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Abstract

Some anisotropy in both mechanical and thermodynamical properties of bismuth is expected. A

combination of density functional theory total energy calculations and density functional pertur-

bation theory in the local density approximation is used to compute the elastic constants at 0 K

using a finite strain approach and the thermal expansion tensor in the quasiharmonic approxima-

tion. The overall agreement with experiment is good. Furthermore, the anisotropy in the thermal

expansion is found to arise from the anisotropy in both the directional compressibilities and the

directional Grüneisen functions.

PACS numbers: 63.20.dk, 65.40.De
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I. INTRODUCTION

The semimetal bismuth is of interest both scientifically and technologically. Indeed, it

exhibits many fascinating properties, like giant magnetoresistance1,2, thermoelectricity3,4,

large diamagnetism5 that can be ascribed to the peculiar electronic structure of bismuth,

namely the small overlap between the valence and the conduction bands giving rise to a

Fermi surface made of tiny electron and hole pockets6. Real-world applications of bismuth

related to the aforementioned properties range from hall magnetometry7 to diamagnetic

levitation on the microscale8.

The possibility to drive bismuth strongly out of equilibrium by an ultrashort laser pulse

is also behind a huge amount of experimental9–14 and theoretical work15–19. From a theoret-

ical point of view, the ultrafast dynamics of coherent optical phonons has been tackled by

means of first-principles calculations where the lattice parameters are kept constant. How-

ever, the development of strain from coherent acoustic phonons on a picosecond timescale is

still poorly understood20 and has never been addressed by ab-initio calculations. A prereq-

uisite for achieving such a goal is to demonstrate that the thermal expansion of bismuth at

equilibrium can be understood and predicted by performing ab-initio calculations. A good

strategy is to resort to the quasiharmonic approximation, where the atoms of the crystal

are considered to undergo harmonic oscillations, but with frequencies that depend on strain.

This approximation, when combined with density functional perturbation theory21, has been

found to produce thermal expansion coefficients in good agreement with experimental results

well below the melting temperature of isotropic22–24 and anisotropic solids25–28.

The paper is organized as follows. In section II, we give an account of the technicalities

used to perform our first-principles calculations. In section III, we describe the crystallo-

graphic structure of bismuth and compare our calculated lattice constants with and without

spin-orbit interaction (SOI) to the experimental lattice constants at 4 K obtained from

X-ray measurements. In section IV, we explain how the elastic constants at 0 K can be

computed using a finite strain method and make a comparison with available experimental

results indirectly obtained by measuring the sound wave velocities for different directions

and polarizations. We also discuss the impact of SOI on the calculated elastic constants. In

section V, we introduce the theory allowing the calculation of the thermal expansion tensor

of bismuth within the quasiharmonic approximation and compare the thermal expansion co-
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TABLE I. Calculated LDA lattice parameters with and without SOI compared to the experimental

results of Ref32.

Rhombohedral structure Hexagonal structure

a0 (Å) α0 (o) V0 (Å3) a‖,0 (Å) a⊥,0 (Å)

Experiment 4.724 57.35 69.97 11.796 4.533

Theory (without SOI) 4.653 57.48 67.12 11.610 4.475

Theory (with SOI) 4.697 57.53 69.10 11.714 4.521

efficients parallel and perpendicular to the trigonal axis to some measurements made using

an optical lever dilatometer. We also unravel the role respectively played by the elasticity

and the anharmonicity in the anisotropy of the thermal expansion coefficients of bismuth.

Finally, the specific heat at constant pressure is reported and compared with calorimetry

measurements.

II. COMPUTATIONAL DETAILS

All the calculations are performed using the ABINIT code29. We use a plane-wave ba-

sis set, the Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials30 and the local density

approximation (LDA) for the exchange-correlation functional. We carefully check the con-

vergence of our results with respect to the wave function cut-off and the k-point sampling

of the Brillouin zone. A 40 Ry cut-off and a 16× 16× 16 mesh for Brillouin zone sampling

ensure that our results (lattice parameters, elastic constants, phonon frequencies) are well

converged. The dynamical matrix is explicitly calculated on a 8× 8× 8 q-point mesh using

density functional perturbation theory31 and the phonon frequencies are Fourier interpo-

lated on a 32× 32× 32 q-point mesh in order to compute the thermal expansion tensor. We

include SOI in all calculations but also present the lattice parameters and elastic constants

obtained without SOI in order to highlight the crucial role played by SOI.
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III. LATTICE PARAMETERS AT ZERO TEMPERATURE

Bismuth crystallizes in a rhomboedral structure, also called A7 structure, with two atoms

per unit cell. The vectors spanning the unit cell are given by

a1 =

(

aξ,− aξ√
3
, h

)

; a2 =

(

0,
2aξ√
3
, h

)

; a3 =

(

−aξ,− aξ√
3
, h

)

, (1)

where ξ = sin[α
2
] and h = a

√

1− 4
3
ξ2. The length of the three lattice vectors is equal to a

and the angle between any pair of vector is α. The two atoms belonging to the unit cell are

located at ±u (a1 + a2 + a3) where u is a dimensionless parameter and a1+a2+a3 is parallel

to the ternary axis (C3 axis). Alternatively, the structure can be viewed as an hexagonal

structure spanned by the following three lattice vectors

ã1 = a1 − a2; ã2 = a2 − a3; ã3 = a1 + a2 + a3, (2)

where ã1 = ã2 ≡ a⊥ and ã3 ≡ a‖. The lattice cell parameters of the two structures are

related to each other by the following relations

a⊥ = 2a sin
(

α
2

)

a = 1
3

√

3a2⊥ + a2‖

a‖ = a
√

3 + 6 cos(α) sin
[

α
2

]

= 3
2
a⊥/

√

3a2⊥ + a2‖

(3)

All the calculations have been performed using the rhombohedral structure because it con-

tains three times atoms less than the hexagonal structure. However, the hexagonal structure,

as will be seen later, is more convenient to define thermal expansion coefficients. Our cal-

culated LDA lattice parameters with and without SOI are given in Table I along with the

experimental results at 4.2 K32. The agreement between theory and experiment is signifi-

cantly improved when SOI is included33. Indeed, a‖,0 and a⊥,0 are respectively underesti-

mated from 0.69 % (1.58 %) and 0.26 % (1.27 %) with respect to experiments, leading to

an underestimation of the equilibrium volume V0 of 1.2 % (4.1 %) when SOI is included

(neglected). Thus, the inclusion of SOI is mandatory to achieve a better description of the

equilibrium lattice parameters of bismuth.

4



Final draft post-refeering (pre-proofs)

IV. ELASTIC CONSTANTS AT ZERO TEMPERATURE

The elastic properties of a bismuth crystal can be inferred from the theory of elasticity.

The Lagrangian strain tensor η is defined as

ηab = ǫab +
1

2

∑

k

ǫakǫkb (4)

where ǫ is the linear strain tensor which transforms a vector a into (1+ ǫ)a. The energy of

the crystal per unit cell E can be expanded in power series with respect to the strain η as

E[η] = E0 +
V0

2

∑

ijkl

Cijklηijηkl + · · · (5)

where E0 and V0 are the energy and the volume of the unstrained unit cell and Cijkl are the

elastic stiffness constants of the crystal. Using Voigt’s notation, Eq. 5 can be written as

E[η] = E0 +
V0

2

∑

αβ

Cαβηαηβ + · · · (6)

where the fourth-rank stiffness tensor has been replaced by a 6 × 6 matrix C. By virtue of

the rhombohedral structure A7 of bismuth (space group R3m), the matrix C can be cast in

the form

C =



































C11 C12 C13 C14 0 0

C12 C11 C13 −C14 0 0

C13 C13 C33 0 0 0

C14 −C14 0 C44 0 0

0 0 0 0 C44 C14

0 0 0 0 C14 C66



































(7)

provided that the z axis is taken along the trigonal axis. Here, only 6 elements are indepen-

dent and C66 = 1
2
[C11 − C12]. In order to compute these elements, we consider six sets of

deformations parametrized by η

η1 = (η, η, η, 0, 0, 0) ; η2 = (η, 0, 0, 0, 0, 0) ; η3 = (0, 0, η, 0, 0, 0)

η4 = (0, 0, 0, 2η, 0, 0) ; η5 = (η, η, 0, 0, 0, 0) ; η6 = (η, 0, 0, 2η, 0, 0),
(8)

where η is varied between -0.01 and 0.01 with a step of 0.001. For each deformation labelled

by i and each value of η, we build the Lagrangian strain matrix η and solve Eq. 4 in an

iterative way to obtain the matrix ǫ. Thus, we generate a distorted cell from the undistorted
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one by using the matrix ǫ and we compute the total energy Ei(η) ≡ E[ηi] of the distorted

structure where the atomic positions are fully relaxed. Then, the energy per unit volume is

fitted by a polynomial of order 4

Ei(η)

V0
=

4
∑

j=0

Ai
jη

j, (9)

where Ai
0 = E0/V0, A

i
1 = 0 and Ai

2 can be expressed as a function of the unknown second

order elastic constants as

A1
2 = C11 + C12 + 2C13 +

1
2
C33 ;A2

2 =
1
2
C11 ;A3

2 =
1
2
C33

A4
2 = 2C44 ;A5

2 = C11 + C12 ;A6
2 =

1
2
C11 + 2C14 + 2C44

(10)

by using Eq. 6 and 7. The computed total energy per unit cell at 0 K including SOI (circles)

together with the polynomial fit (full lines) are displayed in Fig. 1 for the two deformations

respectively labelled η3 (a‖ varies while keeping a⊥ constant) and η5 (a⊥ varies while keeping

a‖ constant). The elastic constant C33/2 (see Fig. 1.a) is roughly four times smaller than
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FIG. 1. Energy per unit cell (in meV) as a function of η (dimensionless quantity) for the defor-

mations respectively labelled η3 (Left panel) and η5 (Right panel). The circles denote the results

of the LDA calculations including SOI whereas the full lines are the result of the polynomial fit

according to Eq. 9. The zero of energy corresponds to the energy of the fully relaxed structure

(unstrained reference structure of volume V0).

C11+C12 (see Fig. 1.b), reflecting the fact that bismuth is much softer against a strain along
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TABLE II. Calculated LDA elastic constants with and without SOI of Bi compared to the experi-

mental results at 4.2 K of Ref.34.

C11 (GPa) C12 (GPa) C13 (GPa) C14 (GPa) C33 (GPa) C44 (GPa)

Experiment34 69.3 24.5 25.4 8.40 40.4 13.5

Present work (without SOI) 84.6 30.2 27.9 9.8 46.1 16.0

Present work (with SOI) 67.7 25.0 24.3 5.9 40.6 8.7

the trigonal axis than against a strain perpendicular to it. We do not show the energy per

unit cell for the four remaining deformations but compare in Table II our calculated elastic

constants with and without SOI to the experimental elastic constants indirectly obtained

from the measurements of ultrasonic wave velocities by the pulse echo technique34. The

calculated elastic constants without SOI are all overestimated with respect to experiments.

Taking into account SOI leads to a decrease of all elastic constants that can be explained

in a very qualitative way as follows: SOI mixes bonding and antibonding states and not

only increases the equilibrium volume by 2.9 % (see Table I) but also softens the elastic

constants by as much as 45 % (the larger effect being for C44). As shown in Table II, the

overall agreement between theory and experiment is significantly improved when SOI is in-

cluded. The only exceptions are the C14 and C44 elastic constants which are underestimated

by about 30% with respect to experiment. Such a discrepancy might be ascribed to experi-

mental uncertainties associated with the sample and its bonded transducer and/or to long

range effects, like van der Waals interactions, not captured by the LDA exchange-correlation

functional35. It is also worth mentioning that all the calculated elastic constants with or

without SOI satisfy Born’s mechanical stability for a rhomboehedral structure36,37 ensuring

that bismuth is stable at 0 K.

Inverting the matrix C defined in Eq. 7 leads to the following expression for the compli-

ance matrix :

S =



































S11 S12 S13 S14 0 0

S12 S11 S13 −S14 0 0

S13 S13 S33 0 0 0

S14 −S14 0 S44 0 0

0 0 0 0 S44 2S14

0 0 0 0 2S14 S66



































(11)
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TABLE III. Hydrostatic compressibilities χ, χ‖ and χ⊥ of Bi (in MBar−1) obtained by using the

elastic constants computed with and without SOI (see Table II) compared to the values inferred

from the experimental results at 4.2 K of Ref.34. The ratio χ‖/χ⊥ is also given to quantify the

anisotropy of the elastic properties of Bi.

χ χ‖ χ⊥ χ‖/χ⊥

Experiment34 2.92 1.72 0.60 2.86

Present work (without SOI) 2.55 1.58 0.49 3.24

Present work (with SOI) 2.97 1.71 0.63 2.71

where S66 = 2(S11 − S12). The anisotropy in the elastic properties of Bi can be ascertained

by introducing a parallel and a perpendicular compressibility respectively defined as

χ‖ = −∂ǫ33
∂P

= 2S13 + S33 = (−2C13 + C11 + C12)/M (12)

and

χ⊥ = −∂ǫ11
∂P

= −∂ǫ22
∂P

= S11 + S12 + S13 = (C33 − C13)/M, (13)

where M = C33(C11 + C12) − 2C2
13. The computed values of χ‖ and χ⊥ with and without

SOI are reported in Table III. The compressibilities are underestimated with respect to

experiments when SOI is neglected. Taking into account SOI leads to a very good agreement

between the theoretical and experimental compressibilities in accordance with the fact that

the elastic constants that play a role in the compressibilities are much better described when

SOI is included (see Table II). The ratio of linear compressibilities χ‖/χ⊥ calculated when

SOI is included indicates that the contraction along the trigonal axis is about 2.7 times

larger than the contraction perpendicular to it upon applying an hydrostatic pressure. As

stated before and illustrated in Fig. 1, Bi is stiffer perpendicularly to the trigonal axis

than parallel to it. The bulk modulus B that measures material’s resistance to uniform

compression is defined as B = −V0
∂P
∂V

= 1/χ where the hydrostatic compressibility χ is

defined as χ = χ‖ + 2χ⊥. Using the values of χ‖ and χ⊥ reported in Table III, we obtain

a theoretical value of 33.65 (39.15) GPa for the bulk modulus B when the SOI is included

(neglected). Thus, the theoretical value including the SOI agrees well with the experimental

value of 34.23 GPa at 4 K34. All the forthcoming calculations include SOI.

8
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V. THERMAL EXPANSION

We now present an analysis of the thermal expansion of bismuth using Grüneisen’s theory.

We follow the approach of Schelling and Keblinski26 and emphasize the differences in the

formalism used to treat the thermal expansion in anisotropic and cubic solids. Since bismuth

is an anisotropic solid, the thermal expansion can be described in terms of the 3×3 thermal

expansion tensor α whose components are written in terms of the strain tensor ǫ as

αab =

(

∂ǫab
∂T

)

σ

(14)

where T is the temperature and where the subscript σ means that the temperature derivative

is taken at constant stress. According to the generalized form of Hookes’ law, we have:

ǫab =
∑

de

Sabdeσde, (15)

where σde and Sabde are the stress and the compliance elastic tensor respectively. Eq. 15 can

be inverted and leads to

σde =
∑

ij

Cdeijǫij , (16)

where Cdeij is the stiffness elastic tensor. Thus, we have

∑

de

SabdeCdeij = δaiδbj (17)

By differentiating Eq. 17 with respect to T and by using Eq. 15 and 16, it is straightforward

to show that the components of α can be written as

αab = −
∑

de

(

∂ǫab
∂σde

)

T

×
(

∂σde

∂T

)

ǫ

, (18)

where the temperature derivative of the stress tensor is taken at constant strain. This

equation generalizes the expression

α =
1

3B

(

∂P

∂T

)

V

(19)

defining the thermal expansion coefficient α of a cubic solid as a function of the bulk modulus

B and the partial derivative of the pressure with respect to temperature at constant volume.

The stress tensor σde appearing in Eq. 18 is defined as

σde =
1

V0

∂F

∂ǫde
(20)

9
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where F is the Helmholtz free energy per unit cell of the crystal defined as

F [ǫ] = E[ǫ] + Fvib[ǫ, T ] = E[ǫ] +
1

N

∑

q,λ

h̄ωλ(q)

2
+ kBT

1

N

∑

q,λ

ln

[

1− exp

(

− h̄ωλ(q)

kBT

)]

(21)

where the electron entropy is discarded and the vibrational contribution Fvib[ǫ, T ] is com-

puted within the harmonic approximation. Here, ωλ(q) is the frequency of the phonon mode

(q, λ) corresponding to wavevector q and polarization λ and N is the number of qpoints

included in the summation. Hence, combining Eq. 20 and Eq. 21 leads to

σde =
1

V0





∂E

∂ǫde
− 1

N

∑

q,λ

γde
q,λh̄ωλ(q)

(

nq,λ +
1

2

)



 , (22)

where nq,λ is the Bose occupation factor at temperature T for a phonon with frequency

ωλ(q) and γde
q,λ is a generalized mode Grüneisen parameter given by

γde
q,λ = −∂ lnωλ(q)

∂ǫde
(23)

Note that σde is temperature dependent because of the second term in Eq. 22 and that

σde(T → 0) is renormalized by zero point atomic motions. By derivating Eq. 22 with

respect to temperature T at constant strain ǫ, we get
(

∂σde

∂T

)

ǫ

= −
∑

q,λ

γde
q,λCq,λ (24)

where

Cq,λ =
1

N

h̄ωλ(q)

V0

(

∂nq,λ

∂T

)

ǫ

(25)

is the contribution of mode (q, λ) to the lattice specific heat per unit volume at constant

volume CV . Thus CV is given by

CV (T ) =
∑

q,λ

Cq,λ =
kB
V0

1

N

∑

q,λ

(

h̄ωλ(q)

2kBT

)2
1

sinh2
(

h̄ωλ(q)
2kBT

) . (26)

Finally, by using Eq. 15 and inserting Eq. 24 in Eq. 18, we obtain

αab =
∑

q,λ

Cq,λ

∑

de

Sabdeγ
de
q,λ. (27)

In a completely harmonic lattice, the frequencies would be independent of the strain and the

γde
q,λ would be zero, leading to a zero thermal expansion. Eq. 27 generalizes the expression

α =
1

3B

∑

q,λ

Cq,λγq,λ, (28)

10
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giving the thermal expansion coefficient α for a cubic solid. Here Cq,λ is defined in Eq. 25

and γq,λ is the mode Grüneisen parameter defined as

γq,λ = −∂ ln[ωλ(q)]/∂ lnV. (29)

Usually, the phonon frequencies ωλ(q) decrease as the volume V increases giving rise to

positive Grüneisen parameters and thus to a positive thermal expansion coefficient α at any

temperature as can be inferred from Eq. 28. Inserting the non-zero matrix elements of S

allowed by symmetry (see Eq. 11) in Eq. 27 and taking into account the fact that γde
q,λ = 0

when d 6= e leads to the following expressions

α⊥ ≡ α11 ≡ α22 =
∑

q,λ

Cq,λ

[

(S11 + S12) γ
⊥
q,λ + S13γ

‖
q,λ

]

(30)

and

α‖ ≡ α33 =
∑

q,λ

Cq,λ

[

2S13γ
⊥
q,λ + S33γ

‖
q,λ

]

(31)

where α⊥ and α‖ are the thermal expansion coefficient respectively within the basal plane

and along the ternary axis. Here,

γ⊥
q,λ ≡ 1

2

(

γ11
q,λ + γ22

q,λ

)

= − a⊥,0

2ω0
λ(q)

∂ωλ(q)

∂a⊥
(32)

and

γ
‖
q,λ ≡ γ33

q,λ = − a‖,0
ω0
λ(q)

∂ωλ(q)

∂a‖
(33)

where a⊥,0 and a‖,0 are the LDA lattice parameters reported in Table I and ω0
λ(q) are

the phonon frequencies calculated for these lattice parameters. We do not compare our

computed ω0
λ(q) with available experimental data because the agreement between theory

and experiments has already been highlighted in a thorough study based on calculations

performed using the ABINIT code33. A finite difference scheme based on a relative variation

of ±0.2 % of a⊥ and a‖ around a⊥,0 and a‖,0 is used to compute the partial derivatives of the

phonon frequencies ωλ(q) with respect to a⊥ and a‖. Hence, the mode Grüneisen parameters

respectively defined in Eq. 32 and Eq. 33 are computed for a 32× 32× 32 qpoints grid and

for all polarizations λ.

The Figure. 2 shows that the mode Grüneisen parameters γ
‖
q,λ and γ⊥

q,λ are rather scat-

tered for the acoustic modes with quite large positive values but also negative values. About

40 % and 18 % of the mode Grüneisen parameters are negative for the first and second

11
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FIG. 2. Calculated Grüneisen parameters γ
‖
q,λ and γ⊥

q,λ as a function of phonon energy ω in meV

(Left vertical scale) together with the phonon density of states (Right vertical scale).

transverse acoustic branch (TA) while less than 5 % of the mode Grüneisen parameters are

negative for the longitunal acoustic branch (LA).

By comparing Figs 2(a) and 2(b), we note that the mode Grüneisen parameters γ
‖
q,λ are

slightly larger than the mode Grüneisen parameters γ⊥
q,λ for acoustic modes with energy

ranging from 0 to 7.5 meV (TA+LA). On the contrary, the mode Grüneisen parameters γ
‖
q,λ

are almost 3 times smaller in average than the mode Grüneisen parameters γ⊥
q,λ for optical

modes with energy ranging from 8 to 13.5 meV (TO+LO). In other words, the optical

phonon frequencies are more sensitive to a variation of a⊥ than to a variation of a‖ while

the opposite is true for the acoustic phonon frequencies.

We can also introduce macroscopic Grüneisen functions

γ⊥,‖ =





∑

q,λ

γ
⊥,‖
q,λCq,λ



 /CV (34)

12
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where Cq,λ and CV are respectively defined in Eq. 25 and 26. The calculated lattice specific

heat at constant volume CV displayed in Fig. 3(a) is in good agreement with the experi-

mental lattice specific heat at constant pressure up to the Debye temperature θD = 119 K41.

As shown in Fig. 3(b), the behaviour of the temperature dependent Grüneisen functions γ⊥

and γ‖ is quite complex with a crossover around 40 K. However, γ⊥ and γ‖ saturate towards
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FIG. 3. (a) Calculated lattice specific heat per unit volume at constant volume CV (solide curve) or

at constant pressure Cp (dashed curve) compared to experimental data (open circles) from Ref.41

for temperatures T up to the melting temperature of 545 K. (b) Grüneisen functions γ⊥,‖ as a

function of temperature T up to the Debye temperature θD of 119 K41.

γ⊥
∞ = 1.32 and γ‖

∞ = 1.11 when T ≫ θD in accordance with the fact that

lim
T→∞

γ⊥,‖(T ) =
1

6N

∑

q,λ

γ
⊥,‖
q,λ , (35)

since Cq,λ(T ) → kB/V0N and CV (T ) → 6kB/V0 when T → ∞. Interestingly, the high tem-

perature limiting values of γ⊥
∞ and γ‖

∞ extracted from experimental results38 are estimated

to be 1.32 and 1.10 and are in excellent agreement with our calculated values.

Following the approach of Munn40, the principal coefficients of thermal expansion defined

13
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in Eq. 30 and 31 can also be expressed as

α⊥ = CV

[

χ⊥γ
⊥ + S13

(

γ‖ − γ⊥
)]

(36)

α‖ = CV

[

χ‖γ
‖ − 2S13

(

γ‖ − γ⊥
)]

(37)

where the directional Grüneisen functions γ⊥,‖ are defined in Eq. 34 and the compressibil-

ities χ‖ and χ⊥ are respectively defined in Eq. 12 and 13. It is a good first approximation

to treat both the compressibilities and the compliance matrix element S13 as constant, and

regard the temperature dependence of the coefficients of thermal expansion as due solely to

that of the heat capacity CV and the Grüneisen functions γ⊥,‖. Such expressions for the

coefficients of thermal expansion allow to disentangle the role of the anisotropy in either

the Grüneisen functions or the elastic constants. Fig. 3(b) shows that γ‖ = γ⊥ for T=40

K. Thus, the anisotropy in the thermal expansion coefficients measured by α‖/α⊥ is given

by χ‖/χ⊥ = 2.71 (see Table III) and is only due to the anisotropy in the elastic properties.

When moving away from the crossover temperature (T=40 K), the term proportionnal to

γ‖ − γ⊥ starts to play a role as the cross-compliance S13 = −C13/M (∼ -0.94 MBar−1) has

the same order of magnitude as χ‖ and χ⊥ (see Table III). For α‖, the correction arising

from the anisotropy in the Grüneisen functions is given by −2CV S13

(

γ‖ − γ⊥
)

and remains

very small at low temperature since CV → 0 when T → 0. Thus, the correction is small

and positive for T < 40 K since S13 < 0 and γ‖ − γ⊥ > 0 in this low temperature regime.

However, the correction becomes non negligible at higher temperatures and negative as the

sign of γ‖ − γ⊥ changes when T > 40 K. The high temperature limit of this correction is

given by −12kBS13(γ
‖
∞ − γ⊥

∞)/V0 and is sketched as a vertical downward arrow in Fig. 4.

For α⊥, the same type of conclusion holds but the sign and the magnitude of the correc-

tion is changed since it is given by CV S13

(

γ‖ − γ⊥
)

. The high temperature limit of this

correction is given by 6kBS13(γ
‖
∞ − γ⊥

∞)/V0 and is depicted as a vertical upward arrow in

Fig. 4 since this quantity is positive. The thermal expansion coefficients parallel (α‖) and

perpendicular (α⊥) to the ternary axis calculated neglecting (dashed curves) and including

(full curves) the anisotropy in the Grüneisen functions are displayed in Fig. 4. At low

temperature (T < 40 K), the anisotropy in the Grüneisen functions plays a minor role since

the full curves almost coincide with the dashed curves. However, it starts to contribute at

higher temperature since it reduces α‖ and increases α⊥ significantly, thereby reducing the

anisotropy in the thermal expansion coefficients given by α‖/α⊥ and bringing our calculated
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FIG. 4. Coefficient of linear thermal expansion of bismuth within the basal plane (α⊥) and along

the ternary axis (α‖) as a function of temperature T up to the melting temperature. Experimental

data are denoted by circles38 and losanges39. The full curves are calculated using Eq. 36 and 37

while the dashed curves are calculated by neglecting the anisotropy in the Grüneisen functions,

which is tantamount to put S13 = 0 in Eq. 36 and 37.

thermal expansion coefficients in closer agreement with the measurements made using an

optical lever dilatometer38,39. Thus, the quasi-harmonic approximation based on quantities

calculated at 0 K provides quite accurate results compared to experimental data38,39, even

near the melting temperature of bismuth where renormalization effects due to the temper-

ature dependence of elastic constants might be important24 and where the applicability of

the quasiharmonic approximation is also questionable because large anharmonic effects are

expected. It’s worth coming back to the calculated lattice specific heat at constant volume

CV shown in Fig. 3(a). Above θD, the experimental lattice specific heat at constant pressure

deviates from CV and should in principle be compared to Cp. A very simple reasoning based

on thermodynamics42 shows that

Cp − CV = α2BT, (38)

where α ≡ 1
V0

(

∂V
∂T

)

P
= α‖ + 2α⊥ is the volumetric expansion coefficient and B is the

temperature dependent bulk modulus, which can be approximated by it’s 0 K value. The
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calculated Cp displayed in Fig. 3(a) coincides with the calculated CV below the Debye

temperature θD because α(T ) → 0 when T ≪ θD, making the correction α2BT very small

in this temperature range. When T > θD, α(T ) becomes constant and the correction

increases linearly with T . The agreement between theory and experiment is improved since

all the experimental data (open circles) collapse on the calculated Cp (dashed curve) up to

room temperature.

VI. CONCLUSION

We performed first-principles calculations in order to understand the anisotropic thermal

expansion of bismuth. First, we computed the elastic constants of bismuth at 0 K using a

finite strain approach. All the elastic constants, with the exception of the C14 and C44 elastic

constants, are found to be in good agreement with experimental results34 when the SOI is

included. We also calculated the hydrostatic compressibilities along the ternary axis (χ‖) and

perpendicular to it (χ⊥) and found that the anisotropy in the directional compressibilities is

large since χ‖/χ⊥ ∼ 2.7. Then, we computed the thermal expansion coefficients parallel (α‖)

and perpendicular (α⊥) to the ternary axis using the quasiharmonic approximation. These

quantities are found to be in close agreement with experiments38,39. Another outcome of

our calculations is that the anisotropy in the thermal expansion coefficients is essentially

governed by the anisotropy in the mechanical properties below the Debye temperature θD

while both the anisotropy in the directional compressibilities and in the directional Grüneisen

functions play a role at higher temperatures. Finally, this work is a first step towards a

first-principles description of the thermal/non thermal expansion in laser-excited bismuth20,

where the electron system is not equilibrated with the phonon system17,18.
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