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Abstract 

The photocatalytic degradation of indole and 4-methylphenol mixture, using ZnO, was 

studied. The optimal conditions for the degradation were determined using response surface 

methodology (RSM). We showed that in, our experimental domain, the quasi complete 

degradation of the mixture’s organic constituents is possible. Moreover, we note that the 

effects of the entire variables are not linear. Indeed, the optimum removal conditions were 

determined. Thus, the optimal conditions for indole degradation, were 1.5 mg/L of catalyst 

concentration, 2.5 L/min of air flow and 7.16 for pH. For 4-methylphenol, they were 1.37 

mg/L of catalyst concentration, 2.38 L/min of air flow and 6.96 of pH. At optimized 

conditions the complete photocatalytic degradation was obtained at 30µL/L of 4-

methylphenol and 10 mg/L of indole concentration. Similarly, the optimized correlation 

coefficients R2 and R2
adj for a quadratic model was satisfactorily evaluated as 99.5% and 

99.1% respectively with indole and there are equal to 99.7% and 99.4% respectively with 4-

methylphenol. Our results reveal that the tested ZnO photocatalyst can be employed as a 

powerful tool for the pollutants degradation in wastewater. 
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1. Introduction  

 

The pollution of the environment (water, air and waste) is one of the crucial problems which 

our civilization has to face. The most important ones are water pollution and treatment of 

wastewaters. Industry and agriculture are major contributors to soil and groundwater 

pollutions [1]. Most conventional water treatment processes are not destructive. They lead to 

a pollution transfer from one phase to another.Therefore, a different kind of pollution is faced 

and further treatment steps are required [1].  

 Advanced Oxidation Processes (AOPs) are usually considered as promising methods for 

wastewater treatment and more especially photocatalytic solar techniques in sunny countries 

such as Algeria [2]. AOPs can be used alone or in combination with biological steps in order 

to insure an efficient level of pollutants abatement [3, 4]. AOPs processes lead generally to a 

formation of hydroxyl radicals in aqueous phases.  Hydroxyl radical is able to mineralize the 

majority of organic compounds [5]. Among the AOPs, photocatalysis processes use 

semiconductors to produce hydroxyl radicals by irradiation with light of appropriate 

wavelengths. In fact, the photocatalysis mechanism is well known [5-7]. Under UV 

irradiation, an electron of the valence band is excited to the conduction band leading to the 

production of a positive hole h+ in the valence band. On the surface of the catalyst, h+ 

produces a hydroxyl radical by oxidation of a water molecule adsorbed at the surface of the 

semiconductor. h+ can also oxidize directly an adsorbed molecule by interfacial electron 

transfer [8, 9].   

Generally, the most effective catalysts used for photocatalytic purification of air or water were 

found to be nano-sized semiconductor oxides such as TiO2 and ZnO [10, 11], which have 

been proven to be efficient due to their highly reactive surface [12].  So these semi-conductors 

have been extensively used for photocatalytic degradation of toxic and recalcitrant chemical 

species present in wastewater [13, 14]. Although TiO2 is the most often used photocatalyst for 

the degradation of a wide range of organic compounds, ZnO may represent an attractive 

alternative. Indeed, according to reference [15], photodegradation mechanism is similar to 

that of TiO2. In addition, it has been reported that ZnO can be more effective for the 

degradation of organic compounds such as 2-phenylphenol [16] and phenol [17]. Moreover, 

the biggest advantage of ZnO is that it can absorb over a wide band gap (the band gap 

energies of anatase-TiO2 and ZnO are 3.2 eV and 3.3 eV, respectively) [18], it has a large 

volume-area ratio and a large initial rate of activities [19]. For this reason, ZnO seems to be 

more suitable for photocatalytic activities under sunlight irradiation. 
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In this investigation, Indole and 4-methylphenol were chosen as target compounds because 

they are the main pollutants found in wastewater issued from cattle farm and in liquid manure. 

Levels as high as several mg/L were observed in pig-breeding manure. Indole and its 

derivatives have unpleasant smell and can cause important damage on living organisms.  

This work aims to investigate the photodegradation of indole and 4-methylphenol mixture in 

order to define the basic data for the design of a pilot unit of solar wastewater treatment in 

“Unité Avicole de Taboukert”- Algeria. Statistical approaches have been widely used in the 

optimisation of water treatment processes [20] especially to study the Fenton reaction [21, 22] 

and the treatment of industrial wastewater by photocatalysis [23]. The conventional method 

for optimization changing one factor successively by keeping the others constant is a time 

consuming and expensive process [24]. Moreover, the conventional method does not include 

interactive effects between experimental factors. Thus the response surface methodology is 

the most powerful statistical technique used to optimize and understand the performance of 

photocatalytic process with minimum experimental runs [24-26].  

In this study, we use response surface methodology (RSM) for the experimental design under 

optimized conditions. We use this methodology to investigate the influence of three operating 

parameters on the process efficiency and to determine the optimal conditions. The studied 

variables were the pH of the suspension, the concentration of the heterogeneous photocatalyst 

and the air flow into the suspension containing a mixture of indole and 4-methylphenol. The 

study of the influence of a mixture on the photocatalytic process seems to be an interesting 

challenge. 

2. Materials and methods 

2.1. Experimental materials  

Indole and 4-methylphenol were purchased from Fluka (purity > 99%) and used as received. 

The commercial ZnO obtained from Merck (purity > 99%) was used as received without 

further purification. The average grain size of the ZnO was estimated from powder X-rays 

diffraction (XRD) pattern to be about 270 nm by applying the Debye-Scherrer formula to the 

(110) reflex line.  

 

2.2. Experimental set up and procedure 
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All the experiments were carried out on a recirculating plant. A glass jacket reactor was used 

in this work with an internal volume of 0.9 liter and a UV Phillips lamp PL-L24W/4P placed 

in the center of the reactor inside a quartz tube. The lamp was totally immersed in the reactor 

to permit maximum light irradiation. 

Diameter of the quartz tube (jacket) was the minimum to hold the lamp and thus the 

adsorption of photons light by oxygen molecules in the air around the lamp was minimized. A 

pump, located below the reactor, provides an adjustable circulating flow. The reactor is 

equipped with a water-flow jacket for regulating the temperature by means of an external 

circulating flow (JULABO) with an accuracy of ± 0,1 0C. A cryostat was used to keep the 

temperature stable at 25 °C. 

Air was supplied at a constant flow-rate using an air pump (micro-air compressor).The whole 

reactor was covered with an aluminium thin layer to prevent UV emission.  

The experimental set up used in the study is shown in Fig.1.  

 

Fig. 1: Experimental system (1: Reactor, 2: UV lamp, 3: Air pump, 4: Cryostat, 5: 

Water inlet, 6: Water outlet, 7: Stirrer) 

The indole and 4-methylphenol solutions were prepared with bidistillated water. The natural 

pH of the solution is 6.8 and it was adjusted by adding 0.1N HCl or 0.1 N NaOH. The pH and 

the temperature of the solution were monitored during the runs (Inolab system). The evolution 

of the indole /4-methylphenol mixture concentration is followed by UV visible 

spectrophotometer (Shimadzu mini 1240) by sampling 0.5ml of solution. The sample is 

filtered by a 25 µm micro-filter in order to eliminate any turbidity then its absorbance was 

measured after 5 min of centrifugation. Sample was free of any powder suspension.   

Before irradiation with UV light (between 340 and 400 nanometers) the solution is 

recirculated in the dark for a period of 60 minutes in order to establish the adsorption 

equilibrium. During irradiation, the suspension was agitated continuously (500 tr/min) in 

order to maintain a homogeneous dispersion of the photocatalyst. When the adsorption 

equilibrium is reached, the UV lamp is turned on. 

The duration of all the experiences was fixed at 130 minutes. The mixture degradation 

percentage is the considered response of the process study. 

 

3. Design of experiments and optimization  
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The effects of several parameters such as the concentration of the photocatalyst, the air flow 

into the photoreactor and the pH of the suspension on the process performance were 

investigated.  

 

3.1. Model description 

 

 The use of the design of experiments (DOE) which is a comprehensive assessment of the 

effectiveness of the process assumes predicting the optimal operating conditions. Using this 

method, one can bring out influence of several parameters and their interactions in the 

photocatalytic degradation process feasibility of the indole 4-methyphenol mixture. RSM 

(Response Surface Methodology) is an important branch of experimental design and can be 

considered as an efficient tool in developing new processes, optimizing their performance and 

improving design and formulation of new products [27-29]. It is recommended when an 

identification of influence of a large numbers of variables of the experimental system is 

needed [27, 28]. 

 Many studies using approaches leading to models with a single variable or experiments are 

carried out by varying one parameter while all others remain constant. An alternative to this 

approach is the factorial experimental design which is a statistical tool that allows the 

simultaneous change of several variables [29-32]. This leads to optimize and to highlight the 

influence of different factors and their interactions in the feasibility study of photocatalytic 

oxidation process [30-35]. 

Our approach aims at studying and modelling the process of photodegradation by using the 

response surface methodology (RSM). This approach is based on a mathematical model of 

second order with three independent variables X1 (Concentration of the photocatalyst), X2 

(airflow into the photoreactor) and X3 pH of the indole-4-méthylphenol mixture.   

All the results were treated and interpreted using a MICROSOFT EXCEL and the statistic 

software SATISTICA 6.0. The determination of the effects of these parameters on the mixture 

of indole -4-methylphenol photodegradation (response) was carried out by using the central 

composite experimental design (CCD) [30-36]. Concentration of catalyst, pH and air flow 

were chosen as independent variables and the percentage of photodegradation as the 

dependent output response variable. Independent variables, experimental ranges and levels of 

the indole-4-methylphenol mixtures are given in Table 1. The formulated design matrix which 

is shown in Table 2 is a response surface central composite design consisting of 20 sets of 
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coded conditions [30-35]. It comprises a full replication of 23 (= 8) factorial design with 

appending six center points and others six experiments of axial star points of codified values ± 

a = (NF)1/4 = 1.681 [30-36]. All the variables are coded at three levels: intermediate level (0) 

which constitute the center points and the lowest (-1) or highest (+1) level [31, 34, 35]. Thus, 

a 20 experimental runs were checked in order to estimate the linear, quadratic and two-way 

interactive effects of tested variable on the percentage photodegradation. Experimental plan 

which illustrate the coded value and the photodegradation percentage of indole-4-

methylphenol mixture is given Table 2. For statistical calculations, the variables Xi were 

coded as xi according to the following relationship: 

                                             xi = (Xi - Xi0)/Xi                                                                   (1) 

where xi, Xi are the coded and natural values of independent variables respectively, Xi0 the 

natural value of the ith independent variable to focus Xi and the value of no corresponding 

change [30-35]. 

 

Table.1: Ranges and levels of independent variables experimental test for 

photodegradation percent of the mixture indole-4-methylphenol 

  

Based on the works of Ravikumar et al. and Korbahti et al., in order to evaluate the pure error, 

six replications of experiments were carried out in randomized order as required in many 

design procedures [30, 31, 35]. The process performance was investigated by analysing the 

response of photodegradation percent of indole - 4-methylphenol mixture.     

Therefore, to optimize the process the responses can be simply related to chosen factors by 

linear or quadratic models [30-35]. A quadratic model which also introduces the linear model 

is defined as:           

(2) 

Where Y is the observed response, β0, βi, βij and βii are constant term, the coefficients of linear 

effects, interactions and quadratic terms respectively. xi and xj  represent the variables and ei 

the error. The fit quality of polynomial model was identified by the determination of R2 and 

R2
adj coefficients [30-35]. 

 

3.2. Discussion of modelling results  
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Mixture of indole-4-methylphenol solution of 30 µL/L and 10 mg/L concentration was 

prepared and submitted to UV light with the presence of a given amount of a catalyst. It was 

noted that the absorption value, which measures pollutant concentration, became minor with 

irradiation time, thus indicating the photodegradation of mixture solution. The decrease in 

absorption value of mixture solution can be related in terms of photodegradation percentage 

to the response as follow: 

                                   y (%)  =  [(C0 – Ct) / C0 ]  100                                           (3) 

were C0 and Ct represent respectively the initial and the final concentration of pollutant. 

This response (objective function) was the degradation percentage of the mixture as 

determined after 130 minutes of irradiation. The complete experimental design including 

experimental responses is given Table 2. 

 

Table.2: Full factorial central composite design matrix for indole and 4-methylphenol 

 

The experimental design results were investigated by STATISTICA 6.0 which is statistical 

software to evaluate the response of the dependent variable in all experiments. Briefly, the 

regression model equation relating the percentage of photodegradation and process 

parameters were developed and given in Eqs (4) and (5) for indole and 4-methylphenol 

respectively: 

 

Ypred (Indole) =  90.054   +  10.177 x1 + 11.825 x2 + 23.061 x3  - 1.056 x1 x2 - 3.081x1 x3  

                                           - 5.491 x2 x3 - 5.505 x1
2 - 4.936 x2

2 - 15.370 x3
2                          (4) 

 

Ypred (4-methylphenol) = 93.480 + 9.749 x1 + 11.244 x2 + 21.785 x3 - 2.176 x1 x2                                                                                                                                                                                                        

- 3.236 x1 x3 - 4.964 x2 x3  - 4.901 x1
2 - 5.075 x2

2  - 14.735 x3
2       ( 5)                                                                                                                                                                                                

 

The mean value of the six central points (90.05% degradation for indole) and (93.48% for 4-

methylphenol) is very close to that of β0. This relatively high value seems to be logical due to 

that our target is the quasi-complete degradation of indole and 4-methylphenol mixture. We 

note that in our case the definition of the central point of the experimental domain was chosen 

on the basis of preliminary investigations [30-35]. 
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Fig. 2: Predicted values compared with experimental results for both pollutants indole 

(a) and 4-methylphenol (b). 

 

We used the value of R2 coefficient to express the fit quality of the polynomial model. On the 

other hand the statistical significance was evaluated by Fisher's F-test and Student's t-test 

(Analysis of Variance, ANOVA).  

The level of significance was given as values of P less than 0.0001. The predicted values are 

close to the observed values (see Fig.2). Thus a second-order polynomial can correlate well 

the experimental results. The high value obtained of indole and 4-methylphenol R2 

coefficients are respectively 99.5and 99.7%. This means that 99.5% and 99.7% of the 

variation in the photocatalytic degradation performance of pollutants are explained by the 

independents variables which are highly significant. This seems to be logical due to the 

importance of these experimental parameters on the process efficiency. We can note that the 

pH of the mixture has higher influence than catalyst concentration and air flow. It is well 

known [37] that pH influences surface charges properties of the photocatalyst and therefore 

the adsorption of the pollutant and the size of particles aggregate. Catalyst concentration and 

air flow seem to have the same importance for the two pollutants. 

High R2
adj coefficients which are equal to 99.4 and 99.1 for 4-methylphenol and indole 

respectively allow us to confirm that the predicted values are close to the experiments. 

According to ANOVA tests (Table.3) the obtained F-values for all regressions were higher. 

In fact, the ANOVA analysis is a statistical technique that subdivides the total variation in a 

set of data into component parts [37]. The large value of F indicates that most of the variation 

in the response can be explained by the second order polynomial [30-36]. Moreover, the 

associated P value is used to quantify whether F-value is large enough to indicate statistical 

significance. Indeed, when this value is lower than 0.01, it indicates that the model can be 

considered as statistically significant [37, 38].  

Here, the use of F-Fisher value which is obtained by the ratio of the regression variance to 

residual variance (F-value = S2
reg / S

2
err) demonstrates that the model is highly significant at 

1% [30-35]. This is justified by the fact that the value of the F calculated is much larger than 

the value of F tabulated.  

For the regression of indole:  

                    F0.01 ;9 ;10  = S2
reg / S

2
err = 227.85≫  F0.01 ;9 ;10 ( tabulated)  = 4.94  

and regression for 4-methylphenol we have:  
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                    F0.01 ;9 ;10  = S2
reg / S

2
err = 345.90≫  F0.01 ;9 ;10 ( tabulated)  = 4.94  

This indicated that the fitted model exhibits lack of fit with (P-value=0.000 and P-value 

=0.001 for indole and 4-methylphenol respectively). 

In order to evaluate the pure error, the designed experiments with six replications were carried 

out in randomized order as based on several design procedures [30-35].  

 

Table.3 (ANOVA) of removal efficiency for indole- 4-methylphenol mixture.  

 

Student's t-test was used to analyze obtained results in order to determine the significance of 

the regression coefficients of the variables. On the other hand the P-values were used as a tool 

to determine the significance of the variables. The regression coefficient, t- and P-values for 

all linear, quadratic and interaction effects of the variables are given in Table 4 and 5. 

 

Table 4: Estimated regression coefficients and corresponding t and P-value for indole 

 

Table 5: Estimated regression coefficients and corresponding t and P-value for 4-

methylphenol 

 

The interaction effects plot which describes the influence of each variable on the 

photodegradation of indole and 4-methylphenol mixture respectively is given in Fig. (3) and 

(4). 

The photodegradation is affected by the quadratic terms in order of importance x3 (pH 

mixture), x2 (air flow) and x1 (the concentration of catalyst). This adverse effect is explained 

by the fact that over the pH of the solution, air flow and catalyst concentration longer 

decreasing the photodegradation of indole and 4-methylphenol mixture decreases also. On the 

other hand, the interactions terms have a small influence compared to quadratic terms. Figs. 3 

and 4 show that the interaction of air flow and pH of the solution is as important as the air 

flow and the catalyst comes indeed the latter the lowest among the airflow and the 

concentration of catalyst.  

                  

Fig.3: Interaction effects plot for removal indole 

                   

Fig.4: Interaction effects plot for removal 4-methylphenol 
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The linear, quadratic and interactions effects are significant for both responses. Except the 

interactions (x1×x2) for the two responses, where there is a weak interaction particularly 

between (x1×x2) for regression of 4-methylphenol. This is confirmed by the value of the 

interaction effect of concentration of ZnO and air flow (P=0.290 for indole and P= 0.014 for 

4-methylphenol) and the response contour plots of mutual interactions among this variables 

(x1 x2) was found almost circular. With a high catalyst concentration and a low rate of air 

injected into the solution, set at the average interval in the field of experimental chosen 

degradation is a major achievement for indole and 4-methylphenol mixture. 

The photodegradation is affected by the quadratic terms. On the other hand, interactions terms 

have a small influence compared to quadratic terms for both responses. 

 Graphs of surface and contours can be considered as simple method which leads to optimize 

the wastewater treatment and to identify the variables interactions [30-35, 40, 41] (see Fig.5 

and 6). For the degradation of indole-4-methylphenol mixture each curve can represent an 

infinite number of combinations between two variables when the third variable is kept at a 

central level for all combinations. The response contour plots of mutual interactions were 

found to be elliptical for pH and ZnO and also for air flow and ZnO. The similar types of 

trends were found in literature [40-43].  Via Fig. 5, a performance of 99.9 % of indole 

degradation can be obtained for a 1.50 mg/L of catalyst concentration and around 2.5 L/min 

of airflow with a pH attached to the central value. For an air flow of 2.40 L/min and a catalyst 

concentration of 1.35 mg/L, in the range of experimental chosen, a percentage of 

photodegradation around 100% of 4-methylphenol (Fig. 6) can be reached at pH set at the 

average. The optimum values drawn from these figures are in close agreement with those 

obtained by optimizing the regression model Eq. (3) and (4). 

On the other hand, the interaction between the two factors, airflow and ZnO, seems to be 

negligible.  

 

Fig.5: Graphs of surface and contours plots of indole removal (%) showing interactive 

effect of two factors when the third is fixed at an average. 

 

Fig.6: Graphs of surface and contours plots of 4-methylphenol removal (%) showing 

interactive effect of two factors when the third is fixed at an average. 
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The influence of the variables, x1, x2 and x3, (ZnO concentration, air flow and pH respectively) 

on the photodegradation can be observed from the contour plot. In fact, Figs. 5 and 6 show 

that all three variables affect the percentage of the photodegradation of the indole and 4-

methylphenol mixture. Indeed, the angle of inclination of the principal axis in Fig. 5 is slight, 

indicating that photodegradation is more dependent on pH than on ZnO concentration.  

Moreover the inclination angle is more towards pH (Fig. 5), indicating that the process is 

more dependent on pH than on air flow. Also we see that mutual interactions among this 

variables (x1, x2) was found almost circular were the angle is slightly toward air flow than 

ZnO concentration. The same behavior is observed with the 4-methylphenol (Fig. 6). 

The quadratic models obtained reflect adequately the process of photocatalytic degradation of 

indole and 4-méthylphenol mixture.  In fact, the optimum values drawn from Fig. 5 and 6 are 

in close agreement with those obtained by optimizing the regression model. This confirms 

that the design of experiments could be effectively used to optimize the variables of 

photocatalytic process of pollutants mixture.  

 

 4. Conclusions 

 

The goal of this paper was to investigate the photocatalytic degradation of indole and 4-

methylphenol mixture with the presence of ZnO photocatalyst using response surface 

methodology (RSM). Two predicting models based on multiple regressions were tested by 

the method of analysis (ANOVA). This analysis indicates that the models are significant and 

correlate well the experimental results. We can note that the process efficiency is more 

dependent on the pH of the mixture than on ZnO concentration. On the other hand, more than 

99% of the process performance is due to independent variables (pH, catalyst concentration 

and air flow).    

We have demonstrated clearly the potential of a photocatalytic process for the quasi complete 

degradation of indole-4-metyhlphenol mixture in wastewater. The optimum values of the 

process variables are determined thanks to graphs of surface and contours. When one of 

experimental variable is kept at central level, we have the possibility to reach the optimum 

values for the other two variables. Moreover, the methodology (RSM) which gives us a large 

amount of information with a small amount of experimentation was able to design and 

optimize the photocatalytic degradation process.  
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 Additionally, the contour and surface plots confirm that the design of experiments concept 

could be effectively used to optimize the process variable with statistical design of 

experiments.  
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Table.1: Ranges and levels of independent variables experimental test for 

photodegradation percent of the mixture indole-4-methylphenol 

  

Independent variables 
Ranges and levels 

-α -1 0 +1 + α 

 

Concentration of catalyst (X1) 

(g/L) 

 

0.5 

 

0.804 

 

1.25 

 

1.696 

 

2 

 

Air flow (X2)  (L/min) 

 

0.5 

 

0.91 

 

1.5 

 

2.09 

 

2.5 

 

pH of mixture (X3) 

 

4 

 

5.21 

 

7 

 

8.78 

 

10 
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Table.2. Full factorial central composite design matrix for indole and 4-methylphenol 

 Code variables 
Removal efficiency 

(Y%) of  indole 

Removal efficiency 

(Y%) of 4-methylphenol 

No Exp. 
x1 

(ZnO) 

x2 

(Qair) 

x3 

(pH) 
Obs Pred Obs Pred 

1 -1 1 -1 47.09 46.2955 52.13 52.382 

2 0 0 0 90.01 90.0543 93.10 93.480 

3 0 0 0 89.85 90.0543 93.04 93.480 

4 1 1 -1 67.99 70.7001 71.75 74.000 

5 0 - α 0 54.07 56.2065 58.13 60.216 

6 0 0 0 89.93 90.0543 93.06 93.480 

7 0 0 - α 8.50 7.7986 16.25 15.164 

8 α 0 0 95.30 91.5990 98.50 96.012 

9 1 1 1 97.95 99.6778 99.74 98,997 

10 0 0 0 90.25 90.0543 93.88 93.480 

11 - α 0 0 53.00 57.3668 60.50 63.221 

12 -1 1 1 89.15 87.5982 93.45 92.498 

13 0 0 α 84.00 85.3673 87.12 88.440 

14 -1 -1 1 76.00 72.8191 78.00 75.585 

15 0 α 0 97.45 95.9793 99.89 98.037 

16 0 0 0 90.10 90.543 93.75 93.480 

17 1 -1 -1 37.10 38.1810 45.15 45.937 

18 -1 -1 -1 11.75 9.5514 17.21 15.614 

19 0 0 0 90.30 90.0543 94.09 93.480 

20 1 -1 1 88.80 89.1237 93.38 92.962 
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Table.3 (ANOVA) of removal efficiency for mixture indole- 4-methylphenol. (p-cresol) 

 

 

Source 

Degree 

Of 

freedom 

 

Sum of squares 

(SS) 

Mean square 

(MS) 
F-value P-value 

Indole P-cresol Indole P-cresol Indole P-cresol Indole P-cresol 

Model 9 14684.5 13286.1 1631.61 1476.23 227.85 345.90 0.000 0.000 

Linear 3 10587.1 9506.2 3529.03 3168.72 492.81 742.48 0.000 0.000 

Square 3 3771.3 3461.1 1257.09 1153.71 175.55 270.33 0.000 0.000 

Interaction 3 326.1 318.8 108.70 106.26 15.18 24.90 0.000 0.000 

Residual 

error 
10 71.6 42.7 7.16 4.27 - - - - 

Lack of fit 5 71.5 41.6 14.29 8.31 452.99 37.13 0.000 0.001 

Pure error 5 0.2 1.1 0.03 0.22 - - - - 

Total 19 14756.1 13328.7 - - - - - - 
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Table 4: Estimated regression coefficients and corresponding t and P-value for indole 

 

Term 
Coefficient of 

regression 
Standard Error t-value P-value 

Constant 90.054 1.0914 82.512 0.000 (a) 

x1 10.177 0.7241 14.055 0.000 (a) 

x2 11.825 0.7241 16.326 0.000 (a) 

x3 23.061 0.7241 31.847 0.000 (a) 

x1  x1 -5.505 0.7049 -7.810 0.000 (a) 

x2  x2 -4.936 0.7049 -7.002 0.000 (a) 

x3  x3 -15.370 0.7049 -21.803 0.000 (a) 

x1  x2 -1.056 0.9461 -1.116 0.290 (b) 

x1  x3 -3.081 0.9461 -3.252 0.009 (b) 

x2  x3 -5.491 0.9461 -5.804 0.000 (a) 

          (a) P-value < 0.001. 

         (b) In bold, coefficient statistically non-significant. 
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Table 5: Estimated regression coefficients and corresponding t and P-value for 4-

methylphenol 

 

Term 
Coefficient of 

regression 
Standard Error t-value P-value 

Constant 93.480 0.8425 110.949 0.000 (a) 

x1 9.749 0.5590 17.439 0.000 (a) 

x2 11.244 0.5590 20.115 0.000 (a) 

x3 21.785 0.5590 38.971 0.000 (a) 

x1  x1 -4.904 0.5442 -9.007 0.000 (a) 

x2  x2 -5.075 0.5442 -9.325 0.000 (a) 

x3  x3 -14.735 0.5442 -27.078 0.000 (a) 

x1  x2 -2.171 0.7304 -2.980 0.014 (b) 

x1  x3 -3.236 0.7304 -4.431 0.001 (b) 

x2  x3 4.964 0.7304 -6.796 0.000 (a) 

            (a) P-value < 0.001. 

           (b) In bold, coefficient statistically non-significant. 
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Figures 

 

Fig.1: Experimental system (1: Reactor, 2: UV lamp, 3: Air pump, 4: Cryostat, 5: Water inlet, 

6: Water outlet, 7: Stirrer) 

 

Fig.2: Predicted values compared with experimental results for both pollutants indole (a) and 

4-methylphenol (b). 

 

Fig.3: Interaction effects plot for removal indole 

 

Fig.4: Interaction effects plot for removal 4-methylphenol 

 

Fig.5: Graphs of surface and contours plots of indole removal (%) showing interactive 

effect of two factors when the third is fixed at an average. 

 

Fig.6: Graphs of surface and contours plots of 4-methylphenol removal (%) showing 

interactive effect of two factors when the third is fixed at an average.  
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Fig. 1: Experimental system (1: Reactor, 2: UV lamp, 3: Air pump, 4: Cryostat, 5: 

Water inlet, 6: Water outlet, 7: Stirrer) 
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(a)                                                                       (b) 

Fig. 2: Predicted values compared with experimental results for both pollutants indole 

(a) and 4-methylphenol (b). 
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Fig.3: Interaction effects plot for indole removal 
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Fig.4: Interaction effects plot for 4-methylphenol removal 
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Fig.5: Graphs of surface and contours plots of indole removal (%) showing interactive 

effect of two factors when the third is fixed at an average. 
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Fig.6: Graphs of surface and contours plots of 4-methylphenol removal (%) showing 

interactive effect of two factors when the third is fixed at an average. 


