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Abstract

Muscle-based control is transforming the field of physics-based character animation through the integration of
knowledge from neuroscience, biomechanics, and robotics, which enhance motion realism. Since any physics-
based animation system can be extended to a muscle actuated system, the possibilities of growth are tremendous.
However, modeling muscles and their control remains a difficult challenge. We present an organized review of
over a decade of research in muscle-based control for character animation, its fundamental concepts and future
directions for development. The core of this review contains a classification of control methods, tables summarizing
their key aspects, and popular neuromuscular functions used within these controllers, all with the purpose of

providing the reader with an overview of the field.

1. Introduction

Character animation is the art of bringing virtual characters
to life through the design of solutions, such as motion con-
trollers, that allow the reproduction and/or synthesis of new
motions. The way these solutions are designed depends on
the requirements of the specific application for which the
character will be used, such as the degree of realism. We de-
fine realism as the visual degree of similarity between the ac-
tions, motions and responses of virtual characters with those
of their real counterparts, at both the dynamic and kinematic
level. The desired degree of realism also varies depending
on the application. For instance, in a game or simulation, a
higher degree of realism is sought for the main characters as
opposed to background characters.

In this review, we present a recent, but growing trend,
for the production of realistic character animations: muscle-
based control. This solution entails the use of more detailed
character models, involving muscles and their controllers.
Muscle-based models and controllers already span a variety
of areas, such as: ergonomic design, rehabilitation therapies,
prosthetics, medical diagnosis and even post-surgery predic-
tions. In animation, their usefulness no doubt depends on the
requirements described above, along with the time to setup
the model, and the desired motion repertoire. Nevertheless,
we will show that it is a promising direction for the field of
character animation in terms of enhancing motion realism.
Thus, the main objective of the review is to provide anima-
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tors involved in motion control, and experts from other fields
(such as robotics and biomechanics) with similar interests,
with a wide overview of the field of muscle-based control
for animation.

Let us first introduce muscle-based control from a his-
torical point of view. Throughout the years, several solu-
tions have been proposed to mimic how humans and ani-
mals control their motions in order to animate virtual char-
acters [Wil87]. These solutions are split into two main
approaches: kinematic-based methods and physics-based
methods. The former involves animating characters by speci-
fying limb or joint trajectories. The latter involves animating
characters by specifying actuator trajectories, such as joint
torques or muscle signals.

One of the earliest kinematics-based methods was
keyframing. In this technique the user specified a sequence
of positions and their corresponding times, later a computer
made an interpolation (usually a splining technique) between
the specified positions to generate motion. However, this im-
plicated a very low level control, where the user had to con-
trol each degree of freedom of the character. Another tech-
nique was the use of control functions, where the motion for
each degree of freedom was specified via functions of posi-
tion versus time, these functions were generally curves com-
posed of a set of control points. This technique had the ad-
vantage that the changes could be more easily made on indi-
vidual degree of freedoms, but the control was still very low
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level. Later, with the arrival of motion capture systems, ani-
mators began using recorded human kinematic data to drive
or enhance animations [PB02] [Gle98]. One major drawback
of this technique was that motion diversity and quality were
limited and conditioned by a motion database. Nevertheless,
some approaches have extended and diversified the number
of motions beyond those of the original databases by apply-
ing external forces on the characters and making dynamic
corrections on the original motion [MKHKOS] [PDO07].

A different approach to animation is physics-based anima-
tion. This technique is based on the development of physics
simulators, which aim at replicating real environments by
modeling the physical laws and conditions that define it. This
has freed animators from worrying about enforcing certain
motion characteristics which come implicitly with the pres-
ence of physics, and has granted virtual characters with a
freedom of motion, that is unrestricted but physically plausi-
ble. Once these virtual environments are created, the anima-
tor should choose what character will be used for the anima-
tion and a strategy for motion synthesis (the strategy for the
design of a motion controller) .

The character model can exhibit different levels of de-
tail in terms of skeleton, actuators and tissues etc. (as will
be explained in section 3). A common choice has been
simple skeletons actuated by ideal servo-motors, and com-
manded by servo-based controllers. A very complete re-
view and categorization of these controllers can be found
in [GP12]. The animation systems discussed in the lat-
ter review featured motions ranging from 2D locomotion
[Hod91] [vdPF93] and forward flips [HR90], 3D locomo-
tion [RMO1] [RHO2] [Sim94], balance [YLvdP07] [CB-
vdP10] [CKJ*11] [LKL10] [AdSP0O7] [MZS09] [WZ10],
and navigation on uneven terrain [WP10] [MdLH10].

Despite these advances, several authors from areas, such
as biomechanics, have shown the importance of increasing
the level of detail in such models by including muscles as
actuators (in the place of servos), and performing a muscle-
based control. This has triggered an evolution from servo-
based control, to servo-muscle-based control and finally to
muscle-based control. Servo-based control assumes that the
degrees of freedom (DoF) of the character are actuated by
servo motors, and therefore produces torques. Servo-muscle-
based control assumes that a set of degrees of freedom is ac-
tuated by servos, while another set is actuated by muscles,
and consequently it produces a set of torques and a set mus-
cle signals. Finally, muscle-based control assumes that all
the joints of the character are actuated by muscles and pro-
duces muscle signals only.

Figure 1 depicts how muscle-based control is integrated
in a physics-based framework. In this diagram, the physics
simulator updates the state of the character and the environ-
ment as a result of the external forces in the environment and
internal forces in the character. The external forces in the
environment include gravity, force perturbations, and forces

due to obstacles, slopes, and changes in the friction coeffi-
cient. The internal forces in the character are the muscle, lig-
ament, and joint-contact forces, which are generated thanks
to the muscle signals produced by the muscle-based control
method. To design these control methods, knowledge in neu-
romusculoskeletal simulation is vital since it provides a ba-
sis on which to: model the characters, automate the motion
generation process, and solve the motion redundancy prob-
lem. More information on these topics will be featured in
section 3.

The simulator first gathers the internal and external forces,
and executes a forward dynamics simulation that helps to
compute the resulting state of the character. This state com-
prises several kinematic and muscle variables, such as the
position and velocity of each link (or sub-body) in the char-
acter, and the length and velocity of shortening or lengthen-
ing of each muscle. Specifically, the simulator first computes
the link accelerations. These are then fed to a numerical in-
tegrator that updates the link positions and velocities, which
are finally used to update the state of the muscles.

TASK: MOTION GOALS/TARGETS

!

Muscle-Based Control

Fundamental Tools

Character
Muscle Signal
Current Updated
Environment | Physics Environment

& Simulator &
Character State Character State

Figure 1: Animation using a muscle-based control frame-
work.

As previously mentioned, the main contribution of this re-
view is providing the reader with an overview of the trends
in the field of muscle-based control for animation. We be-
gin by explaining our motivation in section 2. In section 3
we present an overview of the neuromusculoskeletal sim-
ulation tools, used to design control laws, such as muscu-
loskeletal modeling, simulated dynamics and muscle force
estimation. The core of the review is section 4, where we
feature a muscle-based control method classification consist-
ing of two categories: controller optimization methods and
trajectory optimization methods. This section also contains
the main strengths and weaknesses of each method and ex-
amples of controllers found in the animation domain. Next,
section 5 features comments on the current and future de-
velopments in the field of muscle-based animation. Finally,
the review concludes with a set of appendixes including the
most relevant aspects presented. Appendix 1 contains a ta-
ble summarizing our classification and important control and
model features. Appendix 2 contains a list of neuromuscular
cost functions used by the controllers. Appendix 3 contains
a short list of physics simulators and the controllers that use
them.
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Lastly, we would like to emphasize that the review aims
at highlighting the contributions and novelties introduced by
state of the art muscle-based controllers and the characters
they use. Therefore, it provides brief but comprehensive de-
scriptions of relevant controllers (with a special focus on
their muscle-related components). It also provides a general
discussion on musculoskeletal modeling, with thorough de-
scriptions only of the models these controllers use. For more
details on state of the art muscle modeling, the reader is in-
vited to consult [LGK™10]. We would also like to underline
the fact that most of the frameworks perform muscle-based
control, however a few perform servo-muscle-based control,
meaning that they involve characters actuated with both ser-
vos and muscles. In such frameworks we focus on the muscle
controlled part.

2. Motivation

Several studies have shown the importance of considering
internal forces when describing joint kinematics, specially in
joints where complex interactions between muscle actions,
soft tissues and cartilage exist (such as spinal disks, shoul-
ders and knees) [ADR11]. Considering muscles, in partic-
ular, comprises several advantages: better stability proper-
ties and more realistic passive dynamics (section 2.1), bet-
ter estimates of energy cost or fatigue (section 2.2), efficient
control via motion mechanics (section 2.3) and an ease to
simulate musculoskeletal defects, pathologies and physical
fatigue (section 2.4). These advantages are a consequence of
the non-linear properties present within the muscles, such as
the force-length and force-velocity relationships (these prop-
erties are detailed in section 3.1).

Moreover, muscles are at the center of important motor
control theories. For instance, the spring-like behavior of
muscles has been a crucial part of motor control theories
such as the variants of the equilibrium point theory [BH-
MIG92] [Fel86]. Their coordinated actions also form the ba-
sis to theories such as muscle synergies (both theories will
be described in 3.4).

2.1. Stability and passive dynamics

The musculoskeletal system is able of achieving pas-
sive adjustments and these adjustments are robust
across certain changes in the environment and pertur-
bations [vdKdGF*09]. This is due to the fact that the
non-linear properties of muscles grant the body with a first
defense to counteract mechanical perturbations [HR11].
Their presence gives place to adjustments such as preflexes,
which are mechanical responses that precede stretch reflexes
when a muscle is activated.

The authors of [GvdBHZ98], investigated to what extent
these properties contributed to the recovery from perturba-
tions during locomotion by using different models with dif-
ferent actuators: servos, muscle models and models with-
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out force-length and force-velocity relationships. They con-
cluded that the character actuated by muscle models (with
both properties) had substantially better resistance to both
static and dynamic perturbations. The role of these proper-
ties has also been investigated in the control of explosive
movements, such as vertical jumping [vSB93]. The authors
concluded that the force-length-velocity properties of mus-
cles were responsible for a reasonable performance when
small perturbations were applied.

2.2. Physiological feasibility and energy estimates

The inclusion of muscles motivates physiologically feasi-
ble motions. An example of this can be found in [KSKO00],
where the physiological infeasibility of interpolating user-
input postures was shown, and it was later reduced based on
muscle dynamics. Muscles also provide better estimates of
energy expenditure. In [WHDK12], visual, kinematic, and
dynamic comparisons evidenced that walking motions syn-
thesized via energy estimates using muscles were closer to
real human data than the estimates based on torques. Re-
cently, comparisons have also been made between torque
actuated and muscle actuated simulations of human swim-
ming [Sil3]. The former yielded plausible results but high
control gains and a smaller numerical time step were neces-
sary.

2.3. Control via motion mechanics

Thanks to the presence of muscles, the mechanical sys-
tem of the character is granted with the ability to accom-
plish control functions, not only for counteracting pertur-
bations, but also for tasks such as human walking. For in-
stance, instead of trying to create control models that mimic
complex neural circuits (for either torque or muscle-based
characters), biomechanisists have discovered that locomo-
tion requires little control if certain principles of legged
mechanics are used. In [GH10], these principles were en-
coded as muscle reflexes, which were used to reproduce
human walking, without any higher level controller. These
reflexes were inspired in spinal reflexes, which link sen-
sory information directly into muscle activations, bypassing
the inputs from the central nervous system (such reflexes
will be further described in section 3.4). Other authors have
demonstrated that specific mechanical behaviors observed
during walking can be encoded in a single, simple muscle re-
flex [PGB97] [GSBO03]. Nevertheless, more evidence of the
performance of such legged mechanics principles, in terms
of walking on uneven terrain and in various directions, is still
needed. This evidence is needed to show the extent to which
reflexes can deal with such tasks without a higher level con-
troller.
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2.4. Simulation of musculoskeletal defects, pathologies
and physical fatigue

Among other advantages of muscle-based control is the
fact that muscles provide a natural solution to the simula-
tion of musculoskeletal defects, pathologies and physical fa-
tigue. By taking into account an anatomical structure (mus-
culoskeletal system), it is easier to simulate phenomena that
derive from this structure. For instance, fatigue and recovery
muscle models can be used to simulate a motion where a hu-
man gradually gets tired [KSKO00] by limiting the maximal
force that the muscle can produce with respect to the his-
tory of muscle force [GML93] [GML96]. Cost functions that
minimize the force of a specific muscle can be used to syn-
thesize motions with pain avoidance behaviors [LPKL14].
Changing muscle parameters and properties such as max-
imal strength, can be used to weaken muscles, and gen-
erate well known pathologies and defects [WHDKI12]. Fi-
nally, injuries can also be simulated by displacing mus-
cles [KSKO00].

3. Neuromusculoskeletal simulation overview

Humans are actuated by muscles controlled by the central
nervous system. These muscles produce forces that actuate
joints to achieve a given motion. The motion is most of the
time realized under external perturbations or forces (such as
a voluntary pushes, the force of gravity, and ground reaction
forces), which the central nervous system should also com-
pensate for.

In the biomechanics field, the neuromusculoskeletal simu-
lation can either consist in finding ways to estimate the mus-
cle forces from a prescribed motion or directly generating
motion from computed forces. The link with physics-based
animation is straightforward: by applying to a musculoskele-
tal model (section 3.1), an optimal set of muscle forces (sec-
tion 3.3) with regard to motion and other requirements, it
should achieve realistically a specified motion.

The following section features a general review of im-
portant tools and concepts to understand in a neuromuscu-
loskeletal simulation: musculoskeletal modeling, simulated
dynamics, and muscle forces estimation. Most of the ref-
erences cited here come from the field of biomechanics,
as biomechanicians are the historical actors of development
of the neuromusculoskeletal simulations. However, several
openings and applications to animation are highlighted in
order to show the strong link between both fields.

3.1. Musculoskeletal modeling

Simulating physics in a system means specifying the seg-
ments, joints, masses, inertias and actuation capacities of
these systems. Musculoskeletal modeling consists in de-
scribing these different features in a convenient way in order
to enable a physics simulation. This modeling is common to

different types of virtual characters, such as animals, humans
and even imaginary creatures.

3.1.1. Joints and segments

The core problem of musculoskeletal modeling is the
definition of anatomically realistic segments and joints.
In biomechanics, the models are often anatomically
based [WSA*02] [WvdHV™*05] and exhibit a higher level
of detail than those used in animation, as they have to be ac-
curate enough to provide clinically relevant biomechanical
quantities. In many cases, kinematical closed chains appear
in the structure of the model and make both kinematics and
dynamics studies more complex [PSVV07] [VDHY%4].

In the animation field, functional degrees of freedom
(i.e. the resulting motion of the anatomical ones) are often
used as a basis for the kinematical model [h-a] and seg-
ments directly link the considered articular centers. Never-
theless, some approaches have begun using detailed anatom-
ically based models of certain body sections such as the
neck [LT06], hand [SSB*15], and the upper-body [Lee08].
Using complete body models still remains an area of
growth, with only a handful of models presented for mo-
tion synthesis purposes, from which the models presented
by [Si13] [LPKL14] stand out.

3.1.2. Lengths, masses and inertias

One of the main issues in musculoskeletal modeling is the
scaling of the model. As motion is generally recorded to
be analyzed (using tracking or motion capture systems), the
lengths of the segments are easily computed from marker
positions [LAdZR11]. However, when this information is
not available, regression laws based on cadaver measure-
ments [Dem55] can be used. Cadavers were also used to
scale masses and inertias [dL96] [DCVO07]. However, ad-
vances in medical imaging, (e.g. scanner or MRI scanners)
opened the door to subject-specific scaling of musculoskele-
tal models and showed interesting perspectives for clinical
applications [BAGDO7]. Moreover, other approaches have
emerged which rely only on exterior measurements of the
body, such as 3D point clouds, to determine subject-specific
bone geometry and motion [ZHK15].

In the models used by the control methods in this review,
the parameters are manually specified for every new charac-
ter. However, some exceptions exist, such as [GvdPvdS13]
and [HMOAO3], which automatically computed the muscle
parameters by including them in optimization procedures.

3.1.3. Servos and muscles

Historically, as shown in figure 2 (left), muscles were not
represented and the simulation was mainly skeletal. Estima-
tion of joint torques with servo actuated joints was the main
goal, but provided no relevant information about muscle load
and fatigue. Progressively, muscles were incorporated in the
simulation models as non-direct actuators of the joints.
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This has also been the case for animation, where charac-
ters have evolved in level of detail, and muscle models are
finding their way into motion control frameworks. A more
straightforward inclusion of muscles began with the use of
mass-spring systems. Contrary to the usual angular-spring
dampers and PD-controllers, these systems (like muscles)
are non-direct actuators of the joints. Meaning, they pro-
duce first forces, not torques, which interact with the skeletal
system to produce motion. Like muscles, these systems use
force action lines, determined by their insertion or attach-
ment site to the skeletal structure. Nevertheless, nowadays,
more faithful muscle representations, such as biomechanical
muscle models, are actively used.

Servo Muscle

actuated | actuated

Figure 2: A biomechanical upper limb model. On the left,
the elbow is actuated by a virtual servo. On the right, the
elbow is actuated by muscles.

One popular biomechanical muscle model that has been
incorporated into virtual characters for force generation is
the Hill muscle model [Hil38]. Although this model was
developed decades ago, its current usefulness is evidenced
by its various adaptations and implementations within the
biomechanics community. These adaptations have come to
be known as Hill-type models, such as the Hill-Stroeve
model [Str96], and the widely used adaptation made in
the late eighties by [Zaj89], for numerical simulations. As
shown in figure 3, the model consists of a contractile el-
ement CE (non-linear visco-elastic relationship) in parallel
with a passive element PE (non-linear spring). The contrac-
tile element represents the active tension, or forces, created
by the contractile proteins in the muscle, while the passive
element represents the passive tension or the force that re-
sults from the elongation of the connective tissue compo-
nents in the musculotendon unit. The tendon is represented
by a serial non-linear spring SE of length /;, o represents
the pennation angle or the orientation of the fibers with re-
gard to the tendon, [, represents the muscle length, and /¢
the length of musculotendon unit. The latter is computed by
adding the muscle /;; and tendon /; lengths. This model has
been widely used even if the numerous parameters neces-
sary to completely define its behavior are difficult to obtain
in vivo [HKVdH*07] [IEC10].

The muscle force generation F;,; of a musculotendon unit j
can be summarized as the sum of the contractile and passive
forces:

Fpj= [fp(im)-i-aj'ﬁ(imj)'fv(imf)]'Foj M
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&

Figure 3: Commonly used musculotendon model for muscu-
loskeletal simulations. Inspired from [Zaj89] [EMHvdBO07].

where f) is the passive force relationship, a; is the muscle
activation, f; is the force-length relationship, f the force-
velocity relationship, Fp; the maximum isometric force, and
I j the normalized length of the muscle unit (normalization
is usually made using the resting length of the muscle). Sev-
eral models have been proposed to approximate the f; and
fv relationships with regard to experimental data [RAPC10].
Example models are presented in figure 4. The force-length
relationship documents how muscle tension varies at differ-
ent muscle lengths, and it is related to the "Sliding Filament
Theory". At a microscopic level, muscle fibers are composed
of smaller structures called actin and myosin filaments that
make bindings to form muscle contractions. Peak muscle
force can be generated when most of these bindings or cross-
bridges are created. This event corresponds to the resting
length of the muscle (usually near the middle of the range
of motion) [Knu07]. The force-velocity relationship explains
how the force of fully activated muscle varies with velocity.
It states that the force the muscle can create decreases with
increasing velocity of shortening (concentric actions), while
the force the muscle can resist increases with increasing ve-
locity of lengthening (eccentric actions) [Knu07].

The tendon force f;, output of the musculotendon unit, is
simply obtained by taking into account the pennation angle:

fjl = ij - Cos L 2)

However, in many studies the pennation angles are ne-
glected.

Complete dynamics of the musculotendon unit also in-
cludes the activation dynamics, meaning that there is a non-
linear temporal relationship between the neural excitation
u; and the effective activation of the muscle [BLMBO4].
In many works [VYNO5] [VYNO6] [PD09], this non-linear
relationship is approximated by a second order differential
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Figure 4: Force generation capacity of muscles. Inspired
from [RAPC10] [EMHvdBO7].

equation, exhibiting different time constants for activation
and deactivation:

éj = (ujfej)/’tne

(ej—aj)/’cact , e>a 3)
aj=
(e,i _aj)/Tdeact , e<a

Where u; is the neural excitation, a; the muscle acti-
vation, e; an intermediate variable, T the neural excita-
tion constant time (often neglected), and Tue; and Ty, the
activation and deactivation time constants respectively. In
animation, activation dynamics is sometimes modeled us-
ing equal activation and deactivation time constants [Gvd-
PvdS13] [WHDK12].

The musculotendon unit modeling remains challenging,
since changes in the tendon length affect the final muscle
force, and vice-versa. A proper evaluation of the muscle
length should be done [MD12]. However, such a computa-
tion is costly in terms of computation time and is often sim-
plified. For example, the algorithm used in [DRC*06] just it-
erates once at each simulation time step, assuming that most
of the tendon effect will be obtained with only one iteration.

Besides the mechanical model presented previously,
other muscle models have emerged which encompass vi-
sual characteristics such as muscle deformation or both
functional and visual characteristics [LGK™10]. The mod-
els can be grouped under three techniques: geometrically-
based, physically-based and data-driven approaches. In
geometrically-based approaches, muscle deformation is de-
termined by the skeleton arrangement [CHP89] [WVG97]
[TSC96]. In physically-based approaches both the con-
tractile muscle forces and the changing muscle geome-
try are represented during contraction [NTHOI] [TZT09]

[TSB*05]. Finally, data-driven approaches directly model
the skin shape that is deformed by the underlying muscle,
thanks to data captured from the surface of subjects [ACP03]
[PHO6] [FLP14]. These models offer a next level of fidelity.
However to this date they are not usually used for the control
of virtual characters due to the fact that they would render
the control computationally expensive.

3.2. Simulated dynamics

As it has been stated in [EMHvdBO07], the musculoskeletal
dynamics problem can been presented as follows: let us con-
sider a musculoskeletal system with n degrees of freedom,
actuated by m muscles. The degrees of freedom are the joint
angles gathered in a vector called g. The state of such a mus-
culoskeletal model, from a dynamics point of view, can be
expressed as (¢, q)-

The relationship between motion and forces is given by
the Newton’s second law of motion, that can be expressed in
a matrix form as [PanO1]:

M(q)i+C(q,9) +G(q) +R(@)Fn+E =0 )

Where M(g) is the mass matrix of the system, gather-
ing masses and inertias of all the segments (n X n), C(g,q)
represents the coriolis and centrifugal effects (n x 1), G(g)
represents the vector of gravity torques (n X 1), and E rep-
resents the external forces. Finally, R(q)Fy represents the
action of the muscles on the joints (muscular joint torques,
nx 1), where R(q) is the matrix containing the muscular
moment arms (n X m) and F;, the muscle forces (m x 1). In
a dynamics simulation, such quantities can be automatically
constructed by using algorithms such as the ones developed
in [KL96] [Feal4].

From equation 4, two different problems can be derived.
The first one, called inverse dynamics, consists in applying
a specified motion and specified external forces to a muscu-
loskeletal model and then computing the forces that generate
the considered motion. The equation to solve is a reformula-
tion of equation 4 and can be expressed as:

R(q)Fn = —(M(q)i+C(q,9)+G(q)+E) 6))

The output of equation 5 are the muscular joint torques
that are used to define muscle forces. This equation is most
of the time solved thanks to a top-down strategy also referred
to as Newton-Euler algorithm [Win05] [Feal4] [RHWZ08],
which considers each segment separately from distal to prox-
imal. However, more robust methods and methods consider-
ing closed loops have also been validated to solve the in-
verse dynamics problem [Kuo98] [vdBS08]. This approach
is widely used in motion analysis, as motion capture data is
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a very common resource and can be used as a kinematical
input in such problems.

The second problem is called forward dynamics and is
the one that interests us the most, as it consists in generating
motion from computed forces. Since no direct measurement
of muscle forces is available, this approach is generally cou-
pled with an optimization problem to compute a set of forces
compatible with a given task. The equation to solve, issued
from equation 4 can be written as follows:

G=M""(q)(—C(q.9) — G(q) —R(q)Fu—E)  (6)

In animation, the forward dynamics problem is incorpo-
rated in a physics simulation involving collision detection
(that provides external forces to apply to the system) and a
numerical integration (e.g. Runge-Kutta methods) to obtain
the current system state (q,q) from the computed acceler-
ations ¢§. In biomechanics, the problem is generally solved
with real external force measurements (such as ground re-
action forces from force plates), and it is formulated as the
optimization problem presented in the next section.

3.3. Muscle forces estimation

Most musculoskeletal models exhibit actuation redundancy
(m > n) that leads to an infinite number of actuation solu-
tions, as there are less equations (dynamics equations) than
unknowns (muscle forces). The models may also exhibit un-
deractuation, which stems from the fact that a single muscle
can actuate several joints simultaneously, such as bi-articular
muscles.

These challenges can be solved by defining what is the op-
timal actuation solution, through the modeling of known mo-
tor control laws associated to a motion. Motor control is the
process through which humans and animals create motions
by using their neuromuscular system. This process involves
the computation of higher level commands by the central
nervous system to achieve specific motion goals based on
sensory information regarding the environment and the cur-
rent body state. These commands later excite the muscular
system, creating skeletal motion [Ros91]. Several models
that mimic this process are actively studied and used in the
fields of neuroscience, biomechanics, and robotics to gener-
ate muscle forces.

3.3.1. Problem formulation

A popular motor control model is the minimization of a cost
function (f(X)) encoding task goals and bio-inspired objec-
tives that motivate natural motion. A common formulation of
this model consists in a non-linear constrained optimization
problem:

Find X which minimizes f(X) @)

submitted to COMPUTER GRAPHICS Forum (3/2016).

subject to,
gi(X)<0,j=12,...m
h(X)=0,k=1,2,....,p

‘Where the constraints enforce that:

e the computed forces solve the dynamic equations;

e the muscles are only pulling and they have physiological-
based force limits;

e the computed forces may respect any additional set of uni-
lateral (g) or bilateral constraints (k).

The constraints g;(X) and /(X) may be specified as hard
constraints (as in the formulation above), or as soft con-
straints (as additional cost functions). The optimization can
be a static or dynamic one (often an optimal control prob-
lem [ZDG*96]). A static optimization refers to the process
of minimizing or maximizing an objective function at a time
instant, while a dynamic optimization refers to the process
of minimizing or maximizing an objective function over an
interval of time of non-zero duration.

3.3.2. Forward, inverse and hybrid dynamics-based
optimization

This model can be used both in a inverse dynamics and for-
ward dynamics framework. General schemes of these frame-
works are featured in figure 5 and in figure 6.

In the inverse dynamics-based optimization (figure 5),
motion and external forces are applied to a musculoskele-
tal model. The generated joint torques are then used in
an optimization procedure that computes the muscle forces
that satisfy the task, motion objectives, and constraints.
In biomechanics, the inverse dynamics problem is often
solved by minimizing a cost function representing an en-
ergetic cost [TBB97] [Pan01] [EMHvdBO7] [PD09]. Sev-
eral cost functions have been tested. The sum of the squared
and cubed muscle forces have been classically used for
gait [CB81] and upper arm [AKCMS84] [Cha97] motions
as an image of the metabolic energy consumption, whereas
a min/max criterion [RDVO01] has been widely used in er-
gonomics applications as an image of the muscle fatigue.
These examples are of importance as they are influencing
the cost functions that are currently used in the muscle-
based animation field. A widely used commercial software
exploiting such a method for musculoskeletal analysis is
AnyBody [DRC*06]. One of the purposes of using inverse
dynamics-based optimization for animation is to provide
characters with a certain degree of adaptability to perturba-
tions. Computing muscle forces from motion capture data
is also interesting because it allows the simulation of new
motions (e.g. fatigued or injured motions), by replaying
the computed muscle forces while altering muscle param-
eters [KSKOO] [WHDK12] [LPKL14]. Moreover, recent de-
velopments allow the computation of these muscle forces
in real-time [vdBGEZ"13]. Finally, it is worth noting that
an alternative strategy to muscle excitation computation is
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the muscle-based variation of jacobian transpose control
[SADM94] [GvdPvdS13], which does not use the complete
inverse dynamic model, but a simpler, static equivalent. Es-
sentially, it consists in finding a set of forces and torques in
the task space which achieve a target pose, and converting
these into individual muscle torques and excitations via the
jacobian transpose.

In the forward dynamics-based optimization problem (fig-
ure 6), only initial muscle excitations and external forces
are applied to the model (no pre-recorded motion). The de-
sired motion is instead directly provided to the optimization
procedure to evaluate task achievement, and produce the re-
quired muscle excitations. Usual cost functions are the dis-
tance between computed kinematics (issued from the for-
ward dynamics problem) and experimental kinematics data.
A good example of a forward dynamics optimization is the
Computed Muscle Control algorithm (CMC) implemented
in OpenSim [DAA*07]. Its forward simulation uses a cost
function that can be based on the distance to experimental
data, or on the distance to predefined poses issued from a
planner.

Several Hybrid dynamics methods also exist, trying
to use the advantages of both methods to be mechani-
cally and physiologically consistent. These methods ba-
sically consist of a inverse dynamics-based optimiza-
tion, with the difference that (as in the forwards dy-
namics problem) initial excitations are provided for some
muscles through the use of electromyographic measure-
ments [BLMBO04] [AMO04] [ARB10]. The advantage of such
approach is that the dimension of the original problem is re-
duced by removing variables from the optimization problem.
Numerous optimal control methods have also been devel-
oped to obtain realistic motions from scratch through the ac-
tuation of a musculoskeletal model [PanO1] [AvdB10]. This
is also of great interest for the animation field, as optimal
control theory is especially well fitted to synthesize a mo-
tion between two body poses.

As previously shown, a central and important component
in these frameworks is the choice of the objective function.
For this reason, we have grouped the most relevant objec-
tive terms used in animation according to the categorization
found in [ZW90]. In this categorization, a generalized per-
formance criterion was proposed, which included three com-
ponents: task specific (tracking a given trajectory, minimiz-
ing jerk), neuromuscular (minimizing muscle stress, neural
effort), and bone joint (minimizing contact forces, avoid-
ing certain ranges of motion) objectives. Appendix 2 con-
tains a detailed description of each of these components and
a table listing relevant cost functions. A special focus has
been given to the neuromuscular objectives, which represent
a novelty in muscle-based control. The reader is invited to
consult the reference of each controller for more detailed de-
scriptions on the remaining objective types.

To solve the optimization problem, popular algorithms

such as sequential quadratic programming (SQP) [KSKO00]
[ZCCDO06] [Sil3] and simplex methods have been imple-
mented. SQP consists in modeling the non-linear optimiza-
tion problem as quadratic subproblems and to use the so-
lutions of these subproblems to find better approximations
that lead to the optimum [RRO09]. If the optimization is un-
constrained, other authors have opted for simpler methods
such as the simplex method [GT95] [DZSO08]. This iterative
method uses a geometric shape or simplex to explore the so-
lution space and find an optimum [RR09].

Evolutionary algorithms [dG04] have also been re-
cently incorporated into the control of virtual charac-
ters [HMOAO3] [WHDK12] [GvdPvdS13]. An example is
the covariance matrix adaptation (CMA) [Han06], which
uses a multi-variate normal distribution to explore the so-
lution space in search of an optimum.

3.4. Motor Control Theories

The optimization itself can be used as a controller to gener-
ate muscle signals, or it can be used to optimize bio-inspired
control laws based on motor control findings and theories
(Section 4.1) such as: hierarchical systems, central pattern
generators, equilibrium point theory, muscle reflexes and
muscle synergies. The current section briefly presents these
theories and some of the application cases found in both
biomechanics and animation.

Hierarchical control systems, have been designed thanks
to studies [KSJ*00] that outline how the components or neu-
ral organs of the motor system work together to generate
muscle excitations for voluntary and reflexive actions. This
hierarchy has inspired multiple level controllers in anima-
tion, as in [ZCCDO6].

Central pattern generators (CPGs) have been proposed
for the generation of locomotion, and other kinds of be-
haviors (such as respiration and swallowing). CPGs are
biological neural networks that produce rhythmic patterns
without relying on sensory feedback or higher control cen-
ters [HooO1]. This neural rhythmicity is generated from in-
teractions between neurons or between currents within in-
dividual neurons. Although these networks do not rely on
sensory feedback, higher control centers use this feedback
to modulate the CPG outputs. The CPG models created
by [Tag98] [TYS91] for bipedal locomotion have been popu-
lar in the robotics domain [Ijs08] [ATO05] [AT06] [ENMCO5]
and are also beginning to be present in the world of an-
imation, specifically for the synthesis of human swim-
ming [Si13] and walking [HMOAO3]. Nevertheless, a limi-
tation of these generators is the fact that they only produce a
limited set of motions, mainly rhythmic or periodic patterns.
Using CPG-based methods alone is not enough to provide a
character with a rich motion repertoire. For this reason, in
applications requiring periodic and non-periodic motions, it
is necessary to use an additional control strategy to handle
the non-periodic aspects [Sil3].

submitted to COMPUTER GRAPHICS Forum (3/2016).



A. Cruz Ruiz & C. Pontonnier & N. Pronost & G. Dumont / Muscle-Based Control For Character Animation

Motion capture data External force data Initial muscle

{X,Y,zZ} {E} forces

{F.}
Inverse Computed joint Inverse Joint torques | min f = f(F,) N
kinematics coordinates dynamics {r.} ! Subject to R(Q)F,, =T, :
(ag N Frin < Fo < P | |
9(F,,q) <0
Iy : o ) O e h(F,.q) =0 :
i | Bone lengths, masses ! — > !
i Scaling and inertias ! e i
E ‘ ! ! : ;'—/Updated muscle forces H

—_— ! \

N F, Optimization loop ,’

Optimized muscle forces

{F.}

Figure 5: Inverse dynamics-based optimization. The optimization problem iterates until the cost function is minimized and the

constraints are satisfied. Adapted from [EMHvdB07] [PDZS* 14].

Experimental joint
coordinates

{Qerp Qorp o}

Initial muscle
excitations

{e,}

and inertias 1

{F}

1]
Pre-processing 1

forces

External force data

{E}

min f = f(q - dexp)

Subjectto 0<ep, <1
9(em.q) <0
hem,a) =0

Computed joint
coordinates

{g.9.}

Forward
dynamics

Updated muscle excitations

v
Optimized muscle excitations
{e.}

m.

Figure 6: Forward dynamics-based optimization. The optimization problem iterates until the cost function is minimized and
the constraints are satisfied. Excitations are often computed instead of forces for a more straightforward inclusion of muscle
dynamics within the solution (activation and force generation properties are highly influential in high performance motions).

Adapted from [EMHvdBO7].

Control laws based on the equilibrium point theory
[Fel66] have been also implemented by animators [NF02].
This theory argues that the nervous system controls move-
ment through the specification of final equilibrium positions
of the limb. The equilibrium trajectory mirrors properties
of the limb and neuromuscular system, such as inertia and
viscoelasticity. This trajectory is specified by virtual posi-
tions corresponding to variations in muscular activations.
The muscle activations move the limb from its real position
to the virtual one.

Lower level control laws, such as muscle reflex mod-
els [GH10] have recently started to be incorporated into
character motion synthesis, as we will see in the next sec-
tion [GvdPvdS13] [WHDK12]. The models suggested that
reflex inputs (which serve as mediators between the CNS or
central nervous system and mechanical environment) dom-
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inate in contributions to muscle activations during locomo-
tion. This supports the idea that the function of CPGs may be
limited during normal locomotion. These reflexes have been
included in animation as positive feedbacks of muscle fiber
length and force [GSBO3] that altered muscle activation. The
effects of such reflexes was a reliance on compliant leg be-
havior, joint overextension avoidance, and improved gait sta-
bility.

Finally, a promising theory (somewhat close to the idea
behind CPGs), that is yet to be actively applied within
animation frameworks, is the theory of muscle synergies.
This theory proposes that by combining a few modules, the
CNS may learn new control policies fast and efficiently,
for instance, to adapt to perturbations. Evidence of this
modular organization has been found thanks to the low
dimensionality of motor signals [dP10]. The existence of
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such modules has been shown in human arm reaching mo-
tions [MBdF10], human postural responses [TOTO07], over-
head throwing [CRPSD15], and frog kicks [dSBO3].

All of these theories are of interest since they have in-
spired many of the control methods used in animation. In
section 4.1 we will see how central pattern generators, mus-
cle reflexes, and the equilibrium point theory have inspired
controllers in animation. In section 4.2 we will show other
control methods which take more inspiration on the work
done in the domain of control and robotics. Nevertheless, a
handful of these methods have also been inspired by motor
control theories, such as the theory of muscle synergies.

4. Muscle-based control methods

Once the character is designed using the musculoskeletal
modeling and simulation dynamics concepts presented in
section 3.1 and section 3.2, a muscle-based controller can
be constructed using the force estimation frameworks and
techniques featured in section 3.3, particularly, the forward
dynamics-based optimization framework. As initially shown
in figure 1, the purpose of the muscle-based controller is
the computation of adequate muscle signals (muscle exci-
tations or muscle forces) that allow the character to achieve
a set of tasks and motion goals. Specifically, we are inter-
ested in defining a controller to determine the forces Fy, in
equation 6.

The motion goals for these controllers can consist of high-
level goals, such as walking speed and direction, or task
space and joint trajectories. Therefore, the specification of
detailed motion data is not a necessity. In fact the purpose
of designing controllers is to be as independent as possible
from motion data. In the first case, one sole procedure com-
putes both kinematics and muscle signals from the high-level
goal. In the latter case, either a higher level controller com-
putes the desired kinematics and a low-level muscle con-
troller transforms it into muscle signals, or the animator pro-
vides the kinematic trajectories.

We have grouped the controllers into two categories: con-
troller optimization methods (section 4.1) and trajectory op-
timization methods (section 4.2). In the controller optimiza-
tion methods, the optimization seeks to determine the opti-
mal control parameters that will allow a control law to pro-
duce muscle signals that satisfy specific motion goals. Once
these parameters are determined, the controllers convert de-
sired kinematic goals into muscle signals. These control laws
are based on the motor control findings and theories dis-
cussed in section 3.4. In trajectory optimization methods, the
optimization directly generates the muscle signal trajectories
that accomplish the desired motion goals. Both methods at-
tempt to optimize motions with sometimes similar cost func-
tions (Table 2), but the controller optimization methods ac-
cess the equations of motion implicitly through experience.
In other words they see the character and its environment

as a "black box", while the trajectory optimization meth-
ods access these equations explicitly. Furthermore, the con-
troller optimization approaches have the characteristic, that
(when needed) instead of computing the complete inverse
dynamic model, many use a "simpler" equivalent, such as
the jacobian transpose [SADM94] (section 3.3.2). Finally,
it is worth noting that to compute the muscle signals, the
controller optimization methods perform the optimization
offline, while the trajectory optimization methods perform
it online.

A section has been devoted to each control method. Each
section consists of a description of the control method, its
main strengths and weaknesses, and examples from the ani-
mation field. Appendix 1 resumes these characteristics for all
controllers discussed in this review, and appendix 2 summa-
rizes the details and formulas describing the neuromuscular
cost functions used by each controller.

4.1. Controller optimization methods

Controller optimization methods seek to determine a set
of control parameters that will yield the desired motion
goals throughout an entire period of time. These parame-
ters depend on the specific control law, but in general they
can be summarized as: feedback control law gains (such
as PD controller gains, force feedback gains and spring
gains) and CPG unit weights. An overview of such methods
is featured in figure 7. Animators specify the desired task
(frask (1)), neuromuscular (fyeuromuscular(t)) and bone joint
objectives (fyone, joint (t)), constraints (g(sm,q), h(sm,q)), ex-
ternal forces (E), initial control (p;;) and character state (s;),
and finally an initial guess of the joint trajectories that fulfill
the task. An optimization procedure continually updates the
controller parameters and desired joint trajectories until the
cost function is minimized. It is worth noting that the final
desired joint trajectories might be specified by the animator,
or synthesized by the optimization as in figure 7.

Once the control parameters and joint trajectories have
been determined, the control law executes online and di-
rectly generates the actuation signals that accomplish nat-
ural looking motions, while satisfying task related objec-
tives. Example of control laws include: antagonistic control,
PD-controllers, muscle reflexes, and neural networks. The
variety of motions that have been synthesized encompass
human locomotion (ex. walking, running, hopping) [Gvd-
PvdS13] [WHDK12] and postural adjustments [NF02].

4.1.1. PD controllers and muscle reflexes

Several approaches have made use of the fact that hu-
mans minimize muscle effort during locomotion [R*76]
within their controller optimization frameworks. Some no-
table examples are the controllers developed by [WHDK12]
and [GvdPvdS13] for synthesizing locomotion in humanoids
and imaginary bipedal creatures. These approaches used an
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are then used in an online closed control loop (instead of joint trajectories [WHDK12] desired muscle lengths [Si13] might also

be used).

optimization procedure to determine the optimal control pa-
rameters of PD controllers (PD gains) and muscle reflexes
(force and length feedback gains). The optimization had
a time horizon of 10s or 20s, and was based on a mus-
cle effort term called the rate of metabolic energy expen-
diture [And99], and soft constraints to track kinematic ob-
jectives and ensure stable gaits.

The PD control laws and muscle reflexes generated the
muscle excitations to make the character fulfill the locomo-
tion tasks. [GvdPvdS13] used task space PD controllers on
different body segments, inspired by the jacobian transpose
control of [SADM94], while [WHDK12] employed them on
each muscle in the character.

Figure 8: Locomotion of muscle-based bipeds [GvdPvdS13]

These PD controllers worked jointly with the muscle re-
flexes designed by [GH10]. The reflexes encoded principles
of legged mechanics, such as natural joint compliance in
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stance phase and dorsiflexion during the swing phase. In ad-
dition to these control laws, constant excitations were also
used to adjust the output of these control laws according to
the gait phase, or to produce rhythmic arm and tail move-
ments. Figure 8 features examples of the variety of creatures
and motions synthesized by [GvdPvdS13]. Interestingly, in
this approach, the muscle routing of the creatures was also
optimized such that the task was successfully achieved.

4.1.2. PD controllers and neural networks

Recently, PD controllers have also been included for
synthesizing human swimming motions. The authors
of [SLST14] [Sil13] used a controller optimization method
for periodic motions in swimming, and trajectory optimiza-
tion (consult section 4.2) for non-periodic motions. The con-
troller optimization method consisted of neural networks
(central pattern generators or CPGs) for specific body sec-
tions and PD controllers. As opposed to the PD controllers
in the previous sections, in this approach, the control gains
were fixed, and the parameters in the optimization were a set
of weights in CPG model.

The character’s body was divided into 10 muscle groups
(ex: right leg, left leg muscles) for the CPG modeling.
Each CPG was modeled as a set of non-linear differen-
tial equations, that contained desirable properties such as
trajectory reproduction, modulation, and external perturba-
tion compensation. The networks produced desired time-
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varying muscle lengths for specific swimming modes, and
the PD controllers converted them into muscle activations.
The learning process of these networks was carried out by an
Incremental Locally Weighted Regression (ILWR) [SA98].
This process sought the minimization of an error criterion
based on the desired muscle lengths obtained from kinematic
data of swimming.

The use of muscle groups, and a higher level controller
to modulate each CPG, simplified the control task. For in-
stance, turns were induced by decreasing the activation am-
plitudes of the muscles on one side of the body relative to
muscles on the opposite side.

4.1.3. Antagonistic control

The authors of [NF02] used this methodology, on a con-
troller based on the equilibrium point hypothesis proposed
in [Fel66] and introduced in section 3.3. However, an alter-
native to optimization was used in order to determine the set
of parameters that achieved the desired motion. In this ap-
proach, each degree of freedom of a human skeleton was ac-
tuated by two angular springs representing the antagonistic
grouping of muscles around joints. Movement was achieved
by varying the equilibrium point of each joint; the equilib-
rium point was defined as the point where the sum of the
forces acting on the joint equaled to zero. The variation of
the equilibrium point was made by adjusting the spring pa-
rameters according to desired angles specified by the anima-
tor and a method that took samples of external forces and
recalculated the parameters.

4.1.4. Summary

Similarly to controller optimization methods in the joint
space, these controllers have generated impressive results in
terms of skills (list of possible motions of the character) and
robustness to external perturbations. However, because mus-
cles are used instead of servos, new cost functions (such as
muscle effort) have been included within the parameter opti-
mization procedure, which further motivate motion realism.
These improvements have been evidenced at both the kine-
matic and dynamic level by [WHDK12].

Controller optimization methods have allowed the imple-
mentation of models of biomechanical mechanisms. The use
of these laws, such as muscle reflexes [GH10], have gener-
ated well-known events during walking, such as joint com-
pliance in stance phase, and dorsiflexion during the swing
phase [WHDK12] [GvdPvdS13]. This represents an impor-
tant advantage, since bio-inspired control laws can directly
generate desired muscle and joint behavior at specific stages
during the motion.

One of its main drawbacks is computational efficiency.
Computation times still need to be improved, since to syn-
thesize 10 seconds of animation, the controllers yielding the
most impressive results require approximately 10 hours of

tuning [WHDK12]. Nevertheless, we believe that consider-
ing and modeling muscle groups and synergies (section 3.4)
could aid in overcoming this setback, by explicitly establish-
ing relationships among muscles and reducing the number of
control parameters [ADN*13].

Finally, another interesting aspect of some of these con-
trol frameworks was the strategy used for ensuring balance
of the characters. For instance, in the case of [GvdPvdS13],
trunk stability was maintained by using feedback rules to
control orientation in sagittal and coronal planes with re-
spect to the center of mass velocity and a target heading.
Balance was also enforced thanks to the application of a
SIMBICON-style balance correction [YLvdP07] to deter-
mine leg orientation in the sagittal and coronal plane. The
authors of [WHDK12] also made use of the SIMBICON
balance feedback laws to adjust desired hip target angles.
Lastly, the approach developed by [NF02] used automatic
balance controllers based on ideas from the balancing simu-
lations of [Wo0098].

4.2. Trajectory Optimization Methods

The objective of trajectory optimization methods is to gener-
ate control variable trajectories that minimize or maximize a
measure of performance while also respecting a set of con-
straints. Such methods are for now mostly used in robotics.
In the domain of character animation, these methods remain
mostly a static optimization, solving a given set of equations
at each discrete step. Alternatively, they can also be referred
to as "model-predictive control methods" when they are used
online and with a finite time horizon.

As detailed in section 3.3, these optimizations are usually
formulated as non-linear constrained optimization problems
that use bio-inspired cost functions, such as muscle effort
or muscle fatigue. A schematic overview of this approach
is featured in figure 9. Generally, the animator specifies the
desired task (fias(t)), neuromuscular (fueuromuscutar(t)) and
bone joint objectives (fpone, joint (t)), external forces (E), and
initial muscle signals (s;z). The optimization iterates until the
cost function is minimized, producing the optimal muscle
signals that fulfill the task.

Among the variety of motions that have been syn-
thesized through this approach are, locomotion patterns
[Mil88] [GT95] [GTHI8] [KSK97] [MWTK13] [TTL12],
and human upper body movements such as breath-
ing [ZCCDO06] [DZS08], arm flexion [LST09], and hand
movements [SKPO8] [AHS03].

We have distinguished two types of trajectory optimiza-
tion methods: those that rely on the assumption of a specific
function (periodic or polynomial functions) as a control tra-
jectory, and those that don’t. The following sections explain
each type and provide further insight into how these con-
trollers are used in animation.
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Figure 9: Trajectory-Optimization methods. The optimization process directly computes the muscle control signals according
to the minimization of a cost function and targets. These signals can be computed at each time step (static optimization) or in a
defined simulation period (dynamic optimization or optimal control). Some approaches include additional components, such as
neural networks to generate the desired joint stimuli [HMOAO3] [LT06].

4.2.1. Trajectory optimization based on function
primitives

One of the simplest motion control strategies consists in syn-
thesizing motions through the generation and tuning of peri-
odic signals. These controllers are mainly used for the gen-
eration of oscillatory motions, such as those seen in the loco-
motion of fishes, worms, snakes and in human chest motions.
These signals generally drive spring-like muscles, which are
gathered into muscle groups to reduce the number of con-
trolled variables.

Early implementations manually tuned periodic functions
to generate the desired motions [TT94] [Mil88] [ZCCDO06].
[TT94] controlled artificial fishes by converting a desired
swim speed into a spring contraction amplitude and fre-
quency. This mechanism was based on the observation that
the speed of most fishes can be proportional to the amplitude
and frequency of the tail’s lateral oscillation.

The authors of [Mil88] used controllers that produced
sine waves to generate waves of compression, which repli-
cated the elastic deformation present in the locomotion of
snakes and worms. Sine waves have also been used jointly
with step functions to generate human motions. [ZCCDO06]
used these functions as varying parameters to synthesize hu-
man breathing. The first parameter was a contraction ratio,
which was determined according to modeled and measured
human muscle contraction ratios during breathing. The sec-
ond parameter was a binary timing, which was defined by
the desired breathing frequency. Finally, polynomial func-
tion primitives, such as spline curves, have also served as
a means for human motion synthesis. [AHS03] synthesized
hand motions in real-time by specifying muscle contraction
values at keyframes and interpolating them via spline func-
tions.
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Recent implementations have automated the generation of
periodic functions by using optimization procedures. An ex-
ample is the torso controller of [DZS08] for synthesizing hu-
man breathing and laughing. In this approach, an optimiza-
tion attempted to minimize the tracking error between a de-
sired lung pressure, computed from an audio soundtrack, and
the current pressure of the model. This process generated the
parameters of a set of sine waves that were used directly as
muscle activation signals.

More complex motions have also been synthesized with
the use of function primitives. An example is the approach
of [MWTKI13], where control trajectories were encoded
as splines, and trajectory optimization and spacetime con-
straints [WK88] were used for humanoid motion synthesis.
The optimization generated joint coordinates, muscle acti-
vation signals and lengths, foot contact points, and ground
reaction forces. This process was driven by a muscle ef-
fort term (metabolic energy expenditure [AP99]), and ad-
ditional objectives that enforced the equations of motion
and encoded other desired muscle behaviors. Although con-
tact points and ground reaction forces, which usually in-
troduce discontinuities into the optimization, were included
in the optimization, this approach was still able to achieve
impressive computation times. The reason behind this was
the use of the Contact Invariant Optimization (CIO) frame-
work [MTP12]. The framework smoothed out the discon-
tinuities in the objective function by allowing foot contact
points to gradually invoke ground reaction forces at a dis-
tance until a real contact was made.

Other approaches have begun incorporating motor con-
trol theories, such as muscle synergies (section 3.4), coupled
with static optimization. This is the case of the synergy-
based controller for throwing motions developed by [CR-
PLDI15]. Initial control signals (or synergies) were first ex-
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tracted from human throwing motions and used to actu-
ate the character. Next, a synergy-based forward dynamics
pipeline ensured that the desired throwing motion was re-
produced. The pipeline achieved this through two adapta-
tion stages: the first stage consisted in determining the char-
acter’s unknown muscle parameters; while the second stage
consisted in modifying the time-varying part (or shape) of
the synergy via a static optimization, such that the desired
throw was reproduced. An interesting feature of this con-
troller, was that muscle redundancy was reduced, and that
the initial synergies were able to reproduce general trends in
the throwing motion.

4.2.2. Trajectory optimization without function
primitives

The majority of trajectory optimization methods discussed in
this review do not make assumptions on the trajectory of the
control signal, and rely more heavily on biomechanical and
motor control concepts, such as the minimization of effort or
fatigue. We will first discuss the controllers whose sole pur-
pose is synthesizing rigid body motions; next we will intro-
duce the controllers that also model the effect of this motion
on soft tissues; and we will finish by presenting controllers
designed for purely soft bodies (no skeleton).

Important contributions have been made, which focus on
synthesizing the rigid body motions of musculoskeletal sys-
tems. [KSK97] developed an open-loop feedforward con-
troller for the animation of the lower limbs of muscle-based
characters. This controller interpolated input postures and
computed muscle forces via the inverse dynamics and pre-
diction algorithm introduced by [CB81]. The same authors
extended this approach in [KSKOO], by converting input
physiologically infeasible postures into feasible ones, and
simulating fatigued and injured characters. The novelty with
respect to their original implementation is that once mus-
cle forces were computed (based on a muscle fatigue min-
imization), an evaluation took place to determine if these
forces respected force limits, and if the muscles had the
capacity to produce the desired motion. Infeasible motions
were then converted into feasible ones through an optimiza-
tion based on: the minimization of the total supplemen-
tary torques needed when motion is infeasible, stability con-
trol [Vuk90], and additional muscle-related objectives which
are explained in appendix 2. Another interesting aspect is
that these motions could also be easily re-targeted by chang-
ing muscle parameters, such as maximum force limits, or
even removing muscles.

Feedback controllers have also been developed with an
adaptability to different physiological and environmental
conditions. For instance, the authors of [LPKL14] synthe-
sized biped gaits, which were adaptable to conditions such
as, muscle weakness, tightness, joint dislocation, external
forces, and motion objectives, such as maximization of ef-
ficiency and pain reduction. The approach consisted of a

muscle optimization and a trajectory optimization. From
a given reference motion, the muscle optimization (which
minimized muscle effort) found the optimal coordination
of muscle activation levels to control the character in a
per frame basis. The purpose of the trajectory optimiza-
tion was to modulate the reference motion and its step lo-
cations [KH10] such that: an accurate and robust motion re-
production was achieved, or to adapt the motion to new con-
ditions and requirements. The optimization was based on the
minimization of an efficiency term (required) and a muscle
force term to simulate a pain avoidance behavior (optional).
It is also worth mentioning that this is one of the first ap-
proaches in animation to compare the synthesized muscle
signals with human muscle data.

Other approaches couple trajectory optimization meth-
ods (as muscle-based controllers) and neuronal networks
(as joint controllers). An example is the locomotion con-
troller developed by [HMOAO3], which employed a neu-
ronal model and an optimization procedure. The neuronal
model was composed of a central pattern generator (sec-
tion 3.4) that computed the required joint stimuli based on
sensory information such as the position of the center of
gravity and joint displacements. This joint stimuli was later
distributed as individual muscle forces through an online
static optimization procedure that sought to minimize mus-
cle fatigue [CB81]. Before running this model online, the
optimal neural parameters were found through a genetic al-
gorithm and evaluative criteria. This criteria contained a mo-
tion smoothness term and an energy efficiency term that con-
sidered muscle power and rate of change of muscular ten-
sions.

Similarly, [LT06] synthesized neck motions by using neu-
ral networks to generate musculoskeletal stimuli and adjust-
ing this stimuli through a static optimization. The networks
generated neck poses and stiffness signals according to de-
sired head orientations. While the optimization generated
desired neck muscle strain (deformation) and strain rates
that ensured that the head converged to the desired orien-
tations via minimal joint displacements. The outputs of the
networks were combined into one feedforward signal, which
was converted into muscle activations by a PD controller
that was constantly monitoring the error in muscle strain
and strain rate. An innovation in their design was that the
networks were able to control the pose and stiffness of the
neck independently, thanks to their offline training process.
For both networks, this offline training process consisted in
minimizing a muscle effort term. However for the network
controlling stiffness, the muscle forces were constrained to
lie in the null space of the moment arm matrix, and therefore
they did not contribute to the joint torque or affect the pose.
Once the networks were trained offline, they performed their
online tasks, faster than attempting to solve the correspond-
ing optimal control problem online.

In addition to rigid body motion, some control meth-
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ods also focus on synthesizing the movement of soft bod-
ies (such as tendons and skin) and the interactions of these
with rigid bodies. For instance, [TSF05] synthesized hand
motions and muscle bulging through a controller which gen-
erated muscle activations for a set of desired joint orienta-
tions. The authors employed an optimization which mini-
mized joint tracking error and muscle effort. Furthermore, a
variety of hand motions were generated by using clinically
motivated heuristics for Repetitive Strain Injuries diagnosis.

[SKPO8] also synthesized hand motions and the move-
ment of tendons and muscles under the skin, thanks to a
novel biomechanical simulator that used target rigid body
velocities. The simulator involved an optimization procedure
to compute muscle activations and a skin deformation al-
gorithm. The optimization was mainly led by a muscle ef-
fort term and task related objectives which ensured a good
tracking of the desired rigid body velocities. These activa-
tions first produced muscle and tendon motion, and after-
wards, rigid body or bone motion. It is worth noting that
the transformation from activations to rigid body motion
was enhanced by complex muscle routings or strands. These
strands were modeled as cubic B-splines and were not con-
strained to pass through a fixed set of via points. Instead they
were allowed to slide along predefined surfaces. Allowing
this motion is important, because more realistic changes in
muscle length and velocity are achieved, and these changes
are known to affect the force generation properties of mus-
cles.

The work of [SSB*15] is closely related to that
of [SKPOS]. It consisted in a hierarchical control framework
for hands and tendinous systems, which performed tasks
such as writing, and could simulate clinical deformities of
the hand by altering tendon parameters. At the highest level,
kinematic controls were computed to track a fingertip refer-
ence trajectory, and at the lowest level, an activation con-
troller transformed these controls into muscle activations,
using the formulation of [SKPOS]. A difference with the
latter approach is the fact that the optimization parameters
could be determined through a general-purpose learning-
based approach requiring no previous system knowledge.
Furthermore, the framework has an increased robustness
when handling the constraints between tendons and bones,
thanks to the application of the constrained strand frame-
work of [SJILP11]. Finally, another novelty is the ability to
deal with highly stiff strands using larger time steps, thanks
to the assumption that strain and stress propagate instanta-
neously through the strand.

Hand motion has not been the only area of develop-
ment. The authors of [Lee08] [LST09], presented one of
the most detailed biomechanical models of the human upper
body and a controller to track a set of poses while achiev-
ing a desired level of muscle co-activation. The activations
that satisfied these requirements were computed thanks to a
static optimization procedure that minimized muscle effort,
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and was constrained by joint torques computed from input
poses [Feal4]. The optimization was solved twice (once for
each muscle in an antagonistic pair), with the difference that
the antagonist activation was constrained by a torque of op-
posite sign. Finally, once the agonist and antagonist activa-
tions were defined, they were modified proportionally to the
target co-activation. Secondary skin motion was also syn-
thesized through the simulation technique of [Sif07]. This
technique consisted in defining two meshes, a coarse one
that simulated the elastic flesh deformation caused by mus-
cle fibers, and a detailed one for rendering and collision han-
dling.

Recently, even more complex and dynamic motions have
been synthesized via trajectory optimization methods. As
seen in the previous section, the authors of [Sil3], synthe-
sized human swimming through two types of controller on a
very detailed musculoskeletal system. The first for periodic
motions, and the second one for non-periodic motions. For
the non-periodic motions, such as controlling body orienta-
tion, a static optimization was implemented for the purpose
of tracking references poses, and imposing motion natural-
ness through Gaussian Process Dynamical Models (GDPM)
and human motion data.

The locomotion of purely soft bodied characters has also
been an area of study. One of the first examples is the con-
troller created by [GT95] for the locomotion of highly flex-
ible animals. The control was done at multiple levels of ab-
straction, which granted the characters with the ability to
synthesize basic locomotion skills, remember the learned
skills, and combine them efficiently to perform more com-
plex tasks. The basic locomotion skills were learned through
an optimization procedure containing task achievement ob-
jectives, such as the shortest distance to a goal, and a mus-
cle effort objective. Next, the learned signals were converted
into more compact representations and used within a sec-
ond optimization procedure with the objective of finding a
proper combination of skills to achieve more complex be-
haviors. Once the compact representations were created, the
method could be made to work in real-time.

The computational efficiency of this controller was later
improved in [GTH98]. The authors devised a simulation
method that, unlike most optimal control methods, allowed
the computation of gradients and fast gradient based opti-
mization controller synthesis. The reason behind this was
that neural networks were used instead of a physics sim-
ulator at each time step. This created a cascade network
structure that allowed the use of a "backpropagation through
time", which adjusted the control signals using the chain rule
of differentiation within each network.

More recently, the authors of [TTL12] also developed a
trajectory-optimization based controller for soft bodied char-
acters. This approach sought to control the shape of soft
bodied characters (and therefore the shape of their mus-
cles) to achieve specific locomotion tasks. The procedure
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used an optimization at each time step to determine muscle
lengths, and a contact planner, which predicted how the de-
sired changes in muscle contraction affected contact points,
allowing the characters to slide and break contacts with the
ground.

4.2.3. Summary

Trajectory optimization methods are until now the most
common solution for muscle-based control. One of their ad-
vantages is that they are more easily adaptable to different
character morphologies. The reason for this is their central-
ized nature. Local controllers, which can be subject depen-
dent (due to the fact that they are usually assigned to spe-
cific muscles or body sections), are not used. Examples of
this flexibility are the works of [GT95], who implemented a
controller for a variety of virtual fishes, and [TTL12], who
used a variety of alphabet letters with diverse muscle ar-
rangements.

One of the main drawbacks of trajectory optimization
methods is their implementation. A considerable amount of
knowledge is needed in optimization techniques and con-
strained dynamics. Another drawback is the fact that mod-
eling biomechanical mechanisms (such as muscle reflexes),
which would certainly aid in synthesizing motions, is not
straightforward. The effect of such mechanisms could be en-
coded within a cost function, but implementing a model of
the mechanisms (as is done by controller optimization ap-
proaches) is a more natural and efficient alternative.

The computational requirements and efficiency of these
methods depend on many factors, such as the number of
objectives and complexity of the character [GP12]. Com-
putational efficiency still needs to be improved since the
controllers have not reached real-time performance. How-
ever, some controllers have demonstrated impressive results,
given the redundancy involved in the control problem. For
example, [GTH98] and [MWTK13] achieved convergence
times comprising a few seconds or minutes, due to the use
of fast gradient based optimization methods. We believe that
computation times could be further improved by considering
muscle groups and muscle synergies, which would reduce
the number of control parameters.

Finally, as with controller optimization frameworks, sev-
eral of the frameworks in this section were conceived for
tasks, such as walking and jumping, which imply the addi-
tional and crucial challenge of balancing. Different strategies
for balance were used. For instance, the authors of [TTL12],
were inspired by the work of [MZS09], and regulated linear,
angular momentum, and the area of support of their soft-
bodied characters to maintain balance. On the other hand,
approaches such as [KSKO0O] used a stability function based
on the ZMP (zero moment point) [Vuk90]. Another inter-
esting balance strategy used by [LPKL14] was based on
the work of [KH10] which consists in planning a balance-

recovering reference motion instantaneously based on the
estimated pendulum state.

5. Conclusions and Future Directions

Muscle-based animation is gradually enhancing character
realism by introducing important biological factors through
the use of muscle models and muscle-based controllers.
However, the main challenge remains how to model these
elements, while ensuring a set of desirable characteristics
(such as motion realism and an efficient computation time).

As seen in section 2 the beneficial effects of muscles, en-
compass: better stability properties, more realistic passive
dynamics, better estimates of energy cost or fatigue, effi-
cient control via motion mechanics and an ease in simula-
tion of musculoskeletal defects, pathologies and fatigue. All
of these benefits have been evidenced by comparative studies
and theories from the fields of biomechanics and motor con-
trol. Moreover, the presence of viscoelastic and non-linear
actuators (figure 4) supply the body with a limited amount
of power. This viscoelasticity also tends to smooth the ac-
tion of the muscle on the joints, and the non-linearity tends
to reduce drastically the efficiency of the muscles when they
are contracted in extreme positions. Another benefit of the
use of muscles is that their limited force generation abili-
ties tend to frame realistically the capabilities of the body in
terms of motion. Finally, muscle routing better represents the
action of the muscles on the joint than a servo, and generates
a non-linear relationship between forces and torques.

We have presented a classification and description of the
main techniques for muscle-based control in the anima-
tion field. This classification encompasses two general cate-
gories: controller optimization methods and trajectory opti-
mization methods. A synopsis of this classification and key
characteristics of each control approach are featured in Ta-
ble 1. Moreover, in Table 2, we present the muscle-based
terms used in each controller’s cost function, for detailed ex-
planations on non-muscle-based terms we invite the reader
to consult the list of references.

Each control technique contributes differently to the ani-
mation field, at the expense of certain trade-offs. The main
advantage of controller optimization methods is that they al-
low an easier implementation of well known biomechanical
mechanisms and motor control theories through simple con-
trol laws that generate the required joint and muscle behav-
ior at different stages during the motion. Their main draw-
back is computational efficiency (section 4.1). As stated in
section 4.2, two of the main advantages of trajectory opti-
mization methods are a higher flexibility to adapt to different
character morphologies, and lower computation times with
regard to controller optimization methods although most
methods have not reached real-time capabilities yet. Among
the main drawbacks are a higher difficulty for implementa-
tion and for encoding simple biomechanical mechanisms.
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For both control strategies, the control of the animator on
the style of a motion is still not straightforward. Moreover,
the presence of muscles introduces realism to the animation,
which could prevent certain desired styles that go against
the constraints imposed by these. Nevertheless, there exists
a degree of artist control that can be done at different levels,
with different impacts on the final motion. On a first level, a
high-level motion goal (such as walking at a certain speed)
can be specified; at a second level, other desired characteris-
tics pertaining to the “style” of the motion (such as walking
in a tired or fatigued fashion), can be described in the objec-
tive functions, although this is not intuitive or easy. There-
fore, some authors have opted for an indirect, but easier way
of controlling style by controlling certain properties of the
musculoskeletal system. For instance, [KSK00] [WHDK12]
[LPKL14], synthesized fatigued, tired, and even injured mo-
tions by changing muscle parameters.

Muscle-based control is still a young field with a high po-
tential for realistic motion production. Nevertheless, more
exhaustive studies comparing muscle and servo-based char-
acters (such as [GvdBHZ98]) are necessary to evaluate its
benefits and setbacks, and to more clearly determine what is
the feasible and beneficial level of model abstraction for spe-
cific applications. On a higher level, more thorough studies
comparing the effects of control complexity versus model-
ing accuracy on the quality of the final motion would also be
interesting.

Regarding the control itself, trajectory optimization meth-
ods are, for now, the most common solution employed
within the animation community. However, the implemen-
tation of controller optimization methods jointly with mo-
tor control theories (such as muscle synergies and reflexes,
which are popular in robotics [ADN*13] [HNO5], biome-
chanics, [GH10] and neuroscience [dP10] [dSB03]) seems
promising.

We believe that both methods could be enhanced by in-
cluding or considering muscle groups, exploiting their func-
tional relationships, and also by an exploration of linear and
non-linear control techniques [SL91] [CRPD14]. The field
could also benefit from the determination of new cost func-
tions inspired in the fields of biomechanics and motor con-
trol, such as the energy cost of head stabilization, and limb
stiffening due to ground contact uncertainty. An evaluation
or benchmark of the robustness between muscle-based con-
trol methods could also be interesting, since there is still no
significant study comparing these methods.

Another important area of improvement is usability.
Physics-based characters (in general) are scarcely employed
in films, games, and simulations. This implies solving many
challenges among which are: reducing computation times,
balance control, and enriching the motion repertoire, but
most importantly, incrementing the ease of use of the con-
trollers through achieving a better controllability and reac-
tivity of the character animation.
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Muscle-based controllers are meant to impact and en-
hance the physics-based animation field. Any physics-based
animation system that is currently using joint torques (or vir-
tual forces etc.) has the potential to be extended to a muscle
actuated system, leading to many possibilities. Multi-scale
models and simulations will also benefit from the recent ad-
vances in musculoskeletal animation where entities from dif-
ferent scales can cohabit and interact within a common en-
vironment.
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Appendix 1: Synopsis of muscle-based controllers for
animation

A synopsis of the controller classification and key charac-
teristics of each control approach are featured in Table 1.
The controllers were classified according to control type, fol-
lowing the classification made in section 4. An additional
"hybrid method" category was added, since the approach
by [Sil3] used both a controller optimization and a trajec-
tory optimization.

The control methods are also classified by their control
space, or the space in which their output signal is gener-
ated. This category is an indicator of the degree of detail with
which the muscles are modeled. Motor space control meth-
ods generate excitations or activations to control characters
with detailed muscle representations. Force space control
methods generate forces to control characters with less de-
tailed muscle representations (such as spring muscle mod-
els). Hybrid space control methods generate both motor sig-
nals and servo signals (torques) for characters that are actu-
ated by muscles and servos.

The table also features the main fasks for which the con-
trollers were employed. These can be: locomotion (L), kick-
ing (K), jumping (J), balancing (B), gestures (G), posture
adjustment (P), torso motion (T), neck motion (N), arm mo-
tion (A), hand motion (H), target tracking (Tr),and character
interaction (CI).

The models commanded by these controllers are de-
scribed by their degrees of freedom (DoF), number of mus-
cles (Ms) and muscle groups (MGs). The muscle actuators
are classified by the force generation model employed as ei-
ther spring elements, Hill-type models or other. In parenthe-
sis we also state the references on which the muscle models
were based or extracted.

The most important characteristic is the control strategy,
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which indicates the muscle control method as seen in sec-
tion 4.1 and section 4.2. Next, we find the Main User Input.
The objective of this characteristic is to denote what are the
main user input commands to the control frameworks. For
instance, the required user input can be compact goal (such
as a desired walking speed or direction), it can also be more
detailed motion data (recorded or specified by the anima-
tor), or sometimes less intuitive variables such as controller
parameters directly.

Finally, the cost function column contains the objective
functions used, if the strategy involved an optimization pro-
cedure. In the case that no cost function was used the field
reads NA (not applicable).

Appendix 2: Cost functions used by muscle-based
controllers for animation

Table 2 features a list of neuromuscular objective terms,
which correspond to the categorization introduced in sec-
tion 3.4, inspired by [ZW90]. We recall that this categoriza-
tion is based on a generalized performance criterion which
includes three components: task specific (tracking a giv-
ing trajectory, minimizing jerk), neuromuscular (minimiz-
ing muscle stress, neural effort) and bone joint (minimiz-
ing contact forces, avoiding certain ranges of motion) ob-
jectives. Task specific kinematics and bone joint objectives,
are already popular among servo-based controllers. There-
fore, we focus on the neuromuscular objectives, the novelty
of muscle-based controllers.

Task specific kinematics and bone joint objectives

The task objectives mainly consist in reference tracking
(pose, velocity, acceleration, moment and distance track-
ing) and stability control (to ensure balance and avoid slid-
ing). Other objectives include those that attempt to mo-
tivate motion naturalness, by encouraged motion fluidity,
smoothness and preferences for motions closer to the train-
ing data [Sil3]. Finally, the bone joint objectives usually en-
force joint limits and avoiding self collision.

Neuromuscular objectives

These objectives were divided into those that describe mus-
cle fatigue and those that describe muscle effort (following
the distinction made by [AvdB10]). Thus, cost functions pre-
senting muscle volume weighting and lower exponents were
classified as effort-like, while cost functions without muscle
volume weighting and higher exponents were classified as
fatigue-like. An additional category was added for the func-
tions that did not fit these two categories. The final classifi-
cation and details on these functions is featured in Table 2.

Fatigue-like functions Muscle fatigue occurs when there
is a failure to maintain a required or expected force [Edw08],

and it is related to the amount of synergy between the mus-
cles. A high synergy implies that all muscles contribute dur-
ing the motion in a way that the maximum relative load of
any muscle remains as small as possible. In other words they
work well together by helping each other and ensuring that
no muscle works more than the rest. The authors of [KSK00]
incorporated this function into an optimization to synthesize
lower body motion. Another example is found [HMOAO3],
were the muscle fatigue term of [CB81] was used to synthe-
size locomotion.

Effort-like functions Muscle effort is a substitute for
muscle energy expenditure. It is related to the volume of
activated muscle tissue [AvdB10]. These functions have
been more popular than fatigue-like functions, among an-
imators. In [GT95] and [GTH98] a muscle effort objec-
tive was used, which penalized high amplitude and rapid
variation in the actuation signals. [TSFO5] [SKPO08] [LT06]
and [LSTO09] expressed effort through operations such as,
weighting, normalizing and adding up muscle activations or
forces. More recent approaches [WHDK12] [GvdPvdS13]
[MWTKI13] have preferred using the metabolic energy ex-
penditure cost functions as described by [AP99]: the sum
of heat released and mechanical work done by the muscles.
Others [LPKL14] have used instead a measurement of en-
ergy consumption per unit moving distance [APO1].

Alternative muscle-based terms Some control methods
have had as a basis muscle-based terms which do not fall into
the two previous categories (effort and fatigue). An example
is the approach of [MWTK13] who also ensured consistency
between muscle forces and physiology. Another example is
the controller of [HMOAO03], who used an energy efficiency
and motion smoothness term that took into account the rate
of change of muscular tensions.

Appendix 3: Physics simulators

The physics simulator is one of the most important tools
in muscle-based control frameworks. One of its main ob-
jectives is to perform forward dynamics calculations, such
that the character’s state can be retrieved and updated once
the controller is in action. Controller optimization frame-
works such as [GvdPvdS13] [WHDK12] and [NF02], used
simulators such as ODE (Open Dynamics Engine) [Smi06]
and DANCE (Dynamic animation and control environment)
[SENTHOS]. Trajectory optimization frameworks, such as
[ZCCDO06] also used ODE, while some [GTH98] [KSK97]
opted for SD/FAST [HRS91], others [MWTK13] for Mu-
JoCo [TET12] and others [CRPLD15] for MATLAB® Sim-
Mechanics. Finally, some approaches have opted for home-
made simulators, such as [Sil3], who developed their own
multiphysics simulation framework for human swimming.
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Table 1: Main muscle-based controllers for animation

1 11 A i
Control Type Contro Controller Task Character Model ctuation Control Strategy Main User Input Cost Function
Space Reference Type
Controller Force Human, Human
Optimization Space [NFO2] B.G.,P Human 47 DoFs Springs Antagonistic control Joint positions NA
Methods P Torso 94 Ms
Humanoids PD controllers Pose tracking
Motor [Gvd- BL Imaeina ’ 40 DoFs Hill-type Muscle reflexes Locomotion speed Velocity tracking
Space PvdS13] ’ snary 27 Ms ([Zaj89]) . Locomotion direction Stability
creatures Constant excitations
Muscle effort
Hill-type
([Zaj89])
. 30 DoFs (Lower- PD controllers Pose. Lrackmg
Hybrid . body) . Velocity tracking
B.L Humanoid 16 Ms Muscle reflexes Locomotion speed .
Space [WHDKI2] (legs) Constant excitations Stability
s Servos Muscle effort
(Upper-
body)
[Mil88] L Snakes, - Springs Function primitives Function primitive NA
Worms parameters
Trajectory Force
Optimization [TT94] CILL Fishes 91 Ms Springs Function primitives Pre-defined habits NA
Space
Methods
Ex. Pose tracking
Alphabet Letter I . . s Task positions Velocity tracking
(TTL12] BL Letters 104 DoFs Springs No function primitives Task velocities Momentum tracking
4 Ms Base contact tracking
Snakes, Snake Locomotion speed \ggtcalrtl)é:taoc klor:igl
[GT95] LTr Marine 126 DoFs Springs No function primitives K p . &
. Distance to goal tracking
animals 40 Ms
Muscle effort
Velocity tracking
Motor [GTH98] L Dolphin 12 Ms Springs No function primitives LO?OmOthH speed Dlstancebto goal
Space Distance to goal tracking
Muscle effort
. Stability
Hill-type .
[KSKO00] Human 86 Ms ([DLH*90] No function primitives Joint positions MI.ISC]e fat} gue
B,K,L (legs) Motion feasibility
[Del90]) T
Joint limit accordance
Human hand Other . L Contraction values at
[AHSO03] H & Forearm - ( [BHY3]) Function primitives keyframes NA
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Table 1 — Continued from previous page

Control Type Control | Controller Task Character Model Actuation Control Strategy Main User Input Cost Function
Space Reference Type
Offline:
Criterion based
locomotion speed and
Locomotion speed ratio of period of
B.L Human 19 Dofs Other No function primitives Ratio of eri(?d of foot-ground contact
[HMOAO03] : 60 Ms ([Hat77]) p P Energy efficiency
foot—ground contact .
and motion
smoothness
Online:
Muscle fatigue
. Joint positions .
[TSFO5] H Hgli?jiiﬁﬁd 41 Ms z{[l;:)ég?) No function primitives Joint velocities ﬁs:ctlr:zl;gi
16 DoFs J Muscle activations )
Human Hill-type . R Function primitive
[ZCCDO06] T Torso 5 MGs ( [Zaj8O1) Function primitives parameters NA
Linearized Muos]cj;lfl:neef:fort
[LTO06] ciN | Human neck 72 Ms Hill-Type No function primitives Initial and final head Online:
& head ( [NTHO1] positions .. ..
Minimal joint
[WCO00]) .
displacement
Hill-Type
Human hand No FV- . L . Velocity tracking
[SKPO8] AH & forearm 54 Ms relationship No function primitives Task velocities Muscle effort
( [SKPOS8])
Linearized . .
[LST09] | AT Human 14T DOES | i type No function primitives Joint positions Muscle effort
upper body 814 Ms Target coactivation
( [LTO6])
Pose tracking
Velocity tracking
25-39 . - . -
DoFs Hill-type Joint positions Acceleration tracking
[LPKL14] B,L Human P No function primitives Joint velocities Stability
62-120 ([Zaj89]) ..
Ms Task positions Muscle effort
Energy efficiency
Pain avoidance
Hill-Type
PIE(I;I:;] AH HL;nﬁzna;m 3 6DI\(/)II:S ( [Hil38] Function primitives Joint positions Pose tracking
) [RAPC10])

Continued on next page
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Table 1 — Continued from previous page

Control Type Control | Controller Task Character Model Actuation Control Strategy Main User Input Cost Function
Space Reference Type
Piece-wise
linear Velocity trackin,
[SSB*15] H Human hand - muscle No function primitives Task positions Y &
Muscle effort
model
([SSB*15])
Hill-type
([Zaj89];
. [NTHO1];
Hybrid [DZS08] T Human 3 MGs [BLMBO04]) Function primitives Audio track Pressure tracking
Space Torso
Servos
(Spine)
Pose tracking
Velocity tracking
Hill-type Virtual force reduction
([MD12] Dynamical consistency
36 DoFs [GH10]) Locomotion speed Muscle effort
IMWTK13] | BJKL Humanoid 28 Ms (Lowerbody) Function primitives TTurr‘lpmg height Mus.cle f(?rce
(legs) Kicking foot speed Physiological
Servos consistency
(Upperbody) Self-collision
avoidance
Joint limit accordance
L ] : L ] :
Hybrid Locomotion tasks: OJC;’I?:)”(?S';&Z?IIZS Ti;g(-)\r/mmilr)ln tr?jfcle
Method Controller optimization: . P arymg .
. . . High level CPG length tracking
(Using: Linearized Neural networks )
Motor . 163 DoFs . parameters Non-locomotion tasks:
Controller [Sil3] L Human Hill-Type PD controllers . .
Space 823 Ms . Non-locomotion Pose tracking
and ( [LSTO09]) Non-locomotion tasks: .
Traiect Traiectory optimization: tasks: Motion naturalness
tr.’ajfzc :ry ) No] funct?onp lrirr11Ziti\1es ’ Trunk orientation Self collision
ophiization p Motion capture data avoidance
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Table 2: Neuromuscular objectives used in animation
Type Controller Cost Function Formula Terms
Jm,Jr,Ji = Average rate of metabolic energy expenditure,
wntur -+ widk - wid sum of torques squared, sum of squared soft joint limit torques
Effort-like [WHDKI12] Muscle-effort MIM T WRIR T WL L A,M,S,W = Muscle activation, muscle maintenance, muscle
Jy=A+M+S+W . . .
shortening heat rates, positive mechanical work rate
w = Scalar weights
[GvdPvdS13] Muscle effort Ju=A+M+S+W Same terminology

as above

2 2 12 — 1
[GT95] [GTH9S] Muscle effort l (wa Al oy, | > u = Control signal
[TSFO5] Muscle effort 3 llall” a = Muscle activation
a2 W = Weights matrix
[LT06] Muscle effort HW fe H £, — Muscle forces
a = Muscle activation
[éSSI];E(igj]] Muscle effort wallal® +walla—a®|? a® = Activation previous timestep
wa,wg = Regularization and damping scalar weights
1 Y w; = Variable weight
(LST09] Muscle effort 2 L(wiai) (regularizes muscle activation levels)
Iu +J, upper _ i — 1
[MWTK13] Muscle effort Ju=A+M+S+W Jupper = UPper—body .effon, fmf’”” - Act%ve motor .tc.>rques
i 2 T s W, = Diagonal weight matrix, ¢ =Articular positions
Jupper = Wm Z ( motor) + q Waq
[LPKL14] Muscle effort all” a = Muscle activation
Nfall Ju = Average rate of metabolic energy expenditure
Energy efficiency —% Y (Uu) D = Total moving distance before falling
1 N fall = Number simulation time slots before falling
. . [KSKO00] . 1 £ 2 i = ith-muscle , f; = Muscle force
Fatigue-like [HMOAO3] Muscle fatigue f’O L (fﬁm) dt ,ﬁm = Maximum muscle force, #o, £y = Initial and final time
Alternative Energy efficiency .
scle-bas i 1 S = Specific power
musgle .based [HMOAO3] and motion StwoD D = Rate of change of muscular tensions
objectives smoothness
Muscle force i i i
. . i i i F¢.,F\., Fjp = Serial-elastic, contractile, passive forces
(Fi _—FL _Fi _ i e F'cerT'PE > >
[MWTK13] pggzls(i):t)egrial ¥ (Fop = Fep = Fpg —mer lc) mcr = Pointmass between contractile element and tendon
4 léE = Length contractile element
Nfall . )
[LPKL14] Pain avoidance () (f)L = ith-muscle force

1
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