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Optical properties of Ag-and AgI-doped Ge-Ga-Te far-infrared chalcogenide glasses

Introduction

Chalcogenide glasses have unique advantages in infrared (IR) applications, especially in far-IR [START_REF] Zhang | Tellurium halide glasses. New materials for transmission in the 8-12 μm range[END_REF][START_REF] Lucas | The tellurium halide glasses[END_REF][START_REF] Danto | A Family of Far-Infrared-Transmitting Glasses in the Ga-Ge-Te System for Space Applications[END_REF][START_REF] Elliott | Chalcogenide glass microspheres; their production, characterization and potential[END_REF][START_REF] Wilhelm | Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics[END_REF][START_REF] Maurugeon | Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15μm[END_REF][START_REF] Sen | Aitken Physical properties of GexAs2xTe100-3x glasses and Raman spectroscopic analysis of their short-range structure[END_REF][START_REF] Wang | Investigations of Ge-Te-AgI chalcogenide glass for far-infrared application[END_REF][START_REF] Cheng | Novel Ge-Ga-Te-CsBr glass system with ultrahigh resolvability of halide[END_REF][START_REF] Cui | Te-based glass fiber for far-infrared biochemical sensing up to 16 μm[END_REF][START_REF] He | Optical properties of Ge-Te-Ga doping Al and AlCl3 far infrared transmitting chalcogenide glasses[END_REF]. The far-IR cut-off wavelength of Te glass is usually greater than 20 µm. However, most Te glasses are unstable against crystallization because of strong metallic properties of Te atoms. Some electron-deficient additives, such as Ge, Ga, and I atoms, are doped into glass to improve the thermal stability and optical properties of Te-based chalcogenide glasses. Zhang et al. [START_REF] Zhang | Tellurium halide glasses. New materials for transmission in the 8-12 μm range[END_REF] proposed that elemental halogen doped into glass can open up the original network structure and improve the ability of glass formation. Nevertheless, the weak mechanical and low thermal characteristics of Te-X (Cl, Br, I) glasses limit the glasses to be fabricated as fibers or shaped into lenses. To overcome these limitations, many scientists exerted their efforts to develop suitable Te-based glasses. Wilhelm et al. [START_REF] Wilhelm | Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics[END_REF] reported that Ge-Te-I ternary glass system has good thermal stability and wide IR transparency window, but elemental I can volatilize easily during the fiber fabrication. Maurugeon et al. [START_REF] Maurugeon | Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15μm[END_REF] revealed that Ge-Te-Se chalcogenide glasses have good glassforming ability and high IR transmission. However, the IR cut-off edge is limited by Se atoms. Danto et al. [START_REF] Danto | A Family of Far-Infrared-Transmitting Glasses in the Ga-Ge-Te System for Space Applications[END_REF] reported that the IR cut-off edge of Ge-Ga-Te glass system is beyond 25 µm, but the IR transmission spectrum has an obvious absorption band. Ramesh et al. [START_REF] Ramesh | Glass formation in germanium telluride glasses containing metallic additives[END_REF] reported that metal can improve connectivity of glass and stabilize glass structure. Recently, Sun et al. [START_REF] Sun | Glass formation and properties of Ge-Te-BiI3 far infrared transmitting chalcohalide glasses[END_REF] proposed that halide can improve the abilities of glass formation and anti-crystallization. To date, comprehensive study about the different influence of Ag-and AgI-doped Ge-Ga-Te glasses has not been reported.

In our study, Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass samples were prepared by traditional melt-quenching method. This work aims to analyze different optical properties of two kinds of glass systems. This is the first comprehensive study to discuss the optical properties of metal-and metal halide-doped Te-based glasses. Thermal and optical properties were tested by differential scanning calorimetry (DSC) and Fourier transform IR spectroscopy (FTIR).

Experimental

For this experiment, (Ge15Ga10Te75)100-x(Ag)x (x = 10, 20, 30, 40) glasses (named GGT-Ag10, GGT-Ag20, GGT-Ag30, and GGT-Ag40, respectively) and (Ge15Ga10Te75)100-x(AgI)x (x= 10, 20, 30, 40) glasses (named GGT-AgI10, GGT-AgI20, GGT-AgI30, and GGT-AgI40, respectively) were prepared and investigated. Appropriate amounts of raw materials Ge, Ga, Te, Ag, and AgI with high purity were weighed carefully and transferred into quartz ampoules. The ampoules were sealed under vacuum (~10 -3 Pa) and melted in a rocking furnace at 850 °C for 15 h to homogenize the mixtures. The ampoules were then swiftly quenched in ice water and annealed at 10 °C below glass transition temperature (Tg) for 5 h in several prepared furnaces to eliminate inner stress of glasses. Finally, glass samples were cut into discs and polished for testing.

The amorphous nature of glass samples were elucidated by X-ray diffraction (XRD, German Bruker D2) and scanning electron microscopy (SEM). Thermal parameters were measured through DSC with the temperature ranging from 50 °C to 400 °C at a heating rate of 10 °C/min by a TAQ2000 thermal analyzer. The visible to near-IR spectra were recorded using PerkinElmer Lambda 950 UV-Vis-NIR spectrophotometer. FTIR spectra were obtained using Nicolet 380 FTIR from 4000 cm -1 to 400 cm -1 . All optical tests were performed at room temperature.

Results and discussion

Amorphous nature analysis

The glass-forming ability of chalcogenide glass is usually evaluated by the amorphous state. Fig. 1 shows the typical XRD patterns of Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass samples. As presented in Fig. 1, there is no obvious crystallization peak in the curves. To ensure the absence of microcrystals in these glasses, a structural study using SEM was also performed to confirm the amorphous state. Fig. 2 shows that the surfaces of these glass samples are nearly homogeneous with no obvious microcrystals. All results indicate that Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass systems maintain their amorphous nature. 

Thermal properties analysis

The thermal parameters of these chalcogenide glasses were recorded using DSC instrument. Fig. 3 shows typical DSC curves of glass samples. Tg and glass onset crystallization temperature (Tx) can be obtained from these curves. Specific values are listed in Table 1. The Tg values of Ge-Ga-Te-Ag glasses are nearly the same with an increase of Ag content. However, the Tg value of Ge-Ga-Te-AgI glass increases with the addition of AgI. This behavior may be caused by silver atoms which locate at the end of long chains and form their own connected structure instead of opening the network of GeTe4 tetrahedral or GaTe3 triangle units. The bond energy of Te-Ag (9.46 kJ/mol) [START_REF] Nie | Glass formation and properties of GeTe4-Ga2 Te3-AgX (X= I/Br/Cl) far infrared transmitting chalcohalide glasses[END_REF] is too small to influence the total bond energy of glasses. Therefore, the Tg values of Ge-Ga-Te-Ag glasses are almost the same. Given the chain-terminating function of I atoms, the addition of AgI opens up the network of GeTe4 tetrahedral or GaTe3 triangle units. Owing to its high electronegativity, I atoms capture the electrons from Te atoms. The bond energy of Te-I (198 kJ/mol) is larger than Ge-Te (171.3 kJ/mol) and Ga-Te (162.8 kJ/mol) bonds. The total bond energy of glass increases with an increase of AgI. As a result, the Tg value of Ge-Ga-Te-AgI glass increases gradually. The bond energy can be calculated using the following formula [START_REF] Pauling | The Nature of Chemical Bonds[END_REF]: ΔT, the difference between Tx and Tg , is usually used to assess the thermal stability of chalcogenide glass. From Table 1, the largest ΔT values of Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glasses are 110°C and 107°C, corresponding to (Ge15Ga10Te75)80(Ag)20 and (Ge15Ga10Te75)90(AgI)10 glass samples, respectively. As a whole, the thermal performance of Ge-Ga-Te-Ag glass system is superior to that of Ge-Ga-Te-AgI glass system.

Table 1 Thermal parameters of Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass samples.
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IR spectra analysis

The IR optical transmission spectra of these glasses are shown in Fig. 4. All glass samples have wide IR windows, and the IR cut-off wavelengths reach above 25 µm. The transmittance sharply declines when the wavelength is beyond 20 µm. The reason may be the multi-phonon absorption produced by Ge-Te bond vibration [START_REF] Quémard | Chalcogenide glasses with high non linear optical properties for telecommunications[END_REF]. With an increase of Ag or AgI, the transmittance of Ge-Ga-Te-Ag glass system deteriorates, whereas that of Ge-Ga-Te-AgI glass system ameliorates. The decrease of transmittance with an increase of Ag is attributed to the disorder caused by Ag atoms. Halide, as a modifier doping into Ge-Ga-Te glass, improves the anti-crystallization ability and the transmittance of Ge-Ga-Te-AgI glasses. Some absorption peaks can be observed in Fig. 4. The peak at 9.9 µm results from Si-O covalent bond vibration [START_REF] Cheng | Novel Ge-Ga-Te-CsBr glass system with ultrahigh resolvability of halide[END_REF]. The peak at 15-20 µm is ascribed to the presence of oxygen contamination, such as Ge-O or Ga-O bond vibrations [START_REF] Sen | Aitken Physical properties of GexAs2xTe100-3x glasses and Raman spectroscopic analysis of their short-range structure[END_REF][START_REF] Wang | Investigations of Ge-Te-AgI chalcogenide glass for far-infrared application[END_REF][START_REF] Cheng | Novel Ge-Ga-Te-CsBr glass system with ultrahigh resolvability of halide[END_REF][START_REF] Cui | Te-based glass fiber for far-infrared biochemical sensing up to 16 μm[END_REF][START_REF] He | Optical properties of Ge-Te-Ga doping Al and AlCl3 far infrared transmitting chalcogenide glasses[END_REF][START_REF] Maurugeon | Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15μm[END_REF][START_REF] Ramesh | Glass formation in germanium telluride glasses containing metallic additives[END_REF][START_REF] Sun | Glass formation and properties of Ge-Te-BiI3 far infrared transmitting chalcohalide glasses[END_REF][START_REF] Nie | Glass formation and properties of GeTe4-Ga2 Te3-AgX (X= I/Br/Cl) far infrared transmitting chalcohalide glasses[END_REF][START_REF] Pauling | The Nature of Chemical Bonds[END_REF][START_REF] Quémard | Chalcogenide glasses with high non linear optical properties for telecommunications[END_REF][START_REF] Andrikopoulos | Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials[END_REF]. The intensity of absorption peak depends on the purity of the starting elements. To eliminate these absorption peaks aroused by oxide impurities, a distilling method with 400 ppm Mg was adopted. The IR spectra of purified glasses are shown in Fig. 5. With the help of Mg, the glasses have flat and wide IR optical transmission windows. 

Near-IR absorption spectra and optical band gap
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The near-IR absorption spectra of Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glasses are shown in Fig. 6. With an increase of Ag, the absorption cut-off edge of Ge-Ga-Te-Ag glass system shifts to the long wavelength region. On the contrary, the absorption cut-off edge of Ge-Ga-Te-AgI glass system shifts to the short wavelength region with an increase of AgI. These behaviors may be attributed to the high electronegativity of I atoms, which make the width of the forbidden band broader. Eventually, this results in the blue shift of the Ge-Ga-Te-AgI glass system. Elemental Ag and I show positive and negative effects on the glasses, respectively. Consequently, by combining two elements together, such as AgI, the effect on the glasses is determined by I atoms [START_REF] Cui | Electrical and optical investigations in Te-Ge-Ag and Te-Ge-AgI chalcogenide glasses[END_REF]. The function relationship between absorption coefficient α(ω) and optical band gap Eopt is given by Tauc equation [START_REF] Kolobov | Crystallization-induced short-range order changes in amorphous GeTe[END_REF]:

α(ω)•ħω=B(ħω-Eopt) m
(2) where α is the absorption coefficient, which is determined as α = 2.303 A/d (A is the optical density, d is the thickness of the glass sample), Eopt is the optical band gap, ħ is Plank constant, ω is the incident light angular frequency, and m is a parameter that can determine the transition type of absorption edge. For amorphous glass materials, the direct and indirect transitions correspond to m = 1/2 and m = 2, respectively. B is a constant about local state in the band gap. B can be calculated with the following equation:

( 4/c)0 n 0 E (3) 
where c is the light speed in vacuum, σ0 is the electrical conductivity under absolute zero, n0 is the static refractive index, and ΔE is the local state tail width. Fig. 7 and Fig. 8 correspond to the direct and indirect band gaps of glasses, respectively. For Ge-Ga-Te-Ag glasses, Eopt decreases with an increase of Ag. However, an increase of AgI can broaden the optical band gap of Ge-Ga-Te-AgI glasses. Fig. 9 shows the tendency of Eopt of these glasses. In fact, the influence of Ag and I atoms on Eopt of glasses are totally opposite. The electrophilic character of I -in Ge-Ga-Te-AgI glasses plays beneficial roles of trapping lone pair electrons from Te atoms, and exciting the electrons from filled to empty states. In chalcogenide glass material, the conduction band is formed by the empty orbits, whereas the valence band is formed by lone pair electrons. With an increase of AgI, the conduction band is hardly affected, but the valence band decreases. Consequently, the optical band gap is broader and the effect of I supersedes that of Ag. Eopt decreases with an increase of Ag. This can be attributed to structural transformation. Ag atoms enter into the glass structure and forme their own connected structure [START_REF] Sakurai | Partial structure analysis of amorphous Ge15Te80M5 (M= Cu, Ag and In)[END_REF]. In this constrained network structure, Ag causes an increase in disorder and decreases the optical band gap effectively. The values of optical band gap of all glass samples are listed in Table 3. Table 3 Optical band gap of Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glasses. 
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Conclusions

In this study, Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass systems were prepared and investigated. Results indicate that these glasses possess good amorphous state and thermal stability. An increase of Ag content results in a decrease in the optical band gap of Ge-Ga-Te-Ag glasses, whereas an increase of AgI content increases the optical band gap of Ge-Ga-Te-AgI glasses. The IR optical windows of these glasses are wide and flat, ranging from 1.8 µm to 20 µm. No obvious absorption peak exists after the purification method, which indicates that these glasses are promising material for far-IR applications.
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 12 Fig. 1. XRD patterns of powder glass samples: (a) (Ge15Ga10Te75)60(Ag)40 and (b) (Ge15Ga10Te75)60(AgI)40.
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 3 Fig. 3. DSC curves of typical glass samples: (a) (Ge15Ga10Te75)80(Ag)20 and (b) (Ge15Ga10Te75)90(AgI)10.
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 45 Fig. 4. IR transmission spectra of glass samples: (a) (Ge15Ga10Te75)100-x(Ag)x and (b) (Ge15Ga10Te75)100-x(AgI)x
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 6 Fig. 6. Absorption spectra of glass samples. Inserts show the corresponding Vis-IR transmission spectra: (a) (Ge15Ga10Te75)100-x(Ag)x and (b) (Ge15Ga10Te75)100-x(AgI)x.
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 7 Fig. 7. Relationship between (α•ћω) 2 and ћω for glass samples: (a) (Ge15Ga10Te75)100-x(Ag)x and (b) (Ge15Ga10Te75)100-x(AgI)x.
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 8 Fig. 8. Relationship between (α•ћω) 1/2 and ћω for glass samples: (a) (Ge15Ga10Te75)100-x(Ag)x and (b) (Ge15Ga10Te75)100-x(AgI)x.
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 9 Fig. 9. Relationship between Eopt and the content of Ag or AgI: (a) Direct optical band gap and (b) Indirect optical band gap.
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