Supplementary information

Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of

bile canaliculi dynamics induced by cholestatic drugs

Ahmad Sharanek^{1,2*}, Audrey Burban^{1,2*}, Matthew Burbank^{1,2}, Rémy Le Guevel³, Ruoya Li⁴,

André Guillouzo^{1,2} and Christiane Guguen-Guillouzo^{1,2,4†}

¹INSERM U991, Liver Metabolisms and Cancer, Rennes, France,

²Rennes 1 University, France,

³ImPACcell platform, Biosit, Rennes 1 University, France

⁴Biopredic International, St Grégoire, France.

* Both authors contributed equally to this work

[†]Correspondence should be addressed at INSERM UMR 991, Université de Rennes 1,

Faculté de Pharmacie, F-35043 Rennes cedex, France. Tel.: (33).2.23.23.53.51;

christiane.guillouzo@univ-rennes1.fr (C. Guguen-Guillouzo).

Supplementary Table 1. Characteristics of the 6 tested compounds

	Molecules	Therapeutic	Cmax	In vivo hepatotoxicity	In vitro hepatotoxicity	References
		use	(µM)			
Drugs	Chlorpromazine (CPZ)	Antipsychotic	0.1–0.2	 Intrahepatic cholestasis Bile duct vanishing syndrome Hepatocellular Necrosis Phospholipidosis 	 Oxidative stress Bile flow inhibition Alteration of mitochondrial membrane potential Bile canaliculi constriction 	1-3
	Cyclosporine A (CsA)	Immunosup- pressant	1.15	 Cholestatic jaundice hyperbilirubinemia Elevated transaminases 	 Oxidative stress BSEP, MRP2, MDR1 inhibition Inhibition of bile secretion Bile canaliculi constriction 	4-9
	Bosentan	Antipulmonary artery hypertension	6.75	 Elevated ASAT/ALAT (3 x/20x) Increased serum bile acids 	BSEP inhibition	10
	Fasudil	Antipulmonary artery hypertension	0.820	-	-	-
Other compounds	ANIT (Alpha- naphthylisothio cyanate)	Cholestatic model compound	-	 Cholestasis Hyperbilirubinemia Necrosis of bile duct epithelial cells Cholangiolitic hepatitis 	 Increased serum bilirubin, ASAT and ALAT 	11-14
	Deoxycholic acid (DCA)	Secondary bile acid	3-7	 Increased serum transaminases activities Increased total bile acids and bilirubin concentrations in serum 	 Cell lysis Intracellular ROS generation increase Mitochondrial instability in hepatocytes 	15-20

Therapeutic use, Cmax, and known hepatotoxicity of the tested compounds.

References to Table 1

- 1 Antherieu, S. *et al.* Oxidative stress plays a major role in chlorpromazineinduced cholestasis in human HepaRG cells. *Hepatology* **57**, 1518-1529, (2013).
- 2 Velayudham, L. S. & Farrell, G. C. Drug-induced cholestasis. *Expert Opin Drug* Saf **2**, 287-304, (2003).
- 3 Padda, M. S., Sanchez, M., Akhtar, A. J. & Boyer, J. L. Drug-induced cholestasis. *Hepatology* **53**, 1377-1387, (2011).

- 4 Hagar, H. H. The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. *Toxicol Lett* **151**, 335-343, (2004).
- 5 Sharanek, A. *et al.* Different dose-dependent mechanisms are involved in early cyclosporine a-induced cholestatic effects in hepaRG cells. *Toxicol Sci* **141**, 244-253, (2014).
- 6 Roman, I. D. & Coleman, R. Disruption of canalicular function in isolated rat hepatocyte couplets caused by cyclosporin A. *Biochem Pharmacol* **48**, 2181-2188, (1994).
- Princen, H. M., Meijer, P., Wolthers, B. G., Vonk, R. J. & Kuipers, F. Cyclosporin A blocks bile acid synthesis in cultured hepatocytes by specific inhibition of chenodeoxycholic acid synthesis. *Biochem J* 275 (Pt 2), 501-505, (1991).
- Mizuta, K. *et al.* Cyclosporine inhibits transport of bile acid in rats: comparison of bile acid composition between liver and bile. *Transplant Proc* **31**, 2755-2756, (1999).
- Whiting, P. H., Thomson, K. J., Saunders, N. J. & Simpson, J. G. Cyclosporin A nephrotoxicity in streptozotocin-diabetic rats. *Transplant Proc* 21, 946-947, (1989).
- 10 Fattinger, K. *et al.* The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. *Clin Pharmacol Ther* **69**, 223-231, (2001).
- 11 Hill, D. A., Jean, P. A. & Roth, R. A. Bile duct epithelial cells exposed to alphanaphthylisothiocyanate produce a factor that causes neutrophil-dependent hepatocellular injury in vitro. *Toxicol Sci* **47**, 118-125, (1999).
- 12 Roos, F., Terrell, T. G., Godowski, P. J., Chamow, S. M. & Schwall, R. H. Reduction of alpha-naphthylisothiocyanate-induced hepatotoxicity by recombinant human hepatocyte growth factor. *Endocrinology* **131**, 2540-2544, (1992).
- 13 Dahm, L. J., Bailie, M. B. & Roth, R. A. Relationship between alphanaphthylisothiocyanate-induced liver injury and elevations in hepatic nonprotein sulfhydryl content. *Biochem Pharmacol* **42**, 1189-1194, (1991).
- Orsler, D. J., Ahmed-Choudhury, J., Chipman, J. K., Hammond, T. & Coleman,
 R. ANIT-induced disruption of biliary function in rat hepatocyte couplets. *Toxicol* Sci 47, 203-210, (1999).

- 15 Song, P., Zhang, Y. & Klaassen, C. D. Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. *Toxicol Sci* **123**, 359-367, (2011).
- 16 Delzenne, N. M., Calderon, P. B., Taper, H. S. & Roberfroid, M. B. Comparative hepatotoxicity of cholic acid, deoxycholic acid and lithocholic acid in the rat: in vivo and in vitro studies. *Toxicol Lett* **61**, 291-304, (1992).
- 17 Sokol, R. J., Winklhofer-Roob, B. M., Devereaux, M. W. & McKim, J. M., Jr. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. *Gastroenterology* **109**, 1249-1256, (1995).
- 18 Rodrigues, C. M., Fan, G., Wong, P. Y., Kren, B. T. & Steer, C. J. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. *Mol Med* **4**, 165-178, (1998).
- 19 Qiao, L. *et al.* Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. *Mol Biol Cell* **12**, 2629-2645, (2001).
- 20 Zucchini-Pascal, N., de Sousa, G., Pizzol, J. & Rahmani, R. Pregnane X receptor activation protects rat hepatocytes against deoxycholic acid-induced apoptosis. *Liver Int* **30**, 284-297, (2010).

Supplementary Fig. 1. BC area quantification. The BC area quantification was based on ZO-1 protein immunolabelling using the Cell Health Profiling V4 bio application of the ArrayScan software (Thermo Scientific). **A)** Hoechst-labelled nuclei. **B)** ZO-1 protein immunofluorescence images. **C)** Segmentation was performed by adjusting the shape, area and brightness parameters to eliminate non-corresponding objects. An analysis was performed on 10 images per condition.

Supplementary Fig. 2. BC dynamics analysis. Contraction/relaxation activity and the opening/closing rhythm of BC (spikes) were evaluated by time-lapse cell imaging and quantified by a software video analysis and a modelling tool (Tracker 4.87). **A, B)** Circular frames (red) delimiting the connections between S-BC and T-BC to track brightness variations and record the rhythm of spikes (red graph). **C, D)** Circular frames (blue) delimiting S-BC to record changes in the area of S-BC (blue graph).

Supplementary Video legends

Supplementary Video 1. Rhythmic dynamic movements of BC in HepaRG cells. Images were captured each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped with a thermostatic chamber (37°C and CO₂) to maintain the cells under physiological conditions. Video is accelerated 600x.

Supplementary Video 2. Rhythmic dynamic movements of BC in CCHH. Images were captured each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped with a thermostatic chamber (37°C and CO₂) to maintain the cells under physiological conditions. Video is accelerated 600x.

Supplementary Video 3. Rhythmic dynamic movements of BC in SCHH. Images were captured each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped with a thermostatic chamber (37°C and CO₂) to maintain the cells under physiological conditions. Video is accelerated 600x.

Supplementary Video 4. Constriction of BC and loss of their rhythmic dynamics in CPZ-treated HepaRG cells. Images of 50µM CPZ-treated cells were captured each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped with a thermostatic chamber (37°C and CO₂). Video is accelerated 600x.

Supplementary Video 5. Dilation of BC and loss of their rhythmic dynamics in fasudil-treated HepaRG cells. Images of 50µM fasudil-treated cells were captured each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped with a thermostatic chamber (37°C and CO₂). Video is accelerated 600x.