exhibit either time or spatial broad-
ening as they propagate. Nevertheless, although spatial
and temporal confinements of an electromagnetic wave
are closely related to each other, nondiffractive beams
(monochromatic solutions) and pulses (polychromatic so-
lutions) have been developed almost independently.

The earlier works on nondiffractive beams, and in par-
ticular on Bessel beams [3, 4], paved the way for the
realization of optical devices [5] able to generate a non-
diffractive intensity profile over a considerable depth of
field. In optics, as well as at lower frequencies, different
methods have been proposed for generating Bessel beams
[6–17] (for a review, see, e.g., [18, 19]). The works at mil-
limeter waves [11–16] are of particular interest since they
avoid the ray-optics approximation used at optical fre-
quencies, which limits the analysis of Bessel beams to
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those with a spot size much larger than the operating
wavelength [20].

Nondispersive electromagnetic pulses were discovered
during the 80’s, mainly thanks to the seminal work on Fo-
cus Wave Modes (FWM) [21]. As for ideal Bessel beams,
these solutions were endowed by infinite energy [22, 23],
and thus nonphysical. (However, exact finite-energy solu-
tions of Maxwell’s equations in vacuum have been derived
[24].) Nonetheless, a particular class of these nondisper-
sive, nondiffracting solutions, known as X-waves [25], has
been studied in different branches of physics, especially in
acoustics [26] and optics [27], where X-waves have been
generated using finite apertures.

Despite the large amount of works on X-waves (see [1]
and Refs. therein), most of them study the generation of
X-waves under specific hypotheses, not always verified at
millimeter waves. In particular, X-waves are frequently
assumed to be superluminal [28], nondispersive [29], and
generated by infinite radiating apertures [22]. As a mat-
ter of fact, the generation of X-waves from finite aper-
tures has been addressed in several works [25, 29–36], but
only few of them [32, 33] have taken into account both
the finiteness of the aperture and the wavenumber dis-
persion with frequency. Therefore, there is still a lack of
a comprehensive study providing a detailed and suitable
description of the focusing properties of such X-waves.
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In most practical applications, especially at millimeter
waves [11–16], the radiating aperture is finite and the
wavenumber varies nonlinearly with frequency. Neglect-
ing dispersion in such polychromatic solutions is thus not
possible for an accurate analysis.

In this work we aim to provide an analytical descrip-
tion of band-limited, dispersive, electromagnetic X-waves
generated by finite apertures analyzing such effects at
millimeter wavelengths. It is worth mentioning that an
attempt to generate X-waves at microwaves is provided in
[37]. However, other explanations of the observed super-
luminal propagation are given in literature [34]. Unfortu-
nately, no results have been provided regarding their fo-
cusing capabilities. Moreover, to the authors’ best knowl-
edge the possibility to generate nondiffracting waves over
a considerable fractional bandwidth by means of a real-
istic millimeter-wave device has never been analyzed in
details.

To this aim, our discussion starts from the original
formulation of an ideal X-wave. We then show how, by
progressively removing all the simplifying hypotheses, it
is still possible to generate an electromagnetic pulse with
very interesting limited-diffraction and limited-dispersion
properties. In particular, we first take into account the
dispersion features of an X-wave, assuming a second-
order Taylor expansion of the relevant wavenumbers.
Then, the intensity profiles along the longitudinal and the
transverse axes are calculated in closed-form and com-
pared with those of an ideal X-wave. Finally, we consider
a practical case in which a centrally-fed radial waveguide
loaded with radiating slots aligned along a spiral path is
proposed, in order to generate ‘dispersive-finite’ X-waves
(i.e., X-waves with non-negligible wavenumber dispersion
and generated by finite apertures) with very interesting
focusing properties. As will be shown, such features re-
sult from the peculiar wavenumber dispersion exhibited
by the considered radiating aperture.

We demonstrate that a dispersive-finite X-wave (even
if it can no longer be considered nondiffractive and
nondispersive in the most rigorous sense) retains very
interesting localization properties in both transverse and
longitudinal profiles over a finite distance and time du-
ration related to the physical size and bandwidth of the
generating device. The features may be of interest in var-
ious applications at millimeters waves and optics, where
the spatial confinement of electromagnetic pulses is of
paramount importance and the behaviors of most devices
are well defined only in a limited frequency band.

II. SPATIAL CONFINEMENT PROPERTIES OF
X-WAVES

The mathematical description of an ideal X-wave (also
known as ordinary X-shaped pulse) is given by [1, 2]:

χ(ρ, z, t) =

+∞∫
−∞

F (ω)J0[kρ(ω)ρ]e−jkz(ω)zejωtdω (1)

where J0 is the zeroth-order Bessel function of the first
kind, F (ω) is the frequency spectrum, ω is the angular
frequency, z is the axis of propagation, and kρ, kz are the
transverse and longitudinal wavenumbers, respectively,
related by the separation relation:

k2 = k2
ρ + k2

z (2)

with k = ω/c the free-space wavenumber and c the ve-
locity of light in vacuum. In particular, ideal X-waves
can be thought as a superposition of ideal Bessel beams
sharing the same axicon angle θ:

θ = arctan(kρ/kz) (3)

and thus, replacing Eqs. (3) and (2) in Eq. (1) yields:

χ(ρ, z, t) =

+∞∫
−∞

F (ω)J0

(ω
c

sin θρ
)

× exp

[
−j ω

c
cos θ

(
z − ct

cos θ

)]
dω (4)

In such representation, some simplifying hypotheses
are tacitly assumed: i) the aperture field is a nondiffrac-
tive Bessel beam over the entire frequency range and
along an infinite propagating distance. This means that
an infinite aperture, or infinite energy is required [3, 4]; ii)
the axicon angle θ does not change with frequency. This
latter condition implies that no wavenumber dispersion
is taken into account.

However, even under these simplifying hypotheses, it
is readily shown in the following that is not always possi-
ble to efficiently confine a pulse along both the transverse
and the longitudinal axis. To this aim, a ‘metric’ has to
be defined in order to intuitively characterize the spatial
confinement efficiency of the pulse. It is known [4] that a
practical realization of X-waves requires a finite radiating
aperture of radius ρap [25], which limits the nondiffract-
ing behavior of the constituent Bessel beams within a
certain ‘depth of field’ zdof along the z-axis, given by [3]:

zdof = ρap cot θ (5)

Therefore, the spatial features of an ideal X-wave are
well defined only within a certain ρz-plane limited by
ρap and zdof along the ρ- and z-axis, respectively. As
a consequence, the energy of the pulse is efficiently con-
fined along the ρ-axis if and only if the ‘spot width’ along
ρ (Sρ) is much smaller than the aperture size (ρap). Sim-
ilarly, the confinement along the z-axis is effective if and
only if the spot width along z (Sz) is smaller than the
depth of field zdof . However, since we are also interested
in solutions that are not efficiently confined in one direc-
tion but ‘extremely’ confined along the other one, these
constraints can be slightly relaxed and jointly enforced
by requiring the product of the ratios Cρ = Sρ/ρap and
Cz = Sz/zdof be less than 1:

Cz,ρ = CzCρ < 1 (6)
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FIG. 1. The green hyperbola represents the boundary between the region of efficient (in white) and non-efficient confinement
(in grey) for ideal UXWs, when fractional bandwidths of (a) ∆ω = 0.01 and (b) ∆ω = 0.2 are considered. The region of
efficient confinement increases for larger bandwidths. In any case, this region corresponds to electrically large apertures with
small axicon angles.

where Cz,ρ gives a measure of the spatial and tempo-
ral confinement for a practical realization of a generic
X-wave. The smaller is Cz,ρ the more confined is the
X-wave. Obviously, for Cz,ρ = 1 there is no efficient con-
finement, since the transverse or the longitudinal spot
widths exceed the aperture size or the depth of field, re-
spectively.

In the following, both the transverse and the longitu-
dinal profiles of the ideal X-wave are calculated in closed
forms assuming uniform frequency spectra. The analysis
allows for the evaluation of Cρ and Cz, thus the spa-
tiotemporal confinement properties of ideal X-waves. Fi-
nally, it is worth mentioning that the previous discussion
on the confinement capabilities of X-waves is not related
to any assumption on the chosen frequency spectrum.

III. ANALYTICAL DESCRIPTION OF IDEAL
AND DISPERSIVE X-WAVES WEIGHTED WITH

A UNIFORM SPECTRUM

In this section, we consider a bandpass frequency spec-
trum centered around a carrier angular frequency ω0 and
zero outside a certain frequency band ∆ω:

F (ω) =

{
1 |ω − ω0| ≤ ∆ω/2

0 elsewhere
(7)

This assumption agrees with the physical realizabil-
ity [37] of any electromagnetic device that may generate
nondiffractive Bessel beams only over a well-defined fre-
quency range. In the following, such band-limited X-
waves are called uniform frequency-spectrum X-waves
(UXWs). It is worth mentioning that theoretical works
concerning this subclass of X-waves, as well as different

choices of frequency spectra, have been widely investi-
gated in [38] by means of the bidirectional decomposition
technique (see [39]).

A. Ideal Uniform X-Waves

By assuming the spectrum in (7), the integral in
Eq. (4) for a UXW reduces to:

χU(ρ, z, t) =

ω0+∆ω/2∫
ω0−∆ω/2

J0

(ω
c

sin θρ
)

× exp

[
−j ω

c
cos θ

(
z − ct

cos θ

)]
dω (8)

The spatial confinement properties of an X-wave
weighted with a uniform spectrum can be easily deter-
mined by calculating the integral in Eq. (8) along both
the z- and ρ-axis. Note that, since the UXW is assumed
to be a superposition of ideal Bessel beams, their non-
diffractive and nondispersive behavior implies the rigid
transport of the pulse. As a consequence, the trans-
verse (χU

t (ρ, t)) and longitudinal (χU
l (z, t)) profiles of the

UXWs depend on the single variable z−ct/ cos θ (for the
sake of simplicity we assume t = 0.)

In particular, the transverse amplitude profile of a
UXW is given by:

χU
t (ρ) = |χ(ρ, z = 0, t = 0)| =

∣∣∣∣∣∣
ωM∫
ωm

J0

(ω
c

sin θρ
)
dω

∣∣∣∣∣∣ =

∣∣∣∣ xc

2ρ sin θ
[πH0(x)J1(x) + (2− πH1(x))J0(x)]xM

xm

∣∣∣∣ (9)
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where H0(·) and H1(·) are the Struve functions of zero
and first order [40], respectively, and where

ωM = ω0 + ∆ω/2 ωm = ω0 −∆ω/2 (10)

xM =
ωMρ sin θ

c
xm =

ωmρ sin θ

c
(11)

It can be shown that the expression in Eq. (9) is very
well approximated by:

χU
t (ρ) ' ∆ω

∣∣∣∣J0

(
ω0 sin θρ

c

)∣∣∣∣ (12)

for small arguments of J0(·). Note that Eq. (12) sim-
ply represents the product of the integrand function in
Eq. (9) evaluated at the carrier frequency and the band-
width, hence Eq. (12) can be interpreted as a result of
the Mean Value Theorem [41].

Similarly, the longitudinal amplitude profile of a UXW
is given by:

χU
l (z) = |χ(ρ = 0, z, t = 0)| =

∣∣∣∣∣∣
ωM∫
ωm

exp
(
−j zω

c
cos θ

)
dω

∣∣∣∣∣∣
(13)

The integration over ω yields:

χU
l (z) = ∆ω

∣∣∣∣sinc

(
z∆ω cos θ

2c

)∣∣∣∣ (14)

From Eqs. (12) and (14) it is possible to evaluate the
spot size of the UXW. Here, we consider as spot size the
null-to-null distance of the amplitude profile over both
axes. The quantities Sρ and Sz previously defined are
then given by:

Sρ =
2j0,1c

ω0 sin θ
(15)

Sz =
4πc

∆ω cos θ
(16)

where j0,1 = 2.4048 identifies the first null of the J0 func-
tion. As stated in Section II, an efficient spatial confine-
ment takes place only when the constraint in Eq. (6) is
respected.

Thus, using Eqs. (15), and (16) in Eq. (6), and ex-
pressing the aperture size ρap in terms of the operating
wavelength λ0 = 2πc/ω0, yields:

CU
z,ρ =

j0,1
πm sin θ︸ ︷︷ ︸

Cρ

2 sin θ

m∆ω cos2 θ︸ ︷︷ ︸
Cz

=
j0,1

πm2 cos2 θ∆ω
< 1 (17)

where m = ρap/λ0 is the aperture radius in number of

wavelenghts and ∆ω = ∆ω/ω0 is the fractional band-
width. Note that in Eq. (17) a ratio with respect to the
aperture size has been considered, even if the fields are
here computed by neglecting the finiteness of the aper-
ture. However, Eq. (17) will allow for evaluating the

impact of different parameters on the shape of the wave.
This information will be useful even in the practical case
of a finite aperture, discussed in Section IV.

In Fig. 1, the green hyperbola delimits a region of θ, m
values for which Eq. (17) is satisfied, for two different val-
ues of the fractional bandwidth: ∆ω = 0.01 (Fig. 1a) and
∆ω = 0.2 (Fig. 1b). As clearly shown, the region of effi-
cient confinement increases as the fractional bandwidth
increases up to ∆ω = 0.2. Note that for higher values of
∆ω there are no significant changes with respect to Fig.
1b.

However, from Fig. 1 it is easy to infer that electrically
large apertures (high m) and low axicon angles θ are re-
quired to efficiently confine a pulse, even for an ideal
UXW. Furthermore, it is clear from Eq. (17) that the
fractional bandwidth ∆ω controls the pulse confinement
along the z-axis (Cz) without affecting the confinement
along the ρ-axis (Cρ). Conversely, θ affects both Cρ and
Cz. In particular, as θ increases, the pulse is more con-
fined along ρ but spreads along z, and viceversa.

In the following, Eq. (17) will be considered as an
upper-bound limit for the confinement factor of both dis-
persive and dispersive-finite UXWs based on the ideal
assumptions used for its derivation.

B. Dispersive Uniform X-Waves

In the previous subsection we assumed that the axicon
angle is the same for each frequency within the consid-
ered band, and thus both the longitudinal and trans-
verse wavenumbers, given by kρ = (ω/c) sin θ and
kz = (ω/c) cos θ, respectively, are also linear functions
of frequency, as required for generating ideal localized
waves [1, 2, 38]. However, in most electromagnetic de-
vices, especially for those with considerable fractional
bandwidths, a non-linear relationship between kz, kρ and
ω is usually assumed, thus dispersion cannot be neglected
[12, 14, 42].

Generally, the dependence of both longitudinal and
transverse wavenumbers on ω is not known in closed-
form, but, for most cases (especially for narrow-band
signals), it can be accurately described by the first terms
of a Taylor series expansion [43]. As a consequence, the
mathematical description of a dispersive UXW is approx-
imated by

χU(ρ, z, t) =

ωM∫
ωm

J0 [kρ(ω)ρ] exp [−jkz(ω)z] exp (jωt) dω

'
∆ω/2∫
−∆ω/2

J0

[(
kρ0kρ1ω

′ +
1

2
kρ2ω

′2
)
ρ

]

× exp

{
−j
[(
kz0 + kz1ω

′ +
1

2
kz2ω

′2
)
z

]}
× exp [j(ω′ + ω0)t] dω′ (18)
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where ω′ = ω−ω0, whereas kρ0, kρ1, kρ2 and kz0, kz1, kz2
represent the coefficients of the second-order approxi-
mation for the transverse wavenumber kρ and for the
longitudinal wavenumber kz, respectively. Note that,
kz0, kz1, kz2 can be related to kρ0, kρ1, kρ2 by using the
second-order approximations for kρ and kz in Eq. (2).
After some algebra, one gets the sought relations

kz0 =
√
k2

0 − k2
ρ0 (19a)

kz1 = (k0c
−1 − kρ0kρ1)/kz0 (19b)

kz2 = (c−2 − k2
ρ1 − kρ0kρ2 − k2

z1)/kz0 (19c)

where k0 = ω0/c. Furthermore, kz0 and kz1 are related
to the phase velocity and group velocity, respectively,
whereas kz2 accounts for the Group Velocity Dispersion
(GVD) (an exhaustive analysis on this can be found in
[32]).

As a difference with respect to Eq. (8), the transport
of the pulse is no longer rigid, hence both the transverse
and longitudinal profiles depend on time. Moreover, the
transverse profile χU

t (ρ, t), as a function of time, can only
be calculated numerically. Nevertheless, χU

t (ρ, t = 0) is
still well approximated by Eq. (8) provided that θ is now
calculated at ω0

χU
t (ρ, t = 0) ' ∆ω |J0 (kρ0ρ)|

= ∆ω

∣∣∣∣J0

(
ω0 sin θ0ρ

c

)∣∣∣∣ (20)

where θ0 = arcsin[kρ(ω0)/k(ω0)] is the axicon angle at
the carrier frequency. Note that, for sufficiently low val-
ues of kρ1, Eq. (20) is a good approximation even for
t > 0.

For the longitudinal amplitude profile, an analytical
closed-form expression still exists and is given by

χU
l (z, t) '

∣∣∣∣∣erf

[√
jzkz2

2

(
ω′ +

zkz1 − t
zkz2

)]ω′=∆ω/2

ω′=−∆ω/2

∣∣∣∣∣
×
∣∣∣∣√ π

j2kz2z

∣∣∣∣ (21)

where erf(·) is the error function [40]. Note that, kz2 = 0
(i.e., when a first-order Taylor series expansion of kz is
assumed) is a removable singularity. Thus, as long as
kz2 → 0, Eq. (21) reduces to Eq. (14). It is possible to
evaluate the spot size of a dispersive UXW in an approx-
imated analytical form for Eq. (20) or numerical form
for Eq. (21). However, both the transverse and longitu-
dinal spot widths are upper-bounded by Eqs. (15) and
(16), thus Eq. (17) and its related Fig.1 can still be used
as references. In particular, for narrow bandwidths, the
spot widths of a dispersive X-wave coincide with those of
an ideal X-wave, and thus Fig. 1(a) is still an accurate
description. For wider bandwidths, the transverse spot
width remains unchanged with respect to the ideal case
(as clear by comparing Eqs. (20) and (12)), whereas the
longitudinal spot size can only be calculated numerically

and it is generally greater than the ideal one. As a conse-
quence, Fig.1(b) should yield an underestimation of the
pulse longitudinal size.

In the following Sections IV and V, numerical results
for a dispersive-finite X-wave, i.e., taking into account
both the dispersion and the finiteness of the radiat-
ing aperture, are shown considering a defined aperture
field distribution. In particular, Section IV describes the
physical device considered for the generation of X-waves,
whereas Section V highlights the effect of the bandwidth
on the focusing properties of the generated pulse.

IV. FINITE AND DISPERSIVE X-WAVES

It has been recently shown [15] that Bessel beams can
be efficiently generated through an inward traveling wave
aperture distribution. As a main difference with respect
to other realizations [14], [44], inward aperture field dis-
tribution generates nondiffractive Bessel-like beams over
a wide fractional bandwidth. Therefore, in order to intro-
duce the effect of the finiteness of the radiating structure,
we will calculate the electric field Erad radiated by such
a distribution over a finite aperture plane. The UXW is
then generated by taking the integral

χ(ρ, z, t) =

ωM∫
ωm

Erad(ρ, z) exp(jωt)dω (22)

that is the general form of Eq. (8) where Erad replaces
the ideal Bessel beam distribution. Note that Erad is
here considered as a proper scalar component of the total
radiated electric field Erad which can be calculated e.g.,
as [43, 45]:

Erad(r) =
1

4π

∫
S′

(r− r′)×Et(r
′)

(1 + jkR)

R3
e−jkRdS′

(23)
where r, and r′ are the observation and source points,
respectively, R = |r − r′| is the euclidean distance be-
tween the observation and source points, S′ is the surface
on which the electromagnetic sources are localized, and
Et = n̂×E× n̂ is the tangential electric field component
(n̂ being the unit vector normal to the surface).

According to [15], an inward cylindrical traveling wave
aperture distribution is able to generate a Bessel beam.
The aperture distribution of the tangential electric field is
assumed equal to a first-kind, zeroth-order Hankel aper-

ture distribution E(ρ, φ) = H
(1)
0 (kρ(ω0)ρ)p̂0 where p̂0

is an arbitrary polarization vector, and kρ(ω0) is fixed
a priori. In this work, a circular polarization has been
assumed. The structure synthesizing such aperture field
distribution is shown in Fig. 2(a). It consists of a dielec-
tric filled radial waveguide loaded with radiating slots
operating at f0 = 60 GHz and with a finite radius of
ρap = 15λ0 = 75 mm, centrally fed by a coaxial probe.
The aperture field distribution has an approximate dis-
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FIG. 2. (a) Axonometric representation of the dielectric filled radial waveguide loaded with radiating slots. The device is
centrally fed by a coaxial probe. (b) Dispersion of the longitudinal (red line) and transverse normalized wavenumbers (blue
line) with respect to the frequency in a fractional bandwidth ∆ω = 0.2 around the carrier frequency f0 = 60 GHz for the
structure in Fig. 2a.

persion behavior described by the expansion:

kρ(ω) = kρ(ω0)−
√
εr
c

(ω − ω0) (24)

where εr = 1.04 is the relative permittivity of the dielec-
tric material filling the radial waveguide. Such peculiar
dispersion relation follows from the spiral alignment of
the radiating slots that is needed to synthesize the desired
aperture distribution. It is worth here noting that such
wavenumber dispersion defines a space harmonic of back-
ward type [46] as required to radiate well-collimated focus
wave modes [47]. As shown in Fig. 2(b), the transverse

wavenumber normalized with respect to k (k̂ρ = kρ/k)

at f0 is k̂ρ(ω0) = 0.2, and thus the operating axicon an-
gle is θ0 ' 11◦ with a depth of field at f0 equal to

z
(c)
dof ' 367 mm. It is worth mentioning that the design

parameters of the proposed structure have been shown
according to the results in Fig. 1 requiring an axicon an-
gle smaller than 50◦ for a radiating aperture of 15λ0. The
integral in Eq. (22) is then computed by using Eq. (23).

In the following section, the effect of the bandwidth
on the spatial properties of the pulse is highlighted by
showing different UXW generations for various values of
the fractional bandwidth, considering the ideal case (Sec.
III A), the dispersive case (Sec. III B) and this dispersive-
finite case (Sec. IV).

V. RESULTS AND DISCUSSION

Fig. 3 shows the 2D maps of the normalized inten-
sity (defined as |χU(ρ, z, t)|2) of the pulse for the ideal
(see Fig. 3(a)-(d)), the dispersive (see Fig. 3(e)-(h)),

and the dispersive-finite (see Fig. 3(i)-(l)) cases, for a
fractional bandwidth of ∆ω = 0.05 (see Fig. 3(a), (e),
(i)), ∆ω = 0.1 (see Fig. 3(b), (f), (j)), ∆ω = 0.15 (see
Fig. 3(c), (g), (k)), ∆ω = 0.2 (see Fig. 3(d), (h), (l)). The
field intensities are shown on a ρz-plane limited on the ρ-
axis by the aperture of the finite structure (ρap = 15λ0,
λ0 = 5 mm) and on the z-axis by the depth of field

achieved at the carrier frequency z
(c)
dof = 367 mm. Here it

is worth to remark that the depth of field is generally a
function of the frequency (as clear from Eqs. (3), (5), and
(24)) and thus its value varies within the bandwidth in
both the dispersive and the finite case. Conversely, in the
ideal case, the pulse is assumed to be nondispersive and
nondiffractive, thus the depth of field is constant over all
the frequency range. In the ideal case we have assumed

k̂ρ(ω) = k̂ρ(ω0) and thus θ(ω) = θ0.
As shown in Fig. 3, the pulse is depicted at a fixed

time frame when its maximum has reached the distance
zp = z

(c)
dof/2 ' 183 mm (the time evolution of the pulse

is available as Multimedia view in .mp4 format). For the
ideal case (see first row of Fig. 3), the previous distance
is reached for an instant of time tp < zp/c (tp = 0.60 ns,
zp/c = 0.61 ns), which means that the pulse is propagat-
ing superluminally, as expected for a nondispersive pulse
whose phase velocity is greater than c. On the other
hand, in both the dispersive and dispersive-finite case
tp > zp/c (tp = 0.73 ns) and hence the pulse is obviously
subluminal due to dispersion.

Figs. 3(a)-(d) clearly show the impact of the band-
width in the z-confinement of the pulse: the greater is the
fractional bandwidth, the narrower is the spot size along
the z axis. This behavior is also observable in Fig. 3(e)-
(h) and Fig. 3(i)-(l), where the longitudinal spot size Sz
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FIG. 3. 2D normalized intensities for ideal (first row: (a)-(d)), dispersive (second row: (e)-(h)), and dispersive-finite (third

row: (i)-(l)) UXWs, when the pulse has reached half the propagating distance of z
(c)
dof . The numerical results are shown for

∆ω = 0.05 (first column: (a), (e), (i)), ∆ω = 0.1 (second column: (b), (f), (j)), ∆ω = 0.15 (third column: (c), (g), (k)), and
∆ω = 0.2 (fourth column: (d), (h), (l)). See Multimedia view Vid-3d, Vid-3h, and Vid-3l for the whole time evolution of the
pulse for cases (d), (h), and (l), respectively.

of the pulse decreases as the bandwidth increases. How-
ever, in these last two cases the pulse no longer retains its
shape as it propagates, hence both the transverse and the
longitudinal profiles of the pulse are different at each time
frame. In particular, for both dispersive and dispersive-
finite cases, the spot size over both ρ and z directions
increases with time.

This effect is highlighted in Fig. 4(a)-(f) where the time
evolution of both the transverse (Fig. 4(a)-(c)) and the
longitudinal (Fig. 4(d)-(f)) profiles of ideal (Fig. 4(a),
(d)), dispersive (Fig. 4(b), (e)), and dispersive-finite
(Fig. 4(c), (f)) UXWs with a fractional bandwidth ∆ω =
0.2 are shown for three different instants of time ti such

that the pulse traveled for a distance zi = iz
(c)
dof/2,

i = 1, 2, 3. As expected, the transverse profile of an
ideal UXW does not depend on time, whereas for dis-
persive and dispersive-finite UXWs it is strongly time-
dependent. In particular, as time increases the maximum
intensity is abruptly attenuated and simultaneously the
transverse spot size is considerably widened for energy
conservation. On the other hand, the longitudinal profile
of an ideal UXW is rigidly transported over the z axis

(Fig. 4(d)), whereas for the dispersive and dispersive-
finite UXWs the transport is no longer rigid due to dis-
persion (Figs. 4(e), (f)). More properly, from Figs. 4(e),
and (f), it is clear that both the amplitude reduction and
longitudinal spot size enlargement of the main spot cause
a non-negligible pulse distortion.

The whole time evolution of both spatial confinement
properties of the considered UXWs are differently repre-
sented in Fig. 5(a) and in Fig. 5(b), along the transverse
and the longitudinal direction, respectively. The half
power beamwidth (HPBW) is calculated with respect to
the absolute maximum at each time frame. Figs. 5(a)
and (b) show the evolution of the spot size with respect
to time only for a fractional bandwidth ∆ω = 0.2, for
which the effects of the dispersion and of the truncation
are more pronounced.

In details, in Fig. 5(a) it can be noticed that the
transverse profile of the dispersive-finite UXW starts
spreading at the time frame when the pulse has reached

the minimum depth of field z
(min)
dof of the constituent

waves. Slightly after, the transverse spreading increases
almost linearly with time. As expected, the ideal UXW
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FIG. 4. Transverse (a)-(c) and longitudinal (d)-(f) profiles normalized at the absolute maximum with respect to time for (a),
(d) ideal, (b), (e) dispersive, (c), (f) dispersive-finite UXWs with a fractional bandwidth ∆ω = 0.2 at timestamps t1, t2 and t3

corresponding to the time instants when the pulse has reached the distances of z1 = 0.5z
(c)
dof , z2 = z

(c)
dof , and z3 = 1.5z
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FIG. 5. Evolution of the (a) transverse and (b) longitudinal spot size (HPBW) vs. t. The ideal (red line), dispersive (green
line), and the dispersive-finite case (blue line) are represented for ∆ω = 0.2.

maintains a constant transverse profile for all the time,
whereas the dispersive UXW has a negligible spreading
(less than 2 mm here) only at the end of the considered
time propagation.

In Fig. 5(b) a different behavior is observable. As ex-
pected, the ideal UXW retains its longitudinal spot size
as it propagates, whereas the dispersive UXW spreads
along the longitudinal axis after a certain distance at
which the spot size increases almost linearly with time.
However, the dispersive-finite UXW only slightly spreads
over the longitudinal direction. Such a different behavior
for the transverse and the longitudinal spreading is also
visible in Figs. 4(e) and (f), and can be interpreted in

terms of diffraction and dispersion phenomena. In gen-
eral, an attenuation of the field intensity requires a beam
spreading (either transverse or longitudinal) to grant en-
ergy conservation. Now, in dispersive-finite UXWs, the
Bessel beam profiles are no longer transversely confined
after the depth of field (Fig. 4(c)), as expected for their
finite aperture realizations [3]. This means that the at-
tenuation of the field intensity does not necessarily cor-
respond to a longitudinal spreading (Fig. 4(f)), since a
transverse spreading is already present. On the other
hand, in a dispersive UXW, no significant transverse
spreading is observed (Fig. 4(b)), so that the attenuation
of the field intensity should correspond to a longitudinal
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FIG. 6. Evolution of the normalized intensity vs. time t. The
ideal (red line), dispersive (green line), and the dispersive-
finite case (blue line) are represented for ∆ω = 0.2.

spreading (Fig. 4(e)).
Finally, in Fig. 6 the time evolution of the normal-

ized intensities of ideal, dispersive, and dispersive-finite
UXWs have been calculated for ∆ω = 0.2. It is clear that
the ideal UXW is a soliton-like solution in the sense that
its normalized intensity is kept constant for all times. On
the other hand, the normalized intensities of dispersive
and dispersive-finite UXWs decrease with time as the
pulse propagates. In the dispersive case, the attenuation
is due to the different velocities of the various compo-
nents of the pulse and thus the intensity fades out even
if the pulse is fed with infinite energy. In the dispersive-
finite case, the intensity is slightly attenuated (less than

25%) until the pulse reaches the z
(min)
dof . After that dis-

tance the intensity decreases rapidly and then vanishes
for a sufficiently long time (or propagating distance), as
required for any physical system which is fed with finite
energy. It is worth noting that the strong fading of the
pulse after the depth of field zdof strengthens our initial
assumption to define a metric over the z-axis with respect
to the depth of field of a general X-wave.

VI. CONCLUSION

We have analyzed both the spatial and the temporal
properties of ideal and dispersive X-waves generated by

a finite radiating aperture in the presence of dispersion.
In particular, we have first defined an efficiency of con-
finement for ideal X-waves, i.e., nondiffractive waves gen-
erated as the superposition of ideal Bessel beams. This
analysis revealed that, even in the ideal case, some lim-
itations exist to produce pulses that are efficiently con-
fined along both the transverse and longitudinal axes. In
particular, large fractional bandwidths (up to 20%) and
electrically large apertures with low-axicon angles of the
constituent Bessel beams are required. Moreover, we pro-
vided exact and approximated analytically closed-form
relations for the calculation of the transverse and lon-
gitudinal profiles for both ideal and dispersive X-waves
with a limited uniform spectrum.

On this ground, the propagation of ideal, dispersive,
and dispersive-finite X-waves has been considered and
then compared for different values of the fractional band-
width of the relevant spectra. Numerical results have
shown that the longitudinal spot size always decreases as
the bandwidth increases. Furthermore, for a dispersive-
finite X-wave, both the transverse and longitudinal spot
size spread as the pulse travels beyond the minimum
depth of field achieved at the minimum frequency of the
spectrum. For a dispersive-finite X-wave the maximum
intensity of the pulse reduces as it propagates beyond the
nondiffractive range of the constituent waves. Neverthe-
less, when a dispersive-finite X-wave propagates within
the minimum depth of field associated to the considered
spectra, its spatiotemporal properties coincide with those
of an ideal X-wave, therefore its spot size and its intensity
are almost constant as it propagates. In the dispersive-
finite case considered here at millimeter wavelengths, we
have demonstrated that a radiating aperture of radius
7.5 cm fed by a 60-GHz signal with uniform spectrum
over a 20% fractional bandwidth around the carrier fre-
quency is able to produce X-waves with an almost con-
stant longitudinal spotsize of about 1 cm and a transverse
spotsize of about 2.5 cm over a propagating distance of
20 cm.

Further works will be devoted to the study of the con-
finement of X-waves by full-wave simulations and mea-
surements.
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