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Model-Based Design and Experimental Validation
of Control Modules for Neuromodulation Devices

Hector M. Romero Ugalde, David Ojeda, Virginie Le Rolle, David Andreu, David Guiraud, Jean-L. Bonnet,
Christine Henry, Nicole Karam, Albert Hagege, Philippe Mabo, Guy Carrault, and Alfredo I. Hernandez*

Abstract— Goal: The goal of this paper is to propose a model-
based control design framework, adapted to the development of
control modules for medical devices. A particular example is pre-
sented in which instantaneous heart rate is regulated in real-time,
by modulating, in an adaptive manner, the current delivered to the
vagus nerve by a neuromodulator. Methods: The proposed frame-
work couples a control module, based on a classical PI controller,
a mathematical model of the medical device, and a physiological
model representing the cardiovascular responses to vagus nerve
stimulation (VNS). In order to analyze and evaluate the behavior
of the device, different control parameters are tested on a ““virtual
population,” generated with the model, according to the Latin Hy-
percube sampling method. In particular, sensitivity analyses are
applied for the identification of a domain of interest in the space of
the control parameters. The obtained control parameter domain
has been validated in an experimental evaluation on six sheep. Re-
sults: A range of control parameters leading to accurate results
was successfully estimated by the proposed model-based design
method. Experimental evaluation of the control parameters in-
side such a domain led to the best compromise between accuracy
and time response of the VNS control. Conclusion: The feasibility
and usefulness of the proposed model-based design method were
shown, leading to a functional, real-time closed-loop control of the
VNS for the regulation of heart rate.

Index Terms—Heart rate, model-based control design, modeling,
simulation, vagus nerve stimulation.

I. INTRODUCTION

AGUS nerve stimulation (VNS) offers an alternative ther-
V apy in various pathologies, such as epilepsy, supraven-
tricular arrhythmias, and heart failure [1]. VNS therapy is
commonly delivered in an open-loop approach, with fixed
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stimulation parameters, without any feedback regulation. How-
ever, it is now widely accepted that closed-loop control may be
necessary to optimize the response to the therapy in an adaptive
manner and minimize side effects of neurostimulation devices
(2], [3].

A variety of physiological data may be employed as con-
trol variables in a closed-loop approach, depending on the tar-
get function of VNS control. Previous published studies have
proposed methods to control heart rate, since this variable is
particularly important and is readily observable [3]-[6].

In [7], a control system, based on the classical cumulative
sum control chart technique, adjusts the stimulation frequency
in order to regulate the average ventricular rate during atrial
fibrillation. In the systems proposed by Zhang et al. [8] and
by Tosato et al. [3], a proportional-integral (PI) controller was
used to modulate respectively the instantaneous amplitude of the
impulses applied for VNS and the stimulation frequency. How-
ever, due to the difficulty of observing physiological variables
in vivo and the complexity and nonlinearity of the underlying
physiological mechanisms, traditional control design methods,
usually based on the analysis of harmonic responses, cannot be
applied in this context. Although the appropriate definition of
the controller parameters is of primary importance, especially
in the case of a medical device, the control design phase is usu-
ally simple and based on heuristics. Novel methods for control
design should, thus, be proposed.

Model-based design (MBD) has already been used as a way to
overcome the difficulties associated with complex control sys-
tems [9] and has been widely used for designing and testing real-
time control applications in a variety of contexts, such as the au-
tomotive field [10], space research [11], renewable energies [12]
or the aerospace field [13]. This method is generally based on
four phases: i) create a model of the plant (system of interest and
actuators), i) define the controller’s mathematical structure, iii)
couple the model and the controller, iv) apply an analysis phase,
to identify the optimal parameters of the controller by perform-
ing recurrent simulations of the coupled system. Nevertheless,
the application of such an MBD scheme is particularly difficult
in the biomedical context, due to the complexity and low observ-
ability associated with the underlying physiological systems.

In this paper, we propose a novel MBD framework partic-
ularly adapted for the design of control modules in medical
devices. Although the framework is completely general, the
example of the design of an optimal closed-loop control sys-
tem for the VNS will be developed. Section II describes the
proposed framework, including the underlying models and the
retained control structure. An original sensitivity analysis ap-
proach, based on the creation of “virtual populations” and a
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Fig. 1. Model-based control design framework. The control application and
the model of the plant are coupled through analog signals.

fully crossed design, is proposed in Section III for the optimiza-
tion of the controller parameters. An experimental validation
method is proposed in Section IV in order to evaluate the con-
trol parameters obtained from the analysis phase. Section V
presents the results of the analysis and animal experimental val-
idation on six sheep. Sections VI and VII propose, respectively,
the discussion and conclusions of this study.

II. PROPOSED MBD FRAMEWORK

The proposed MBD framework (see Fig. 1) is composed of:
i) the model of the plant, implemented in computer 1, which
integrates a model of the neuromodulator and a model of the
cardiovascular response to the VNS, ii) the control application,
implemented in computer 2, which includes a signal-processing
module and a control algorithm (PI), #ii) two data acquisition
(DAQ) devices NI USB-6211 and iv) a TCP/IP communication
link, which allows computer 2 to change the model parameters
on computer 1.

The model synthesizes intracardiac ElectroGraM (EGM) sig-
nals which are sent to the control application through a digital to
analog converter in computer 1 (DAC1) and an analog to digital
converter in computer 2 (ADC2). EGMs are processed for
real-time detection of R-waves and to compute the current RR
interval, which is compared to a target RR, defined by the user.
An error computed between the instantaneous and target RR
intervals is presented as input to the proposed control algorithm,
which determines the appropriate VNS current amplitude. As
a difference from previous studies [3], [7], VNS in this study
is performed synchronously with cardiac beats. Therefore, the
controller algorithm also determines the instant of VNS activa-
tion, using the currently detected R-wave instant as a reference.
This VNS activation instant is transmitted to the model via an
analog signal (VNS Trigger), presenting a squared pulse that
triggers VNS on the neuromodulator model. The computed
current amplitude and trigger signals are sent to the neurostim-
ulator model in computer 1 via different channels of DAC2
and ADCI.

The main interest of coupling these two computers through
analog signals is that, once the parameters of the controller have
been optimized, we can connect computer 2 directly to the real
neurostimulator and a real sheep to perform in vivo validation.

A. Model of the Plant

In order to represent the plant, three different sub-models
have been created and coupled (see Fig. 2): 1) the cardiovascular
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Fig. 2. Representation of the global structure of the model, including the VN
stimulator, the baroreflex, and the CVS.

system (CVYS), 2) the baroreflex, including vagal activity, and 3)
the vagus nerve (VN) stimulator (actuator).

1) Model of the CVS: This model is based on previous stud-
ies of our group [14]-[18] and has been adapted using exper-
imental data acquired from different sheep. It is constituted
of two coupled components including lumped-parameter rep-
resentations of: 1) the cardiac electrical activity, 2) the cardiac
mechanical activity, and 3) the circulation.

The proposed model of the cardiac electrical activity, is based
on a set of coupled automata [15], [16]. Each automaton rep-
resents the electrical activation state of a given myocardial tis-
sue, covering the main electrophysiological activation periods:
slow diastolic depolarization (SDD), upstroke depolarization
(UD), absolute refractory, and relative refractory periods. The
whole simplified model consists of six automata representing:
the sinoatrial node, both atria, the atrioventricular node, upper
bundle of His, lower bundle of His, and both ventricles. The
slope of the SDD of the sinoatrial node is determined by the
chronotropic response of the baroreflex model, explained later.
The electrical activation of the automata is used to synthesize
an EGM, from which a set of parameters can be extracted, such
as the instantaneous heart rate.

The cardiac mechanical activity is represented by means of a
classical elastance-based approach. For each cardiac chamber,
volumes (V') are computed from the integral of their respective
net flow. Blood pressure (P) is then calculated from its volume
using two pressure-volume relationships associated with sys-
tole and diastole, respectively. A periodic function e(t) drives
the transition between the systolic (P.s) and diastolic (P.q) re-
lationships as follows:

P(V,t) = e(t)Pes(V) + (1 — e(t)) Pea(V), (1)
Pos(V) = Ees - (V = Va), ()
Pea(V) =Py - (V710 1), 3)

e(t) = A-exp(=B - ((t — t;) — O)?). “4)

In these equations, the systolic elastance (E,s) and dead vol-
ume (V) represent the slope and intercept of the linear relation-
ship of pressure and volume during systole. During diastole,
this relationship is nonlinear [19] and described by the diastolic
elastance (Fp) and an exponential function of V' and the vol-
ume at zero pressure (1}). The diastolic and systolic dynamics
are driven by a Gaussian function (4) described by its ampli-
tude (A), width (B), and center (C'). The onset of the cardiac
cycle, denoted ¢4, is determined by the activation instant (start
of the UD period) of the corresponding chamber in the cardiac
electrical model presented previously.

Finally, we used the minimal cardiovascular model proposed
by Smith ez al. [19] for the representation of blood flow dynam-
ics of the CVS. This lumped-parameter model represents the
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main features of system-level fluid dynamics using an hydro-
electric analogy and has been already studied in our previous
studies [17], [18], [20], [21]. Pressure on the circulation cham-
bers are calculated as a linear relationship of their volume and
its vascular elastance, following (2). These pressures are then
used to calculate flows between chambers as Q) = A}TP, where
AP is the pressure gradient of two chambers and R is the cor-
responding vascular resistance connecting them (either Ry or
Rpul)'

2) Baroreflex Model: The baroreflex model, presented in
more detail in Fig. 3, was adapted from [22]. Its input vari-
able is the arterial pressure generated by the CVS model. This
input is presented to the arterial baroreceptors, represented as
a transfer function chained with a saturation function [22].
The efferent pathways are represented as a set of first-order
transfer functions describing the linear responses giving as
output the modifications of the RR interval (chonotropic ef-
fect) through the sympathetic and vagal branches, and mod-
ifications of other cardiac functions (inotropism, vasomotor
tone, etc.), mainly through sympathetic pathways. This study
will be focused on the chronotropic effect, for which the
vagal and sympathetic responses are combined linearly as
RR =Ty + AT, + AT, + ATyns, where T is the intrinsic
heart period and ATyns is the VNS effect on HR.

3) Model of the Vagus Nerve Stimulator: A model of a VNS
device has been developed. This model generates a stimulation
pulse train, triggered by an R-wave, and characterized by a
given VNS configuration which is defined by a set of adjustable
parameters. Pulses are delivered at a programmable preset delay
(VNSelay), measured from the instant of R-wave detection for
beat b (RY,,). Only some cardiac cycles may be stimulated,
according to a defined ratio (VNS;y0). The other parameters
are: VNS current (mA), pulse width (ms), pulse train frequency
(VNSfeq in Hz), and number of pulses (Npyises in Num).

The stimulation signal is coupled to the model of the VN
through the transfer function depicted in Fig. 3 with dotted
lines. This kind of transfer function has already been used to
represent the modulation of heart rate as a function of neural
traffic on the VN [23]. As it can be seen on Fig. 3, the output of
this transfer function (ATyns) is added to the contributions of
AT, and AT to calculate RR.

Representation of the baroreflex model and the model of the VN stimulator. The coupling between these two models is represented by the transfer

B. Control Design

As previously mentioned, one of the difficulties of the pro-
posed control approach is that it should work synchronously
with the heart period. The controller will be thus updated
for each beat b, during the time interval [Rget, .. .,Rf’iet +
VNSdelay]. In our current prototype, the two electrodes (the cuff
used for VNS and the intracardiac lead) share a common ground
terminal. A cross-talk phenomenon between both channels can,
thus, arise while stimulating. In order to avoid this crosstalk,
the cardiac amplifier is disabled (blanking mode) during VNS.
This blanking period is minimized by defining the VNSge1ay €
[0, 100]ms, corresponding to the cardiac depolarization phase.

The retained control method is based on a classical PI con-
troller, since previous studies have shown that a PI controller
yields better results than a PID controller in the context of VNS
[3]. The VNS current to be delivered during beat b (u(b)) is thus
given by

)
(6)

where T; and k, represent, respectively, the integral and the
proportional parameters of the PI controller; RRy is the target
RR, set by the user, and RRy () is the observed RR interval,
computed by the RR calculator module in computer 2 between
beats b — 1 and b.

u(b) = k, <e(b) + Tiz e(b))
G(b) = RRT — RR() (b)

III. SENSITIVITY ANALYSIS
A. Creation of a “Virtual Population” Based on the Model

In a previous study [18], we performed a sensitivity analysis
on the CVS model described in Section 11-A, in order to pinpoint
the parameters producing significant effects on heart rate. Here,
five highly-sensitive parameters are modified to represent a set
of L = 30 “virtual sheep”: the gain 7,, and time constant 7, of
the chronotropic vagal response, the systemic resistance Ry,
the gain of the chronotropic sympathetic response T, and the
gain of the VNS effect K, . Thirty different parameter vectors
(one for each virtual individual) have been generated accord-
ing to the Latin Hypercube sampling (LHS) method [24], [25].
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Fig. 4.
substituted by the real stimulator and a real sheep.

LHS allows us to spread the parameter values evenly across a
predefined range, defined here at +10% of the baseline model
parameter values, partitioning each input distribution into inter-
vals of equal probability, and selecting one sample from each
interval. Moreover, LHS ensures no correlation between the
inputs. Once the virtual population was generated, the PI con-
troller is applied to each individual, using different controller
parameters, as described in the next section.

B. Sensitivity Analysis of the Model-Control Framework

The objective of the sensitivity analysis on the controller
parameters is to find a domain on the parameter space (75, k),
providing the best performance on the whole virtual population.
The proposed MBD framework is thus applied to perform a fully
crossed design (full factorial experiment), consisting in testing
all the combinations of 7; and k,, within a given range, and
then analyzing the performance obtained by the application of
these values to the whole virtual population. In this experiment,
25 values of T; and k,,, into the ranges T; € [0.05, 3] and k,, €
[0.0001,0.12], were used. Based on previous results [26], these
ranges of 7; and k, were chosen to cover a large exploration of
the parameter space, while preserving acceptable performance.

For each combination of (7}, k, ), the controller (computer 2)
sends, via TCP/IP, a set of model parameters, corresponding
to one virtual sheep. The combination is tested for each sheep
of the virtual population. The control test consists in setting
the controller off for 100s and then turning it on for 100s. The
following performance indicators, were computed each time the
controller is turned ON:

1) The mean squared error (MSE) calculated from the beat

in which the system arrived to the steady state (bs) to
bs + N:

by+N

> Ew).

b=by

1

MSE = N (7

2) The percent overshoot (%OS) that corresponds to the am-
plitude of the overshoot response, expressed as a percent-
age of the steady-state value.

3) The rise time 7, required for the waveform to go from
10% of the final value to 90% of the final value.

Finally, the following linear combination of the three per-

formance indicators was proposed in order to provide a global
criterion, to be used in the selection of a relevant range of control

Implemented VNS closed-loop control system. The control application is the same used in Fig. 1. The model of the stimulator and the plant were simply

parameters (13, k)

MSE

%0S T,
_— + 0.5
max(MSE)

F=0.25 —— + 05—
max(%O0S)

" max(T})
- (8)
where MSE, %08, and T, are the mean values of the perfor-
mance indicators on the virtual population. Notice that by using
this selection criteria, we give the same importance to the accu-
racy (MSE, %O0S) and speed of convergence 7.

IV. EXPERIMENTAL VALIDATION OF THE CONTROLLER

The ranges of T; and k, defined from the above sensitivity
analysis were experimentally validated on six sheep under two
different anesthetic agents.

A. Experimental Protocol

Six sheep were included in this experimental study, which
was conducted under the approval issued by the French ethics
committee for animal experimentation. A bipolar pacemaker
lead containing an intracardiac accelerometer (SonRTip lead,
Sorin CRM, Clamart, France) was placed in the right ventricle
and a cuff-type VNS electrode (Cuff electrode C4D3-1, Obelia)
was implanted on the right VN, at a cervical site. The aortic
artery dissection is realized at an equal distance between the
head and the trunk. The VN is gently removed from the aortic
sheath and the lead is placed around the VN. These leads were
connected to the proposed PI control system, as discussed in the
next section.

During the intervention, sheep were initially anesthetized
with Propofol and a morphine bolus. After this initial phase,
the sheep were anesthetized by Etomidate (100 pg/kg/min).
Then, after a verification stage of the implanted instrumentation
(in particular VNS electrode impedance and EGM quality), the
experimental evaluation of the proposed control system was per-
formed. Finally, the sheep were anesthetized by Isoflurane, in
order to test the same controller on a same sheep, but under dif-
ferent autonomic conditions. The surface ECG, the EGM, the
left intraventricular pressure, and the body temperature were
monitored during the whole procedure. Breathing was artifi-
cially controlled at 0.3 Hz (18 breaths/min).

B. PI Closed-Loop Control System Implementation

The closed-loop control system, depicted in Fig. 4, is com-
posed of: i) the bipolar EGM sensor, ii) the cuff electrode used
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Boxplots presenting the sensitivity analysis results for 25 x 25 combinations of (77, k;,) on the whole virtual population in terms of MSE (A), T
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configurations, shown in Fig. 6.

for VNS, iii) a custom prototype external neurostimulator (Pro-
totype INTENSE v1.2), able to drive up to 24 channels of stim-
ulation in accurate synchronization, with a programmable dis-
tribution of currents over the channels, allowing for complex
temporal stimulation waveforms [27], iv) a DAQ device NI
USB-6211, and 5) a real-time control application, which re-
ceives and process the EGM signal in real time and implements
the VNS control loop system.

The control application is the same used for the sensitivity
analysis phase, during which it was coupled with the model.
The interest of the proposed approach is that it allows us to pass
from the simulation-based evaluation to the real experimental
evaluation, with minimal effort and keeping the same control
components. Indeed, for the experimental evaluation, the model
of the stimulator and the plant of the proposed MBD framework,
shown in Fig. 1, were simply substituted by the real stimulator
(Prototype INTENSE v1.2) and the real plant (sheep). The only
difference is that the control protocol to modify the VNS am-
plitude is sent to the real stimulator via USB communication,
and the instruction to stimulate with the new VNS parameter is
sent to the Trig-in input of the stimulator via the analog output
of the DAQ NI 6211.

V. RESULTS
A. Sensitivity Analysis of T; and k,, Evaluated on the Model

Fig. 5 (a), (b) and (c) shows boxplots obtained for all combi-
nations (73, k,) on the virtual population. For most parameter
values of k,,, an increase of 7; is associated with an improvement
of the accuracy (MSE and %OS ), while a rise of k, induces
an decrease of precision and rapidity. However, the system re-
sponse to 7; and k, is more complex to analyze, since it depends
on the combination of both parameters.

The combined function F is exposed in Fig. 5(D), as a function
of T; and k,. Low values of 7} and k, are associated with poor
performances. An optimized set of parameters I" appears for the
restrictive condition corresponding to F < 0.02:

I ={(T;, k), T; €[0.4,0.6],k, € [0.004,0.006]}.  (9)
Fig. 6 shows the dynamic response of RR intervals (A) and
the applied current (B), when the (73, k,) parameters are set to
values inside and outside I'. Low values of 7T} are associated with
unacceptable oscillations, while elevated 7}, combined with a
moderate value of k,, yields much longer time response. On
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the contrary, the values inside I yield a satisfying compromise
between accuracy and time response.

B. Experimental Validation

The controller was tested on six sheep, three of them anes-
thetized by two different anesthetics (Etomidate and Isoflurane).
In order to validate the ranges of 7T; and k, derived from the
previous MBD, and since the animal experimentation time is
limited, two approaches with a reduced set of combinations
of T; and k, were studied. For the first sheep, k, was fixed
to k, = 0.005 € I' and several values of T; are explored. The
target value was set at 110% of the baseline RR, measured at
the beginning of the experimentation, so as to observe the con-
vergence response for large 7; values (7; > 1). For all other
sheep, different values of &, are used, while fixing 7; = 0.4 €
. RR target values were set at 105% and 110% of the baseline
RR, but only results leading to attainable target values (without
premature ventricular contractions) were kept. Due to technical
reasons (recording problems), performance measures for sheep
5 at 105% were not computed.

1) Experimental Validation of T;: The sheep was anes-
thetized by Isoflurane. The target RR is set at 110% of the
RR baseline and five values of 7T; were tested. Fig. 7 shows
that an increase of 7; is associated with reduced oscillations
but also with a reduced speed of convergence. These results are
in concordance with the sensitivity analysis presented in Fig. 5.
Note that the combination (T; = 0.4, k, = 0.005) € I" yields the
best compromise between precision and speed of convergence.
Results given in Table I (see Sheep 1) confirm these conclusions.

2) Experimental Validation of k,,: Sheep 2 was anesthetized
by Etomidate. Results are presented for a target RR set at 105%
of the RR baseline, with T; fixed at 0.4, and five values of &,,.
Fig. 8 shows that, in all cases, the target is reached. As expected,
when £, is increased, the speed of convergence is increased, but
MSE and %OS are increased too (see Table I, Sheep 2). It

TRl RLETLI
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4

Fig. 7. Experimental results on sheep 1 anesthetized by Isoflurane with a
target set at 110% of the RR baseline. Five values of 7; were tested, while
observing the instantaneous RR interval of the sheep (A) and the VNS current
obtained from the controller (B).

TABLE I
PERFORMANCE MEASURES ON ANIMAL EXPERIMENTATION; A =
ANESTHETICS, | = ISOFLURANE, E = ETOMIDATE

Sheep A Target &, T; MSE %0S T, Baseline RR
(mean-=std)

1 I 110%  0.005  0.05  909.32 125.60 4 537.90 £+ 1.09

0.1 108.31 61.32 5 534.10 £+ 1.50

0.4 53.97 26.24 14 544.16 £ 1.36

1 149.73 23.83 31 52535+ 1.52

3 1000.45 0 —  499.17 +2.00

2 E 105%  0.012 0.4 246.10  152.87 1 653.70 + 0.76

0.008 99.32 95.67 3 659.57 + 0.83

0.005 51.92 81.08 7 665.01 + 0.95

0.001 13.35 11.53 51 663.68 + 1.01

0.0001 1.01 0 81  652.03 £0.53

3 E 105%  0.005 0.4 198.67 14520 12 426.25+0.97

0.001 42.90 50.39 63 420.96 + 1.27

I 105%  0.005 392.97 144.49 1 549.68 + 0.98

0.001 157.53 56.35 67  549.64 £1.01

4 E 105% 0.01 0.4 56.68 35.51 17 672.17+4.72

0.005 88.58 23.15 39 67271 £5.36

5 E 105%  0.005 0.4 75.46 101.39 19  400.03 £ 1.14

0.001 33.36 90.12 91 39991+ 1.12

110%  0.005 780.10 133.01 8 400.10 + 1.15

0.001 133.60 6.02 56 400.44 +1.02

I 110%  0.005 838.60 92.61 9 578.52 +1.23

0.001 116.60 5.96 48  581.23 +£2.08

6 E 105%  0.005 0.4 685.49 26.37 7 595.30 & 1.01

0.001 56.28 7.54 26 59812+ 1.17

110%  0.005 61.18 791 7 597.53 + 0.94

0.001 21.03 4.63 44 59830 £ 0.83

I 105%  0.005 105.16 10.35 8 693.41 £ 0.68

0.001 124.80 8.85 40  687.57 +£0.92

110%  0.005 25.92 5.02 14 694.87 +1.23

0.001 23.04 4.75 54 691.40 £+ 1.16

is interesting to note that, among the tested values, the value
k, = 0.005 € I, yields the best compromise between speed of
convergence (1) and accuracy (MSE and %OS).

3) Global Experimental Results: Table 1, presents the ex-
perimental results on all the sheep included in our experimental
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Fig. 8. Experimental results on sheep 2, anesthetized by Etomidate with a
target set at 105% of the RR baseline. Five values of k;, were tested, while
observing the instantaneous RR interval of the sheep (A) and the VNS current
obtained from the controller (B).

evaluation, using different targets and control parameter val-
ues. Note that the use of k,, values higher than 0.012 (i.e., the
maximum value of k,, analyzed on the virtual population) was
avoided during the experimentation, after sheep 2, in order to
ensure a safety condition. In all cases, the expected performance
is achieved using PI parameters that are inside the domain I',
derived from the MBD approach. Table I also presents the base-
line values of RR interval. No correlation was found between
baseline RR values and the obtained performance indicators,
showing the controller’s ability to adapt to various conditions.

VI. DISCUSSION

Previous studies have shown the utility of using a theoretical
approach in order to improve the design of medical devices. For
instance, in [28], a first-order transfer function is used to repre-
sent the relationship between the current delivered to a neuron
(input of the controlled system) and the interspike intervals of
the neuron (output of the controlled system). In [3], the rela-
tionship between the VNS frequency (input of the controlled
system) and the RR interval (output of the controlled system)
is modeled by a first-order transfer function. The PI controllers
designed in both papers work successfully in a limited range.
However, the authors suggest that better results may be reached
by using more detailed models, which can take into account the
more complex (and often nonlinear) function of the underly-
ing system. As a difference to these previous studies, the MBD
presented in our paper is based on an integrated physiological
model including nonlinear dynamics and relies on a complete
sensitivity analysis of this model. Therefore, the designed PI
controller may perform better in a larger range, since nonlinear-
ities and physiological delays are taken into account. Moreover,
a safer behavior is ensured because the controller was tested
on a large virtual population, obtained from significant vari-
ations of the model parameter values, and leading to a large
variety of responses to VNS. To our knowledge, this paper is
the first to describe such a model-based approach, based on an

integrated model and including the creation of a virtual popula-
tion associated with an exhaustive sensitivity analysis of control
parameters.

Concerning the particular application developed in this pa-
per for closed-loop VNS therapy, the difficulty is to find an
optimal set of PI parameters presenting the best compromise
between time of convergence and accuracy, while assuring safe
stimulation conditions and smooth transitions on the current ap-
plied to the nerve. For instance, we can observe in Figs. 7 and
8(B) that the applied current during VNS tends to 1 and 0.4
mA, respectively. However, the dynamics of the VNS current
depend directly on the control parameters (Figs. 7 and 8(B)).
Low (k,) and high (7}) are associated with slow, low-amplitude
dynamics of the VNS current, while high (k,) and low (7})
provoke rapid, high-amplitude changes on the applied current,
and oscillations in the observed RR interval. The set of con-
trol parameter values, identified through the sensitivity analysis
phase within the I' domain, lead to an appropriate adjustment
on VNS current dynamics in the experimental evaluation, pro-
voking suitable changes on the observed RR interval, and a
good compromise between accuracy and speed of convergence.
Moreover, the proposed PI controller provides satisfactory re-
sults for both anesthetic agents, Isoflurane and Etomidate (see I
and E in Table I, respectively), that are associated with two dif-
ferent autonomic states. This finding is particularly interesting
for the use of the proposed controller in clinical practice, since
the autonomic states of a patient could be affected by several
long and short-term influences. Furthermore, since most of the
control parameter values used during experimental evaluation
were kept within the I' domain, the evaluated PI controllers
could ensure a safe and optimized response for a majority of
circumstances.

Limitations of this study are mainly related to the experi-
mentation phase. Although the experimental conditions were
standardized (anesthesia, regulated breath,...), the uncontrolled
variations of environmental conditions (evolution of the anes-
thetic’s effect during the experimentation, physiological varia-
tions, ...) made the RR baseline value evolves through time, even
for the same sheep under the same anesthetic agent (Table I, last
column). This effect, which can be clearly seen in Fig. 7(A),
provokes a slight drift on the optimal required current for attain-
ing the target RR, which was defined with respect to the initial
RR baseline value. However, this RR baseline variability does
not affect the control strategy, since the target RR was reached
in all cases, and no correlation was found between RR baseline
values and the obtained PI performance. Another limitation of
this study is related to the model. Although the proposed model
is more detailed than those used in previous related studies, it
may be improved by a better representation of the electrode—
nerve interface. Current studies of our team are directed to a
better characterization of the autonomic response for different
VNS parameters [29].

VII. CONCLUSION

In this paper, we proposed a model-based framework for the
design of control modules for medical devices. This framework
allowed us to design PI controllers which work synchronously



with the heart period, for regulating the heart rate by modifying
the stimulation current applied to the VN.

A physiological model representing the CVS of a sheep, in-
cluding the cardiac response to VNS was used to generate a vir-
tual population. Sensitivity analyses were performed by varying
parameters of the control system and the physiological model
in order to estimate a domain of interest in the space of the
control parameters. The PI controller derived from the proposed
MBD approach was experimentally validated on six sheep, by
using two different anesthetics. Results clearly show the inter-
est of using a model-based approach in order to determine the
parameter values of a PI controller and to optimize the dynamic
performance of the closed-loop regulator.

The proposed MBD framework can be generalized to other
applications. Our current study is directed to the integration and
evaluation of other control methods for the same VNS appli-
cation (same model of the plant, but different controller), but
also to the application of PID-type controllers for the optimiza-
tion of cardiac resynchronization therapy (same controller, but
different plant model). This MBD approach may also help to
minimize animal experimentation for the design of closed-loop
medical devices.
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