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Supplementary Table 1. Characteristics of the 6 tested compounds 

 

Therapeutic use, Cmax, and known hepatotoxicity of the tested compounds. 
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 Molecules Therapeutic 
use 

Cmax 
(µM) 

In vivo hepatotoxicity In vitro hepatotoxicity References 
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Chlorpromazine 
(CPZ) 

Antipsychotic 0.1–0.2  Intrahepatic 
cholestasis 

 Bile duct vanishing 
syndrome 

 Hepatocellular 
Necrosis 

 Phospholipidosis 
 

 Oxidative stress 

 Bile flow inhibition 

 Alteration of 
mitochondrial 
membrane 
potential  

 Bile canaliculi 
constriction 

1-3 

Cyclosporine A 
(CsA) 

Immunosup-
pressant 

1.15  Cholestatic jaundice 

 hyperbilirubinemia 

 Elevated 
transaminases 

 Oxidative stress 

 BSEP, MRP2, 
MDR1 inhibition 

 Inhibition of bile 
secretion  

 Bile canaliculi 
constriction 

4-9 

Bosentan Antipulmonary 
artery 
hypertension 

6.75  Elevated ASAT/ALAT 
(3 x/20x)  

 Increased serum bile 
acids  

 BSEP inhibition 
 

10 

Fasudil Antipulmonary 
artery 
hypertension 

0.820  
- 

 
- 

 
- 
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ANIT 
(Alpha-
naphthylisothio 
cyanate) 

Cholestatic 
model 
compound 

-  Cholestasis 

 Hyperbilirubinemia 

 Necrosis of bile duct 
epithelial cells 

 Cholangiolitic 
hepatitis 

 Increased serum 
bilirubin, ASAT 
and ALAT 

11-14 

Deoxycholic acid 
(DCA) 

Secondary bile 
acid 

3-7   Increased serum 
transaminases 
activities 

 Increased total bile 
acids and bilirubin 
concentrations in 
serum 

 Cell lysis 

 Intracellular ROS 
generation 
increase 

 Mitochondrial 
instability in 
hepatocytes 

15-20 
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Supplementary Fig. 1. BC area quantification. The BC area quantification was based on 

ZO-1 protein immunolabelling using the Cell Health Profiling V4 bio application of the 

ArrayScan software (Thermo Scientific). A) Hoechst-labelled nuclei. B) ZO-1 protein 

immunofluorescence images. C) Segmentation was performed by adjusting the shape, area 

and brightness parameters to eliminate non-corresponding objects. An analysis was performed 

on 10 images per condition.  
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Supplementary Fig. 2. BC dynamics analysis. Contraction/relaxation activity and the 

opening/closing rhythm of BC (spikes) were evaluated by time-lapse cell imaging and 

quantified by a software video analysis and a modelling tool (Tracker 4.87). A, B) Circular 

frames (red) delimiting the connections between S-BC and T-BC to track brightness variations 

and record the rhythm of spikes (red graph). C, D) Circular frames (blue) delimiting S-BC to 

record changes in the area of S-BC (blue graph). 
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Supplementary Video legends 

 

Supplementary Video 1. Rhythmic dynamic movements of BC in HepaRG cells. Images 

were captured each minute during 4 h under time-lapse phase-contrast videomicroscopy 

equipped with a thermostatic chamber (37°C and CO2) to maintain the cells under physiological 

conditions. Video is accelerated 600x.  

Supplementary Video 2. Rhythmic dynamic movements of BC in CCHH. Images 

were captured each minute during 4 h under time-lapse phase-contrast 

videomicroscopy equipped with a thermostatic chamber (37°C and CO2) to maintain 

the cells under physiological conditions. Video is accelerated 600x. 

Supplementary Video 3. Rhythmic dynamic movements of BC in SCHH. Images 

were captured each minute during 4 h under time-lapse phase-contrast 

videomicroscopy equipped with a thermostatic chamber (37°C and CO2) to maintain 

the cells under physiological conditions. Video is accelerated 600x. 

Supplementary Video 4. Constriction of BC and loss of their rhythmic dynamics 

in CPZ-treated HepaRG cells.  Images of 50µM CPZ-treated cells were captured 

each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped 

with a thermostatic chamber (37°C and CO2). Video is accelerated 600x. 

Supplementary Video 5. Dilation of BC and loss of their rhythmic dynamics in 

fasudil-treated HepaRG cells.  Images of 50µM fasudil-treated cells were captured 

each minute during 4 h under time-lapse phase-contrast videomicroscopy equipped 

with a thermostatic chamber (37°C and CO2). Video is accelerated 600x. 

 


