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Abstract

Environmental factors may cause synchronous density variations between populations. A
better understanding of the processes underlying synchrony is fundamental to predicting
resilience loss in metapopulations subject to environmental change. The present study
investigated the determinants of synchrony in density time series of three age-groups of
resident brown trout (0+, 1+ and adults) in 36 stream reaches. A series of Mantel tests were
implemented to disentangle the relative effects on trout synchrony of geographical proximity,
environmental synchrony in key environmental variables affecting trout dynamics (discharge,
water temperature, hydraulics and spawning substrate mobility) and density-dependent
dispersal. Results indicated that environmental synchrony strongly explained trout synchrony
over distances less than 75km. This effect was partly due to a negative influence on 0+ trout
of strong discharges during the emergence period and a more complex influence of substrate
mobility during the spawning period. Dispersal between reaches had a weak influence on
results. Juvenile and adult densities were strongly driven by survival processes and were not
influenced by environmental synchrony. The results suggest that the environment can have

general effects on population dynamics that may influence the resilience of metapopulations.

Keywords:

Moran effect; Freshwater fish; Population dynamics; Density-dependent dispersal; Mantel

tests; Bypassed section

Résumé

Les facteurs environnementaux peuvent causer des fluctuations synchrones de densités entre
populations. Une meilleure compréhension des processus expliquant la synchronie est
fondamentale pour prédire des pertes de résilience des métapopulations sujettes a des

changements environnementaux. Nous étudions la synchronie des chroniques de densités de
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trois classes d’age de la truite commune (0+, 1+ et adultes) entre 36 trongons de cours d’eau.
Nous utilisons des tests de Mantel pour discriminer les effets relatifs de la proximité
géographique, de la synchronie de variables environnementales clefs (débit, température de
I’eau, conditions hydrauliques et mobilité du substrat) et de la dispersion densité-dépendante.
La synchronie environnementale expliquait fortement la synchronie de la truite jusqu’a des
distances de 75km. Cet effet était dii en partie a ’influence négative sur les 0+ des hauts
débits pendant I’émergence et une influence de la mobilité du substrat pendant la période de
ponte. La dispersion entre trongon influencait faiblement nos résultats. Les densités de
juvéniles et d’adultes étaient fortement structurées par des processus de survie, mais n’étaient
pas influencées par la synchronie des conditions environnementales. Les résultats suggérent
que ’environnement peut avoir des effets généraux sur la dynamique de population qui

peuvent influencer la résilience des métapopulations.

Mots-clefs:

Effet Moran; Poissons d’eau douce; Dynamique de populations; Dispersion densité-

dépendante; Test de Mantel ; Trongon court-circuité

Introduction

Temporal variations in population density depend on both abiotic (e.g., environmental) and
biotic processes (e.g., density-dependent dispersal) operating at various spatial scales (Alonso
et al. 2011; Richard et al. 2013). Environmental factors may cause synchronous fluctuations
in density in populations with similar density-dependence structures (Moran 1953). These
"Moran effects" may explain the synchronous variation in abundance of herbivorous insects
and mammals in sites located as much as 1,000 km apart (Koenig 2002; Liebhold et al.
2004). Density-dependent regulation (through dispersal of individuals) can also induce
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synchrony between connected populations, but these effects are generally weaker (Ripa 2000)
and occur over shorter distances (Ranta et al. 1998). In many previous synchrony analyses,
the influence of environmental variables (e.g., Holyoak and Lawler 1996) or density-
dependent regulation (e.g., Tedesco et al. 2004) could be neglected. However, their relative
influence on population synchrony needs to be analyzed to identify the general drivers of
population dynamics and to better quantify the resilience of metapopulations subject to
environmental change. When the main drivers of synchrony are environmental factors,
metapopulations can be threatened by synchronous environmental disturbances. In contrast,
populations in which synchrony is driven by density-dependent dispersal may be highly
resilient to environmental disturbance. Analyzing data sets combining close and distant sites
can contribute to better understanding the relative influence of the environment and of

density-dependent regulation on population synchrony.

Spatial synchrony has been frequently studied and observed in riverine fish populations.
Chevalier et al. (2014) studied 27 freshwater fish species commonly found throughout
France. They found low but significant levels of synchrony (average correlation between
pairs of reaches generally <0.1) that were related to the life-history strategies and the upper
thermal tolerance limits of species. Of these species, stream-resident brown trout (Salmo
trutta) has been especially well documented, making it useful for the study of synchrony.
This species has a wide native range and is known to be sensitive to environmental conditions
(e.g., high flow rates, extreme water temperatures). Synchrony in such environmental
conditions may lead to synchrony in trout density. Cattanéo et al. (2003) showed the
influence of hydrologic synchrony (high discharge levels during the emergence period) on the
density synchrony of young-of-the-year trout in 37 stream reaches. One limitation of existing
analyses of trout synchrony (e.g., Cattanéo et al. 2003; Zorn and Nuhfer 2007) is that they did

not involve key habitat factors for trout population dynamics (e.g., hydraulics and water
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temperature; Armstrong et al. 2003). They generally used proxies (e.g., air temperature,
discharge rate, geographic proximity) that are spatially correlated, which makes it difficult to
distinguish their relative influences. Studying pairs of geographically close reaches with
contrasting environmental characteristics (e.g., contrasting levels of discharge regulation)
would be particularly useful to better disentangle the relative influence of environmental
factors and density-dependent dispersal on synchrony. Another difficulty in interpreting
synchrony in fish populations is that synchrony in a given age-group may be inherited from
the previous age-groups (Grenouillet et al. 2001; Lobon-Cervia 2009). Ideally, age-group

successions should be taken into account in analyzing synchrony.

The present study provides an analysis of spatial synchrony in density time series of
three age-groups of brown trout. The originality of the analysis lies in addressing certain
important limitations of previous synchrony studies. In particular, the present analyses
involved geographically close sites with differing environmental characteristics (disconnected
by dams or not, bypassed by hydroelectric plants or not), to refine analysis of the relative
influence of environmental factors and density-dependent dispersal on synchrony. In
addition, key quantitative environmental variables influencing population dynamics
(hydraulics, water temperature) were taken into account, as were relationships between

successive age-groups.

Materials and methods

In brief, the dataset covered 36 stream reaches in which trout abundance was assessed
annually (320 surveys: i.e., reachxyear combinations) and discharge, hydraulics and water
temperature were described. These data were transformed into distance matrices describing
geographic distance, trout synchrony and environmental synchrony between pairs of reaches.

Series of Mantel tests were then implemented to characterize the spatial scales of trout
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synchrony and environmental synchrony (step 1), and to focus on the influence on trout
synchrony of environmental synchrony on the one hand (step 2) and density-dependent

dispersal on the other (step 3).

Study reaches and geographic distances

The 36 reaches belonged to 22 French rivers distributed across continental France (Fig. 1)
and had a wide range of environmental characteristics (e.g., width ranging from 2.9 to 15.5m,
median streambed particle diameter from 0.1 to 64cm; Table 1). They were selected based on
the availability of hydraulic and water temperature data. In each reach, fish were sampled for
at least four pairs of consecutive years (consecutive years being needed in order to take
account of age-group successions). We checked that brown trout was the dominant species
(relative density > 80% on at least one survey) in the eight reaches where other species were
sampled. Each reach included one or several sequences of pools, runs and/or riffles. Due to
changes in sampling teams (consulting firms) or harsh hydraulic conditions during some
surveys, sampled length was slightly modified in half of the reaches during the study period,
affecting 18% of surveys (maximum length change: 25%; median change: 13%). One reach
had its length divided by two at the middle of the time series, but was kept as a single reach
for analysis as its hydraulic characteristics remained unchanged. Groups of close reaches
selected in the same river (Fig. 1) might or might not be disconnected by dams or bypassed
by hydroelectric plants. A total of 18 reaches were bypassed, and therefore showed decreased
low-flow and flood frequency. Consequently, the data set included pairs of very close reaches
characterized by different hydraulic conditions. No chemical pollution was reported in these

reaches.

Two kinds of geographic distance were computed between pairs of reaches: Euclidean and
river network distances. Network distance is potentially more relevant to describe density-

dependent dispersal, and was computed for the 93 out of 630 pairs of reaches that were not
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separated by the sea, using a theoretical hydrographic network developed for France (Pella et

al. 2012). All distances were log-transformed to approximate normality.

Trout data and synchrony in trout time series

Between 4 and 19 surveys (mean: 8.9) were conducted per reach between 1991 and 2012.
Reaches were sampled by wading, using two-pass removal electrofishing sampling meeting
European Committee for Standardization guidelines (CEN 2003). Fish densities were
estimated on the Carle and Strub (1978) method. Sampling was performed without blocking
nets, in summer or early autumn (median date: September 13). Sampled area (between 175
and 2,295 m?) was computed as sampled length x reach width at median flow. All fish were
measured (to the nearest 1mm) and length-frequency histograms were used to distinguish
three age-groups: 0+ (young-of-the-year), 1+ (older than one year, generally juveniles) and
adult (all fish older than two years). Scales were available for 10 reaches only, but confirmed
the suitability of using length-frequency distributions (see Sabaton et al. 2008). Adults were
considered as the potential reproductive pool. Age-group densities (number of individuals per

100m?) were log-transformed to normalize their distributions.

Due to the strength of the relationship between densities of successive age-groups for brown
trout (Zorn and Nuhfer 2007; Lobon-Cervia 2009), a global model of age-group succession
(averaged across reaches) was determined. All synchrony analyses were performed on
residuals of this global model, in order to reduce serial correlation and better identify the
causes of synchrony (e.g., Buonaccorsi et al. 2001; Santin-Janin et al. 2014). Specifically,
linear regressions were fitted for all age-groups (0+, 1+, Ad) relating log-transformed density
at year ¥ (Do4y;D14y;Daay) to the density of previous age-group at year y-1
(respectively: Dpgy—1; Doty-15 D14y—1 and Dygy_1). Adults at year y depended on both

adults and 1+ fish at year y-1, as the adult group combined fish of several age-groups. Slopes
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significantly lower than 1 were taken to indicate global density-dependence in population

dynamics (for Dy, and Dy ).

To quantify the potential limits of this approach, mixed-effect linear models with a reach-
level random effect (i.e., with regression coefficients that could vary across reaches) were
also fitted to the data and compared with the global model to appreciate the generality of our
global models across reaches. Importantly, residuals of the mixed models were not analyzed,
even when they fitted better than the global models, because they could not be interpreted
together, not being calculated from the same regression model in all reaches. In addition, data
for a given individual reach were often insufficient to provide a robust model of age-group
succession. In other words, analyzing the residuals of the global models was a means of
removing average serial correlation while calculating density descriptors similarly in all

reaches.

All further synchrony analyses were made on residual densities of the global succession
models, hereafter noted 0+, r/+ and rAd. For each of the three age-groups, synchrony
between pairs of reaches was described by 36x36 distance matrices. The elements of these
distance matrices were dissimilarity measures, calculated as 1 — p, where p was the Pearson
correlation between age-group residual density for the corresponding pair of reaches (varying
between 0 and 2). Synchrony values were transformed into distance values using 1 — p, as
distance values are conventionally used with Mantel tests (1 — p decreases with synchrony).
Pairs of reaches with less than three years of simultaneous density and environmental
information (33% of cases) were excluded from all analyses. Finally, the average number of

years per reach used to calculate p values was 5.8.
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Environmental data and synchrony in environmental time series

According to the literature, trout population dynamics may be influenced by discharge,
hydraulic and thermal conditions during key periods of the trout life cycle. Therefore, for
each year preceding fish sampling, environmental conditions were described for four key
periods, using five environmental variables (Table 2). Only the 10 environmental descriptors
(periodxvariable combinations) for which a causal relationship with some age-group

densities was expected were considered (Table 2).

These four key periods were: (i) adult spawning migration (September 1% to January 31*); (if)
egg development (November 1% to February 29™); (iii) fry emergence (March 1% to April
30th); and (iv) the summer growth period (July 1% to September 13" the median date of the
320 trout surveys). The dates for the first three periods (hereafter: ‘spawning’, ‘egg’,
‘emergence’) were estimated for France by a group of fourteen experts from several
organizations on the basis of numerous trout monitoring campaigns (Gouraud et al. 2014).

The ‘summer’ period was defined to describe low-flow conditions preceding sampling.

Two of the five environmental variables (Table 2) were daily discharge percentiles, two were
hydraulic variables (flow velocity and substrate mobility), and the fifth was the frequency of
low temperature. The field data and models used to calculate these environmental variables
are detailed in Appendix A. In brief, field data involved daily discharge and daily water
temperature measured in most reaches. Missing values were estimated using extrapolation
models. For water temperature, extrapolation model tests generally indicated errors of the
order of 1°C. Hydraulic conditions were derived from numerical hydraulic models or detailed

hydraulic measurements (N>100) made throughout each reach.

The two daily discharge percentiles described low- and high-flow magnitude. Low-flow

magnitude (Qoo, defined as daily discharge exceeded 90% of the time during the period, m®.s
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") was used to test the effect of summer low-flows on all age-groups (see Nislow and
Armstrong 2012). High-flow magnitude (O, defined as daily discharge exceeded 10% of the
time during the period, m>.s™") was used to test the effect of spates on r4d during spawning
(spawners may be more sensitive to spates during their migration), on r0+ during egg
development (e.g., Unfer et al. 2011) or on residual density in all age-groups during
emergence. All age-groups were considered as potentially influenced by high spring floods
occurring during this period because spates have a major impact on 0+ fish (Jensen and
Johnsen 1999; Cattanéo et al. 2003; Unfer et al. 2011) and may be strong enough to influence

the survival and dispersal of older cohorts (Young et al. 2010).

The other three variables, describing hydraulics and thermal conditions, were not percentiles
but indicated the frequency above or below quantitative thresholds of events that could
influence trout life cycle. Frequency of high daily velocities (f70.5) was defined by a
threshold of 0.5 m.s™, corresponding to the upper end of the preferred range of current
velocity for 0+ (Heggenes 1996; Roussel and Bardonnet 2002). The influence of f70.5 on
r0+ was tested during emergence, due to the reduced swimming ability of recently hatched
juveniles (Armstrong et al. 2003). The influence of frequency of spawning substrate mobility
(fMob, frequency of daily discharge > critical discharge; see Appendix A) during spawning,
egg development and emergence was tested on 70+, due to a potential direct influence of bed
mobility on mortality in early life stages (Unfer et al. 2011). Regarding the thermal threshold,
sub-lethal temperatures for brown trout (<0°C for all age-stages, >13°C during egg
development, and >22°C for older stages; Elliott and Elliott 2010) were exceptional in the
study reaches (only 0.7% of daily water temperatures were < 1°C and none were >19.6°C);
cold periods were therefore defined by temperature thresholds that occurred more frequently,
corresponding to the first third of the thermal preference range reported by Elliott and Elliott

(2010): <4.3°C for egg development and <7.3°C for older age-stages. The influence of sub-
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optimal temperature (f7/ow, the frequency of days with T, 4¢¢, ¢ below threshold) on 70+ was
tested during egg development (T\yqter,q<4.3°C) and emergence (T, q¢er ¢<7.3°C). Influence

on older age-groups was not tested as these fish can actively seek thermal refuge (Cunjak et

al. 2013).

Regarding biological synchrony, environmental synchrony between pairs of reaches was
assessed for each environmental variable on 36x36 distance matrices with dissimilarity
measures equal to 1 — p, where p was the Pearson correlation of the environmental variable

between the corresponding pair of reaches.

Data analyses

Several Mantel tests (Mantel 1967) were used to analyze the relative influence of
environmental synchrony and density-dependent dispersal on trout synchrony. All these
Mantel tests analyzed the probability of the observed relationship (Mantel R) between
dissimilarity values of two or three distance matrices (geographic distance, trout synchrony
and environmental synchrony) occurring randomly (significance threshold: 0.05; 4,000

random permutations; “vegan” R package; Oksanen et al. 2013).

Step 1: Spatial scales of synchrony

The spatial scales of synchrony were first analyzed by correlating trout synchrony and
environmental synchrony to Euclidean distance. A strong relationship between trout
synchrony and geographic distance could be due to the combined influence of density-
dependent dispersal and environmental synchrony. However, density-dependent dispersal
could be expected to generate synchronous trout responses over smaller geographic distances
than environmental synchrony. The tests relating trout synchrony to Euclidean distance were
repeated using network distance: a stronger link between trout synchrony and network

distance than Euclidean distance would suggest an effect of dispersal.
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Step 2: Influence of environmental synchrony on trout synchrony

To better analyze the influence of environmental synchrony on trout synchrony, trout
synchrony was first correlated to environmental synchrony (Mantel tests for all relationship
hypotheses in Table 2) and results were compared to those between geographic distance and

trout synchrony (at step 1).

When univariate Mantel tests were significant with both an environmental variable and
geographic distance for a given age-group, partial (multivariate) Mantel tests were performed
to better distinguish their relative effects (Smouse et al. 1986). To avoid having to perform
numerous tests, partial Mantel tests were performed for only one environmental variable
within each type of environmental group (discharge, hydraulics, temperature). The variable

selected was the most significant one found on univariate Mantel testing.

Finally, to help interpret the synchronous influence of the environment on trout density, time
series of trout residual density were co-plotted against environmental variables. These time
series (trout and environment) were standardized by reach and averaged between groups of
reaches with synchronous trout series. The groups were obtained by hierarchical cluster
analysis based on the distance matrices of trout residual density (Ward algorithm; as in

Cattanéo et al. 2003).

Step 3: Influence of density-dependent dispersal on trout synchrony

To better analyze the influence of density-dependent dispersal between reaches on observed
synchrony, tests that were significant at steps 1 and 2 were repeated on two subsets of data
characterized by reduced possibilities of dispersal. In the first subset, 30 reaches in which
dispersal was limited were selected: reaches more than 50km apart or separated by a dam
preventing upstream passage; the 50 km threshold was, to the best of our knowledge, greater

than the maximum distance reported for brown trout displacement (Young et al. 2010).
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Dispersal between these reaches was possible only during spates (e.g., drift through the dam).
The second data subset comprised only 22 reaches between which dispersal was impossible
(more than 50km apart or separated by impassable dams in both directions). As there were
various ways of removing reaches, tests on the two subsets were repeated 100 times with
differing random selection of reaches to be removed. Thus, for each significant result of steps
1 and 2, the percentage of cases (in the 100 repetitions) in which the Mantel test remained

valid on the data subsets was quantified.
Results

Trout data and synchrony in trout times series

Median trout density per reach across surveys varied between 10.3 and 51.3 individuals per
100m?. On average, 38% of sampled individuals were 0+, 34% were 1+ and 28% were adult.
Linear regressions indicated a significant relationship between the densities of successive

age-groups (P<0.001; Fig. 2, plain lines). Model coefficients [+ standard deviation] were:
(1)  log(0+,) =1.37 [+£0.17] + 0.34 [+£0.10].1og(Ad,_1)  (R* = 0.04)
(2)  log(1+,) = 0.80 [+0.06] + 0.55 [+0.03].1og(0+,_1)  (R? = 0.54)
(3)  log(Ad,) = 0.27 [+0.08] + 0.25 [+0.04].log(1+,_4)
+0.57 [+0.03].10g(Ad,,—4) (R? = 0.54)

The global model R? for 1+ and adults indicated that the global linear model appropriately
reflected an average age-group succession across reaches (>50% of variability explained).
For the 0+ age-group, the model showed low explained variance. The slopes of Egs (1) and
(2) and the sum of slopes in Eq (3) were significantly less than 1, suggesting some degree of

apparent density-dependence regulation in age-group successions.
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Mixed models (Fig. 2, dashed lines), significantly improved fit, with R? values of 0.30, 0.70
and 0.71 for the three age-groups. AAIC between models with random effects (‘mixed
model’) and fixed effect (‘global model’) were respectively 14, 23 and 9 for 0+, 1+ and

adults.

Median Pearson p between all pairs of reaches was close to 0 (p,¢+=0.16, p;14+=-0.01,
Praqa=0.11), indicating that there was no obvious global synchrony at the spatial scale of the

whole dataset.

Step 1: Spatial scales of synchrony

Euclidean distance between pairs of reaches varied between 1.2 and 1,029.0 km, with 39
pairs of reaches less than 15 km apart. For the 93 out of 630 pairs of reaches that were not
separated by the sea, distance via the river network ranged from 1.2 to 640.0km, (mean:

262.0 km), with 25 pairs of reaches less than 15 km apart.

Mantel tests showed that trout synchrony of 0+ and r/+ was significantly related to
Euclidean distance (Fig. 3). Although significant, these tests revealed low Mantel R
(R?<0.08). For 0+, however, the degree of synchrony was strong (half of correlations >0.5)
for reaches less than ~75 km apart, and even stronger (75% of correlations >0.5) for reaches
less than 5 km apart. This effect was weaker for »/+ (Fig. 3). Focusing on reaches for which
network distance could be computed, Mantel R between 70+ and geographic distance was
lower for network distance than Euclidean distance (R? = 0.08 vs. 0.16; Fig. 4). Correlations
between r/+ and geographic distance were no longer significant when analysis focused on

these reaches.

Environmental synchrony was also significantly related to Euclidean distance for most
descriptors (7 out of 10; R? between 0.04 and 0.24), with particularly strong relationships for

variables and periods related to high flow (see one example for each environmental group in
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Fig. 3"). No spatial synchrony was found for only three environmental descriptors: fTlow
during the egg period, fMob during the emergence period and Qg during the summer. Other
environmental synchronies were strong (generally >0.5) up to distances around ~75 km,
except for fTlow during emergence (Fig. 3), which showed strong synchronies over longer

distances (> 200 km).

Step 2: Influence of environmental synchrony on trout synchrony

Mantel tests relating trout synchrony to the environment were significant in 4 out of 14 tests
(Table 2; Fig. 5), all concerning 0+ residual density. Synchrony in 70+ was related to Qi
(mainly during emergence and secondarily during the egg period) and fMob (mainly during
spawning and secondarily during the egg period). Overall Mantel R was lower (R?<0.05) than
for Euclidean distance. Mantel test results partly depended on a substantial number of pairs of

reaches in which both physical and biological synchrony were strong (Fig. 5).

Partial Mantel tests (Table 3) were made for combinations of Euclidean distance and each of
the two main environmental descriptors that influenced r0+. The effect of Euclidean distance
on r0+ synchrony was significant when the environmental effect was removed, whereas the

reverse was not significant (P > 0.06).

Co-plots of time series for trout residual density and the two main significant environmental
descriptors in the four groups of synchronous reaches (Fig. 6) showed that Q)¢ during the
emergence period was negatively associated with 70+ (at least in the three most synchronous
groups), whereas there was no clear positive or negative direction of an annual effect of
fMob. The four groups identified by cluster analysis did not necessarily involve

geographically close reaches.

! Relations for all environmental descriptors are presented in the supplementary material (Fig. S1)
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Step 3: Influence of density-dependent dispersal on trout synchrony

Four of the 6 significant Mantel tests relating trout density to Euclidean distance or the
environment remained significant (in more than 75% of trials) when tested on the first data
subset, in which dispersal was limited. These concerned the relationships with Euclidean
distance and the two main environmental descriptors mentioned above (Q;¢ during
emergence and fMob during spawning). By contrast, only one of the six tests remained
significant (in 95% of trials) when tested on the second subset, in which dispersal was
impossible. This test concerned the relationship between r0+ and Euclidean distance.
Dispersal between reaches may have influenced other results, which remained significant in

<35% of tests on the second data subset.

The results of partial Mantel tests were similar whether performed on all reaches or on the
limited dispersal subset, but were seldom significant when performed on the subset in which

dispersal was impossible (Table 3).

Discussion

A Moran effect on 0+ trout

The present study supports the notion that salmonid populations are frequently synchronous
(Copeland and Meyer 2011) and contributes to disentangling the relative influence of
environmental factors and density-dependent dispersal on trout synchrony. The results
principally suggest that a Moran effect is responsible for 0+ synchronies between
geographically close reaches. Synchronies in older age-groups (1+ and adults) were weaker
and not linked to environmental synchronies. Four elements supported the notion that 0+
synchrony is due to a Moran effect. Firstly, synchrony in 0+ was particularly strong over a
distance of ~75km, a distance consistent with the spatial scale of environmental synchrony.
This distance of ~75km is greater than the 50km reported for freshwater populations in the
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meta-analysis by Myers et al. (1997). We were also considering a larger geographic scale in
the present study, compared with reaches < 70km apart in Hayes 1995 or <25km apart in
Lobon-Cervia 2004. Secondly, synchrony was related less to network distance than Euclidean
distance, suggesting a weak influence of dispersal. Thirdly, several significant Mantel tests
related O+ synchrony to environmental synchrony (high flow during emergence and substrate
mobility during spawning). And fourthly, many tests on 70+ synchrony remained significant

on the data subset where density-dependent dispersal between reaches was unlikely.

The Mantel tests showed low Mantel R values, but this statistic alone does not reflect the
strength of synchrony. Mantel R is expected to be low in data sets collected over large spatial
areas and with relatively short time series (see also Cattanéo et al. 2003; Chevalier et al.
2014). Pairs of reaches more than 75km apart (Fig. 3) may not be synchronized due to a
variety of environmental characteristics not considered here. This inevitably generates noise
in the relation between geographic distance and trout synchrony. In the present study, plots
relating 0+ synchrony to Euclidean distance or environmental synchrony indicated that 0+
synchrony between geographically close reaches was frequently very strong (e.g., trout
synchrony p was > 0.5 in 75% of pairs of reaches less than Skm apart; Fig. 3). More than the
Mantel R value itself, these plots and the P-value of the Mantel tests indicated a strong,

biologically significant level of synchrony between geographically close reaches.

Accounting for a global age-group succession model

A first strength of the present approach was to consider age-groups individually rather than
pooled. This can increase the observed degree of synchrony (Grenouillet et al. 2001), as
suggested by the present median synchrony levels (p,¢4+=0.16, p;1.=-0.01, p;-44=0.11),
which were generally higher than those obtained by Chevalier et al. (2014) after pooling age-

groups (p=0.038).
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A second strength of the present approach was to reduce serial dependence between
successive age-groups, by using global models of age-group succession. Serial dependence is
one of the two main statistical issues in synchrony analysis (Liebhold et al. 2004), together
with the influence of temporal trends (not found in the present dataset). Global succession
models for 1+ and adults explained more than 50% of density variability, confirming the
strength of serial dependence and the importance of taking it into account in analyzing
synchrony with the environment. The global model relating 0+ to adults explained a smaller
part of variability. Nevertheless, analyses were performed on r0+ rather than directly on 0+
density, in order to be consistent with the analyses for other age-groups. The weak serial
dependence of 0+ on adults was consistent with other findings (e.g., Lobon-Cervia 2013).
Overwhelming environmental drivers may tend to make 0+ dependence on adults difficult to
detect (Daufresne and Renault 2006). This relationship can also be affected by the lower
catchability of small fish (e.g., Ruiz and Laplanche 2010) or by confusion between sampled
adults and the actual parental stock. Actual spawning stock can depend on variability in
maturity age (Olsen and Vellestad 2005), on potential stocking issues of which the details are
not well established, or on migration of adults between sampled reaches and spawning areas

(Young et al. 2010).

The present global model of age-group succession for all reaches was the strongest
assumption involved in accounting for serial dependence. This hypothesis was rarely tested
explicitly in synchrony studies but is essential to investigating Moran effects. Liebhold et al.
(2004) pointed out that the hypothesis probably does not hold in many systems, as spatial
variation in population dynamics is frequent. In the present study, comparing the global
models with reach-dependent mixed models suggested that a large part of population
dynamics was taken into account by the global models. However, the mixed models indicated

that variations in population dynamics did occur across reaches (higher explanatory power of

18

https://mc06.manuscriptcentral.com/cjfas-pubs

Page 18 of 43



Page 19 of 43

427
428
429
430
431
432

433

434
435
436
437
438
439
440

441

442
443
444
445
446
447
448
449
450

451

Canadian Journal of Fisheries and Aquatic Sciences

mixed models). This may partly lower the level of synchrony (p values and Mantel R)
observed, because spatial variation in density-dependent dynamics reduces the synchrony
caused by environmental stochasticity (Liebhold et al. 2006). Sampling error may also have
lowered the observed levels of synchrony (Santin-Janin et al. 2014). However, sampling
errors were unlikely to have influenced the main results, because the magnitude of sampling
error was probably much lower than the magnitude of annual density variation, which can be

as great as 10-fold between certain years.

The slopes of the global models for 1+ and adults were significantly less than 1, indicating an
apparent global density-dependence survival for these age-groups, which was rarely
previously documented (but see Richard et al. 2013). The present results also suggested a
density-dependent regulation on 0+, but we remain cautious about this finding as the global
0+ model showed very low explanatory power (R>=4%). Density-dependence mechanisms on
0+ have often been discussed in the literature, being difficult to identify (e.g., Elliott 1984;
Nicola et al. 2008; Lobon-Cervia 2013), mainly due to their high annual variability

influenced by environmental conditions.

Environmental drivers of 0+ synchrony

The correlation between 0+ and Euclidean distance was stronger than that between 0+ and
environmental synchrony, although the dataset included geographically close reaches with
differing characteristics due to dams. Thus, close reaches are likely to be synchronous, even
if they are separated by dams and have different flow regimes. Moreover, partial tests
revealed that environmental variables did not explain 0+ synchrony when the effect of
Euclidean distance was removed. Therefore, Euclidean proximity probably accounted for a
combined effect of several environmental variables including those studied here (e.g., high
flow during emergence, or substrate mobility during spawning) and others not included in

analysis.

19

https://mc06.manuscriptcentral.com/cjfas-pubs



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

Canadian Journal of Fisheries and Aquatic Sciences

Nevertheless, 70+ synchrony correlated significantly with ;¢ during emergence and with
fMob during spawning. These results are consistent with the observation of a negative
influence of high flow on small individuals during emergence (e.g. Hayes 1995; Cattanéo et
al. 2003; Nicola et al. 2009), due to higher mortality and/or drift. Effects of spawning
substrate mobility on 0+ were more rarely mentioned in the literature (but see Jensen and
Johnsen 1999). Unfer et al. (2011) suggested that these effects could be positive (reshaping
spawning grounds due to substrate turnover) or negative (scouring redds and destroying eggs)
according to their timing. This could explain why the positive or negative direction of the

annual effect of fMob was harder to identify.

The other environmental descriptors implemented in analysis, including the frequency of high
current velocity, did not explain trout synchrony. However, using velocity percentiles instead
of discharge (Qj¢) percentiles would have led to comparable results, due to the monotonic
relationship between discharge and velocity in reaches. Therefore, an influence of hydraulics
on trout synchrony cannot be ruled out. The non-significant effect of temperature may be due
to local adaptation to the thermal regime (Filipe et al. 2013). It is also possible that the
present dataset covered a larger range of hydraulic than thermal conditions (e.g., median flow
velocity ranged from 0.1 to 0.7 m.s” while median water temperature ranged from 6.6° to

11.5°C; Table 1).

Including additional environmental descriptors could have increased understanding of trout
synchrony. For example, food availability and oxygen concentration were not monitored in
the study reaches, but may contribute to synchrony. Other descriptors of the available
environmental regimes could also have been used (relating to magnitude, frequency, duration,
timing or rate of change; Poff et al. 1997). For example, other thresholds, such as 2-year high
seasonal discharge as used by Cattanéo et al. (2002), could have been tested. Finally,

averaged physical conditions within a given reach could have been translated into hydraulic
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habitat values that account for the heterogeneity of microhabitat conditions within the reach
(Lamouroux and Capra 2002). However, to ensure statistical power, we only considered the

variables that were most likely to explain density synchrony.

Influence of density-dependent dispersal on 0+ synchrony

In previous papers, density-dependent dispersal between study populations was often ruled
out a priori because pairs of populations were totally disconnected (Tedesco et al. 2004) or
too distant (network distance >50km for 95% of the pairs of reaches in Cattanéo et al. 2003).
In contrast, the present results on 70+ synchrony remained significant when density-
dependent dispersal between reaches was unlikely (tests on the first subset, where reaches
could be connected by downstream drift only). Thus, 0+ synchrony was linked to
environmental synchrony and not to density-dependent dispersal. The limited density-
dependent dispersal of 0+ reported in the literature also supports this conclusion. For
example, Vollestad et al. (2012) mentioned a scale of dispersal of 200m while Dieterman and
Hoxmeier (2011) and Vatland and Caudron (2015) estimated that only a small proportion of
the 0+ population was involved in emigration from reaches due to density-dependence

(<10%).

By contrast, except for the test linking #0+ and Euclidean distance, the present tests were no
longer significant when dispersal between reaches was totally impossible, even by drift (tests
on the second subset). This may partly be due to reduced statistical power (i.e., fewer reaches
involved). However, this suggests that the possibility of drifting from one reach to another
can explain synchronous emigrations from reaches that are not explained by high flow
variables. Drift between reaches would potentially explain synchronous immigration, but
cannot reasonably explain synchronous emigration of 0+. Therefore, this result again
suggests that synchrony between geographically close reaches is not perfectly explained by

the present high flow variables.
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Synchrony in 1+ and adults

For older age-groups, except for a weak relation linking r/+ synchrony and geographic
distance, the present results were not able to explain trout synchrony. Authors often failed to
identify constraining abiotic conditions for juveniles and adults (e.g., Cattanéo et al. 2002)
except after exceptional events (e.g., a 50-year flood in Young et al. 2010). As they grow,
stream-resident salmonids show increased swimming ability and may move more easily to
avoid stressful conditions, reducing the influence of the environment (Unfer et al. 2011;
Nislow and Armstrong 2012). Accordingly, movements of juveniles and adults toward
sheltered areas during high flows (Bunt et al. 1999) or toward cold waters during droughts
(Elliott 2000) have been reported. Moreover, movements of older individuals can occur at
distances much larger than the reach (Ovidio et al. 1998), partially masking the links between
trout density and the environment through sink/source recolonization processes (Zorn and
Nuhfer 2007). The synchrony of »/+ was related to Euclidean distance only, suggesting that

environmental variables other than those studied here are likely involved.

In summary, the present study confirmed a Moran effect on O+ trout density, operating
mainly over distances <75km. A negative influence of high discharge was identified during
emergence and a more complex relationship with spawning substrate mobility during the
spawning period. Nevertheless, other environmental variables than those tested are likely
involved. By contrast, dispersal between reaches had a weak influence on 0+ synchrony. The
synchrony analyses provide useful information for building models of brown trout population
dynamics integrating both biotic aspects (e.g., density-dependent and density-independent
survival, dispersal) and abiotic mechanisms (e.g., the effects of high flow and spawning
substrate movement). The results also suggest that brown trout populations may show low

resilience in case of more frequent high flows over a given area (e.g., watershed). In a context
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of global environmental change, further synchrony analyses are needed to better quantify the

risk of extinction and potential resilience of freshwater fish metapopulations.
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Tables

Table 1. Physical characteristics of the 36 stream reaches.

Physical characteristics Min Mean  Max

Width at median discharge (m) 2.9 8.2 15.5
Reach slope (%) 0.3 34 13.2
Elevation (m) 15.0 787.7 1370.0
Distance from source (km) 3.0 17.9 49.0
Basin area (km?) 9.0 135.1 605.0
Median daily discharge Qs (m’.s™) 0.1 1.0 2.7
Median diameter of streambed particle (cm) 0.1 16.6 64.0
Reach flow velocity (m.s™) at Qs 0.1 0.4 0.7
Median daily water temperature (°C) 6.6 8.3 11.5
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711

Table 2. Environmental variables used in Mantel tests relating trout synchrony to environmental

712 synchrony (discharge, hydraulics or temperature regime).

Variable group

Periods
Code Definition Spawning Egg Emergence Summer
Discharge
daily discharge exceeded 90% of the
0O r0+; ri+; rAd
time
daily discharge exceeded 10% of the
O rAd ro+ r0+; ri+; rdd
time
Hydraulics
ho.5 Frequency of current velocity > 0.5m.s™ r0+
Mobility frequency of the spawning
fMob ro+ ro+ r0+
substrate
Temperature
fTlow Frequency of Ty gter g below threshold r0+ (<4.3°C)  r0+ (<7.3°C)
713

Note: Univariate Mantel tests relating synchrony in residual density of each age-group (r0+,
714 rl+, rAd) and environmental synchrony were made for a subset of environmental descriptors
715  (variablesxperiods). Bold values correspond to significant associations (p-value <0.05) and

716  the most significant association for a given variable group is underlined.

31

https://mc06.manuscriptcentral.com/cjfas-pubs



Canadian Journal of Fisheries and Aquatic Sciences Page 32 of 43

717  Table 3. Results of Partial Mantel tests analyzing the association of r0+ synchrony, geographic

718  distance and synchrony of one environmental descriptor.

% tests still % tests still
Partial
Effecttested |  Effect removed Partial r? significant on significant on
p-value
first subset second subset
Log(Euclid dist) | O rmersence <0.01 0.06 100 35
Q10 Emergence | Log(Euclid dist) 0.20
Log(Euclid dist) JMOb spaning <0.01 0.07 100 11
JMob spauning | Log(Euclid dist) 0.06

719  Note: For significant partial tests, partial R> was computed and we indicate the percentage of
720  significant tests when the Mantel test was repeated on two subsets of reaches (first subset:

721  limited dispersal between reaches; second subset: no dispersal).
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Figures

Fig. 1. Locations of the 36 reaches (18 in bypassed sections).

Fig. 2. Relationships between raw densities of successive age-groups. Recruitment is linked to the
adult density of the previous year (1% column) and 1+ are linked to previous density of 0+ (2™
column). Adult densities are linked to previous density of 1+ and adults (3" and 4™ columns); they are
represented here after setting one of the two explanatory variables at its mean value across reaches.
These relations are shown for all reaches pooled (1* row) and 5 randomly selected reaches (2™ to 5"
rows). The solid lines correspond to a global linear regression and the dashed lines to linear mixed-

effects models with a reach-level random effect.

Fig. 3. Trout synchrony (1% column) or environmental synchrony (2™ column) related to geographic
distance. Linear relationships (full lines) correspond to the Mantel tests. Local polynomial fittings
(dashed lines) present the smoothed spatial evolution of synchronies. For significant Mantel tests,
Mantel R? and p-values are given. The environmental variables showing the strongest relation to

geographic distance (with highest R?) are shown for each environmental group (Table 2).

Fig. 4. Synchrony of r0+ related to geographic distance (Euclidean or network distance), as in Figure

3 but restricted to 93 pairs of reaches for which a network distance could be computed.

Fig. 5. Significant relationships (on Mantel tests) between the synchrony of 70+ and the synchrony of

environmental descriptors.

Fig. 6. Time series of 70+ trout residual densities and environmental descriptors illustrating the most
significant Mantel tests. Series were standardized by reach and grouped according to the results of a
cluster analysis on trout synchrony. The cluster analysis was performed on the 18 (out of 36) reaches
with more than 5 sampling year between 1999 and 2006. O, time series were multiplied by -1 to
facilitate interpretation. The histograms in the right column represent the frequency distributions of

pro+ between all pairs of reaches within the groups.
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Fig. 2. Relationships between raw densities of successive age-groups. Recruitment is linked to the adult
density of the previous year (1st column) and 1+ are linked to previous density of 0+ (2nd column). Adult
densities are linked to previous density of 1+ and adults (3rd and 4th columns); they are represented here

after setting one of the two explanatory variables at its mean value across reaches. These relations are
shown for all reaches pooled (1st row) and 5 randomly selected reaches (2nd to 5th rows). The solid lines
correspond to a global linear regression and the dashed lines to linear mixed-effects models with a reach-

level random effect.
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Appendix A: Daily data series

A.1 Discharge

Daily discharge (m’.s™) was continuously gauged in 23 reaches (SP2T pressure probes). For
seven reaches close to a gauging station (<40 km via the stream network), daily discharge
was spatially extrapolated after correcting for drainage area. In the remaining six reaches,
which were all below dams, daily discharge was calculated from the upstream discharge and
the operating schedule of the dam. Less than 5% of the selected surveys had missing daily
discharge values within the preceding year (with < 33% of missing values for key periods

used in analysis).

A.2 Hydraulic conditions: flow velocity and substrate mobility

Reach daily current velocities (m.s™) were estimated as the ratio between daily discharge and
the corresponding cross-section area (average depth X average width). This required
estimating depth-discharge and width-discharge relationships for the reach (i.e., at-a-reach
hydraulic geometry relationships; Stewardson 2005). For this purpose and for 24 reaches,
hydraulic geometry relationships were fitted to conventional power laws (Leopold and
Maddock 1953) using estimates of depth and width made at two distinct discharges (median
ratio between the two discharges: 5.1). For each measured discharge, the wetted widths of
regularly spaced cross-sections (n > 15) and the water depth at regularly spaced points along
cross-sections (n> 100 across the reach) were measured. For five reaches, the same method
was used, except that cross-sections were not regularly spaced but weighted by the length of
streams they represented. In the seven remaining reaches, the mean velocity was obtained
from a numerical hydraulic model calibrated in the reach for habitat modeling purposes

(Ginot et al. 1998).
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Spawning substrate mobility was defined as the number of days with discharge above the
critical discharge theoretically moving particles of diameter 0.02 m (typical size for
spawning; Kondolf and Wolman 1993). This critical discharge was estimated using the

classical Shields' criterion (Shields 1936).

A.3 Water temperature time series
Depending on the availability of water temperature data for a given reach, three procedures

were used to estimate missing water temperature values.

Twenty-two reaches with available water temperature measurements

These reaches had at least one year of daily water temperature data measured in the reach (on
average, 5.4 years of data per reach). To predict missing values in these reaches (29% of time
series), daily water temperature on day d (Tyg¢er ) Was modeled from air temperature during
the three previous days (Tqir g—2 t0 Tqir ¢), partly accounting for inertia and hysteresis effects.

A logistic model (used on a weekly time-step in Mohseni et al. 1998) was implemented:

A-p)
(Al) Twater, d=H+ (

(1+exp |12 (B(0.5x Tyip g+ 0.3% Ty g 1+ 0.2x Ty 1))
T.ir Was recorded at meteorological stations close to our reaches (median Euclidean distance:
6.8 km, maximum: 31.1 km). Parameters corresponded to minimal (¢) and maximal (4) water
temperature and air temperature at inflection point (B) or were linked to the slope at

inflection point (/). Each reach model was fitted using least-squares criteria (“nls” function

of R 3.1.1 software; R Core Team 2014).

Following Mohseni et al. (1998), Root Mean Squared Error (RMSE) and Nash-Sutcliffe
coefficients (NSC; Nash and Sutcliffe 1970) were computed for each reach to estimate

accuracy and goodness of fit. Water temperature models calibrated on these 22 reaches with
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calibration data had a low RMSE (min: 0.7; mean: 1.0; max: 1.5 °C) and explained a large
part of variability (min NSC: 0.82; mean: 0.90; max: 0.95). Fitting the parameter y (minimal
water temperature) or setting it at 0 hardly changed the results (maximal variation: +2.8% in
RMSE and -0.54% in NSC); it was therefore set at 0 in all reaches. Using lagged air
temperature over three days instead of daily air temperature reduced the RMSE of the model

by 14.6% on average.

Five reaches close to another reach with water temperature data

Five additional reaches were close to another reach (< Skm; mean: 2.6 km, with no tributary
between reaches) with similar physical properties (<15% difference in flow or width; <10%
difference in median grain size); the two were then considered to have similar water

temperatures.

Nine reaches without water temperature data

For the nine remaining reaches, water temperature was predicted from air temperature using a
global logistic model, fitted simultaneously on the 22 reaches with water temperature data.
The global logistic model used had the same formulation as in Eq. (Al) but
parameters yu, A, B and I' depended linearly on parameters that could explain differences
between water and air temperatures (longitude, latitude, distance from the source, and

difference in altitude between the reach and the air temperature recorder).

The RMSE of this global model was calculated when fitted on all available data. The global
water temperature model had an RMSE of 1.3 and an NSC of 0.87. Cross-validation was then
used (leaving one reach out in turn) to estimate the average residual absolute error on water
temperature using the global model. Cross-validations indicated a mean absolute error of less

than 1°C in 59% of cross-validations (maximum: 2.3°C for one reach).
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