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This paper presents a characterization method for extracting the reflection coefficient of materials and 

the real part of their permittivity. The characterization is performed in a real environment, as opposed to 

the classical measurement methods that require an anechoic chamber. In order to reduce the effects of 

the multipath propagation, a free space bistatic measurement was performed at different distances 

Material-Antennas in far field. By using a Teflon sample and a commercial absorbing material sample, 

measurements have been performed in order to validate the characterization technique. 

 

I. INTRODUCTION 

 

          Numerous methods of obtaining  the dielectric properties of materials at microwave frequencies 

have been proposed in the past. The standard measurement methods are the co-axial probe, transmission 

line, cavity, free space methods, and so on
1-7

. Nonetheless, these methods have their advantages and 

disadvantages depending on the application. Waveguide methods are popular, where the sample is 

precisely machined to fit inside the waveguide. Both rectangular and coaxial waveguides are used, 

rectangular samples are easier to produce than coaxial ones, however they can only be used over a 

limited frequency range. A coaxial waveguide allows for extremely wide-band measurements but the 

sample preparation is difficult. Free-space techniques
8-11

 circumvent the problem of the sample fit 

precision and are nondestructive to the sample. A major disadvantage of the free-space method is that it 

is not done in an enclosed space, and therefore a greater sample surface needs to be fabricated to avoid 

diffraction effects around the sample edges.  
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Some reductions of the required sample size for free space microwave measurements have been 

demonstrated by incorporating spot-focusing horn antennas,
8, 12

 but this technique is limited in 

bandwidth due to the focusing nature of the lenses. 

          As opposed to the classical techniques that use an anechoic chamber, measuring the reflection 

coefficient for a material sample in a non-anechoic environment should take into consideration a 

multipath transmission scenario (including reflection scattering and diffraction on the walls and on 

other objects encountered)
13

.  

          A post processing after the measurement is necessary in order to extract accurately the reflection 

coefficient of the material sample under test. This is called a "de-embedding" technique
14

.  In literature, 

most of the characterization methods require a sample of a size much greater than the antenna aperture 

to be used, as most of the wave front surface should be incident on the material sample
8, 15

. 

          For characterizing a material sample with small dimensions and at low frequencies (where the 

size of the antennas is very important) the classical "de-embedding" method cannot be applied
8, 16

.  

          In this paper we propose a method for measuring the reflection coefficient of materials that does 

not require large material samples and is done in a non-anechoic environment. It is based on combining 

the "de-embedding" and the average value techniques for several sample distances, resulting in the 

elimination of  unwanted multiple diffractions and reflections for the environment. The material's 

properties can then be deduced from the reflection coefficient. This coefficient is extracted from the 

transmission between two antennas through a bistatic reflection method
17

. 
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II. PROPOSED APPROACH AND MEASUREMENT SETUP 

 
          A schematic diagram of the bistatic microwave measurement system is given in Fig. 1. The 

transmitting and receiving antennas are focusing broadband horn antennas QWH-SL-2-18-N-HG-R
18

. 

They are placed side by side and oriented towards a Material Under Test (MUT). A vector network 

analyzer is used for this type of measurements. The size of the MUT depends on the desired frequency 

range. At low frequencies we would need large samples and smaller distances between the antennas and 

the samples in order to eliminate the unwanted reflections. The calibration has been done only for the 

coaxial cables using an OSLT (open, short circuit, load and through line) calibration kit.  

 

 

 

 

 

 

FIG. 1.  Measurement configuration with the horn antennas.  

          Since the antennas are close one to the other the angle between the material sample and the two 

antennas Ф is close to 0
0
. Thus, we can do the approximation that the transmission coefficient S21 

measured with the VNA corresponds to the reflection coefficient of the MUT but at the reference point 

X. We need the reflection coefficient at the surface of the material, in Fig.1 referred to as Γ. The 

parameter S21 can be obtained by calculating the ratio between the reflected electric field over the 

incident electric field on the MUT of a planar wave at a distance R from the MUT in far field
19, 20

, such 

as: 

                      
       

       

  
                                                  (1) 

          where A is the mutual coupling between the two antennas and the medium itself, B the amplitude 

of the incident wave
21

, k0 the wave number, R the distance between the antennas and the sample and  

Γ
MUT

 is the reflection coefficient of the Material. 

M
U
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R 

Ф 
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Vector network analyzer (VNA) 
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          The interest is focused on the reflection coefficient of the material, Γ
MUT

 that will be extracted 

using equation (4).  

          A measurement with a metallic plate in front of the antennas that replaces the material sample 

and another measurement with the antennas alone (without the material sample or the metallic plate) are 

performed. These two other measurements are necessary in order to establish a reference.  For these two 

cases, the transmission coefficients are: 

                      
        

       

  
                                                          (2) 

and 

 

                      
          ,                                                         (3) 

respectively. 

          From equations (1) - (3) we can extract the exact reflection coefficient of the MUT using the 

following formula: 

                        
   
         

     

   
            

                                                                  (4) 

          This formula can be considered as the "de-embedding" process. 

          The characterization is performed in the frequency range 2 - 18 GHz in a multipath environment 

and in an anechoic chamber, respectively. Fig. 2 shows the measuring setup in a non-anechoic 

environment (Fig. 2(a)), using two horn antennas with an aperture size of 16.5 by 16.5 cm²,
18

 and the 

setup used for measuring inside an anechoic chamber (Fig. 2(b)) with the same broadband horn 

antennas. The measurements in the anechoic environment have been performed only at one distance 

where the material is placed in the far field (Fraunhofer) region from the antenna which corresponds to 

75 cm at the lowest frequency, 2 GHz. 

          In a multipath environment, an absorbing material sample can be placed between the antennas in 

order to reduce the mutual coupling between them. The mutual coupling impacts on the accuracy of the 
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measurements, resulting in an incorrect extraction of the phase. Another method to reduce the coupling 

between the antennas,
22

 consists in placing the antennas as far as possible one from the other
22

. The 

optimal distance between the antennas is 2D
2
/λ at the lowest frequency. This represents the beginning of 

the far field region.  

 
(a)  

 

 
 (b) 

FIG. 2.  Measurement configurations in (a) a multipath environment and (b) in anechoic chamber. 

          In order to remove any unwanted residual reflections and refractions left after the "de-

embedding" process, six different distances Antennas - Material between 75 cm (2D
2
/λ at 2 GHz is 72.6 

cm) and 125 cm were used
23

. At each distance, four transmission coefficients were measured i.e., for 

the antennas alone, for a metallic plate, for a material sample, and for a material sample with a metallic 

plate placed on its back. For each distance we apply the "de-embedding" process
7, 16, 19

 and we obtain a 

corresponding reflection coefficient   
   . The average reflection coefficient is then deduced by 

applying the mean value of all the   
   like this:      

        
    

      . 

          In order to enhance the elimination of the scattering effects of the environment, another 

technique is applied. In this case, we have moved the measurement configuration to the left and to the 

right by keeping the same distance between the antennas and the MUT for each distance as shown in 

Fig. 3. This type of measurement is actually similar to those used for RCS (Radar  Cross - Section) 

measurements and allows reducing the environment's scattering by averaging the mobile echoes
24

. 
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          It is necessary to move the entire measurement setup at least in two positions in order to reduce 

the effect of the multipath transmissions. 

 

FIG. 3.  Reduction of the effect of moving items in a non-anechoic environment: the entire setup is moved but keeping the same distance 

between the antennas and the sample. 

 

III. RESULTS AND DISCUSSION 

A. Teflon 

          In order to validate the characterization method in a multipath environment, a known dielectric 

material with very low losses (Teflon
25

 sample) was measured.  

          Based on the radiation pattern and on the first measurement distance, the optimal thickness, 

length and width of the sample can be found, in order to reduce the effect of the scattering on its edges 

for broadband studies.  

          The optimal thickness of the material sample should be at least λ/4 at the lowest frequency i.e., at 

2 GHz. 

          The distance between the antennas and the sample in far field at 2 GHz is 75 cm. The antennas
18

 

have a -3dB beamwidth of 59
0
 (1.03 radians) at 2 GHz, of at least 11.5

0
 (0.2  radians) at 10 GHz and of 

8
0
 (0.14 radians) at 18 GHz, respectively. 

          The size of the sample can be approximated to the arc length on the wave front. At 10 GHz we 

have an arc length of 15 cm for the first distance of 75 cm. Since at 2 GHz the size of the sample would 

have been very big (77.25 cm) and because our technique is used to reduce the effects of the multipath 

transmission in an ordinary room, we proposed 15 cm for the length and width of the MUT, which is 

the arc length for the middle frequency, 10 GHz.  
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            The final size of the sample is 15cm x 15cm x 6cm (Large x width x height). With this 

dimensions we proved that the accurate reflection coefficient can be extracted by applying our mean 

value method on the measurements at different distances.  

          Theoretically, the Material Under Test, here Teflon, has a permittivity of 2.1 and a loss tangent 

of 0.0003 at 10 GHz. 

          Two types of measurements have been done. One using the MUT alone showing that we have 

transmission through it and another measurement for the MUT backed by a metallic plate. This second 

measurement has been performed because it gives us the absorption of the material and also because it 

is necessary for the permittivity extraction method. 

          Fig. 4(a) shows the average reflection coefficient obtained from all 30 measurements (6 different 

antenna-material distances and 5 different displacements of the measurement setup) after applying the 

"de-embedding" method for the Teflon sample. 

          Fig. 4(b) shows the reflection coefficient, simulated using 3D CST Microwave Studio and 

measured for the Teflon sample. We can see that the measured result (dotted red curve) is very different 

from the one obtained by simulation; when applying the "de-embedding" procedure and the mean value 

method we can extract an exact result (solid red curve) similar to the simulation and to the measurement 

in the anechoic chamber. 

          The phase measured in the multipath environment without "de-embedding" is represented from 

10 GHz and is fluctuating dramatically (Fig. 4(c)) over the entire frequency range and therefore it 

cannot be compared with the theoretical phase. The only reason to depict the phase variation in Fig. 4(c) 

was to better understand why the "de-embedding" procedure and the mean value are so important for 

the determination of the correct reflection coefficient of a material. The phase extracted from the same 
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measurement, after the "de-embedding" and applying the average value is confirmed correct by 

comparison with the measurement in the anechoic chamber as well as from simulation. (see Fig. 4(c)). 

 
(a) 

 

 
(b) 

 
(c)  

 FIG. 4.  Measurement and simulation results of the reflection coefficient (a) mean value in red and the superposition of all measurements 

(b) magnitude and (c) phase for a Teflon sample. 

          Now, we consider the Teflon sample backed by a metallic plate (Fig. 5). Fig. 5(a) compares the 

average values of the reflection coefficient obtained in the real environment with and without "de-

embedding", with the results obtained in an anechoic chamber and with the CST simulation results.  

          The phase measured without "de-embedding" and without averaging has the same variation as 

the one shown in Fig. 4(c). The phase extracted by applying the "de-embedding" and by averaging the 
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measured results in a multipath environment is close to that obtained in the anechoic chamber and to the 

simulation as can be seen in Fig. 5(b). 

 
(a)  

 
(b)   

FIG. 5.  Measurement and simulation results of the reflection coefficient (a) magnitude and (b) phase for a Teflon sample backed with a 

metallic plate. 

 

B. Absorbing material 

          We have also measured a commercial absorbing material named ECCOSORB LS 22
26

. This 

material is a polyurethane foam loaded with carbon powder. From the material characteristics
26

, we can 

note that for the frequency range 2 GHz to 18 GHz, the permittivity is varying from 2.6 to 1.4 and the 

loss tangent is decreasing from 1.8 to 0.6. A sample with a size of 15 cm x 15 cm x 5 cm was 

characterized. 

          As before, we measured at several distances four transmission coefficients: with the antennas 

alone, with a metallic plate, with a material sample, and with a material sample backed with a metallic 

plate. We extracted from the measured data all the reflection coefficients and the real part of the 

permittivity for our material. 
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          In Fig. 6(a) we compared the simulation results with the measurement results in the anechoic 

chamber and in the non-anechoic environment for the absorbing material alone. 

  
(a) 

 
(b) 

FIG. 6.  Measured and simulated results for the reflection coefficient of (a) ECCOSORB LS 22 without a metallic plate and (b) 

ECCOSORB LS 22 backed with a metallic plate. 

 

 

  

          The results from the measurement are close to those achieved from simulation. By measuring the 

reflection coefficient of the material sample backed by the metallic plate, (Fig. 6(b)) we can find the 

absorption coefficient and assess whether or not the material can be considered lossy. Nevertheless, we 

could have an idea on how high the losses are by using an optimization algorithm under CST for the 

reflection coefficient obtained by measurement. We applied the technique described by Fenner et al.
6
 to 

extract the real part of the permittivity from measurement. For the simulation we use this real part of the 

permittivity and proposed an initial value for the imaginary part of the permittivity that is optimized in 

CST Microwave Studio. Thus, the optimization finds an imaginary part of the permittivity that gives us 

the complex εr used to determinate the reflection coefficient simulated that is as close as possible with 

the measurement results. 
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C. Permittivity extraction 

          The method used for extracting the permittivity is that described by Fenner et al.
6, 27

. The 

equations used are shown below: 

                                                          
  
 

  
         - TE polarization                                          (5) 

 

                                                          
    

   

         
                                                                                  (6) 

 

                                                             
         

         
                                                                         (7) 

 

                                                             
      

                                                                                    (8) 

 

          where  Z
2
 is the transverse impedance and Z

A
 and Z

B
 are the wave impedances of the material 

sample, respectively backed by the metallic plate (MUT - MP) and alone (MUT). Since the 

measurements have been done in free space, the wave impedance is Z0 = 377 Ω. 

          Our materials used are non-magnetic, thus the permeability is μ = μ0. This method uses the 

impedance for the extraction of the material's properties. The phase reference for this technique has to 

be at the front surface of the material, this is why the "de-embedding" process is very important. 

Because we have used a bistatic technique the angle of incidence Ф is 6.31
0
 for a distance of 75 cm 

between the antennas and the material and gets smaller the further we go in far field. 

          Fig. 7 shows the real part of permittivity for a Teflon sample and for the absorbing material, 

extracted from the measurements in the frequency range 2-18 GHz. For the Teflon sample (Fig. 7(a)) 

the mean value for the permittivity in this frequency range is 2.06. This result is comparable to the 

theoretical value (obtained by applying (5) - (8) on the reflection coefficients obtained from simulation) 

and to the result obtained from the measurement in the anechoic chamber. Note that in CST we used a 

permittivity of ɛ’ = 2.1 at 10 GHz. In CST we are considering an ideal environment with no outside 

interference and simulate using the sample block as an infinite structure having the same thickness as in 
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the measurement. 

          Moreover, in Fig. 7(a) we have presented measured results in the X band for a Teflon sample in a 

waveguide. This result obtained using the Nicolson - Ross - Weir method
28, 29 

is close to that obtained in 

a multipath environment, to the theoretical value in CST, coaxial probe measurement
30

 and anechoic 

chamber. 

  
(a) 

  
(b) 

FIG. 7.  Permittivity of (a) Teflon and (b) ECCOSORB LS 22 loaded with carbon powder. 

 

          Fig. 7(b) presents the measured results for the real part of the permittivity of the loaded 

polyurethane foam ECCOSORB LS 22. The result obtained in a multipath environment is very close to 

the value given by the fabricant. The results obtained in a waveguide, coaxial probe and anechoic 

chamber confirm also the exactitude of our method in a real environment. 

 

 CONCLUSION 

          We have developed a method for material characterization in a multipath environment. The 

proposed measured method does not require an anechoic chamber and allows the extraction of the 

material's complex reflection coefficient and real part of the permittivity. Thus, measurements can be 
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performed into an ordinary room, by using the distance averaging method, in order to reduce the effects 

of the multipath propagation. The reflection coefficient that we found for a Teflon sample or a lossy 

material commercial sample is close to the simulated one, as well as to the reflection coefficient 

measured in an anechoic chamber. By using this parameter, the real part of the permittivity was 

obtained. This value is close to the theoretical value and to that obtained in waveguide and anechoic 

chamber. 
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