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Introduction

In the last few decades, positron emission tomography/computed tomography (PET/CT) has been increasingly employed in cancer management,enabling the simultaneous assessment of tumor metabolic and morphological characteristics [1] [START_REF] Krause | FDG PET and PET/CT, Recent results in cancer research[END_REF]. Of the different techniques, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET imaging is now widely used to improve target delineation accuracy [START_REF] Macmanus | Use of pet and pet/ct for radiation therapy planning: Iaea expert report 2006-2007[END_REF], diagnostic accuracy [START_REF] Bar-Shalom | Clinical performance of pet/ct in evaluation of cancer: additional value for diagnostic imaging and patient management[END_REF] [START_REF] Kumar Dhingra | Impact of fdg-pet and-pet/ct imaging in the clinical decisionmaking of ovarian carcinoma: an evidence-based approach[END_REF] as well as early outcome prediction in forms of cancer [START_REF] Leseur | Metabolic Monitoring by 18F-FDG PET during Radio-chemotherapy for Locally Advanced Cervical Cancer: Predicting Outcome[END_REF] [START_REF] George | A textural feature based tumor therapy response prediction model for longitudinal evaluation with PET imaging[END_REF][8] [START_REF] Machtay | Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial[END_REF] that require accurate delimitation and precise quantification of tumor metabolism. PET imaging techniques' weak points are low spatial resolution, partial volume effect, low contrast, and high noise features. Also, despite PET being highly sensitive for detecting malignant metabolism, FDG uptake is not specific to tumor activity. 18 F-FDG fixation can be observed both in healthy tissue and benign dis- eases like inflammation, which can thereby be mistaken for cancer [START_REF] Rosenbaum | False-positive fdg pet uptake-the role of pet/ct[END_REF].

Today, numerous methodologies for 18 F-FDG PET segmentation have been proposed in the scientific literature using region-growing thresholds, edge detection, clustering, stochastic models, and deformable models, among other approaches [START_REF] Foster | A review on segmentation of positron emission tomography images[END_REF] [START_REF] Vauclin | Segmentation des images TEP au 18$ F-FDG[END_REF][13] [START_REF] Zaidi | PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques[END_REF]. However, despite the accuracy achievable with these recent methodologies, most are based solely on the PET data, leading to the possibility of including non-tumor 18 F-FDG uptake in the resulting segmentations.

When particularly considering cancers located in the pelvic region, PET analyses may be especially hampered by physiological uptake in the bladder, which could be a confounder for tumor uptake [START_REF] Lin | Unexpected accumulation of f-18 fdg in the urinary bladder after bladder irrigation and retrograde filling with sterile saline: a possible pitfall in pet examination[END_REF]. Due to the bladder's natural flow mechanics of filling and emptying, 18 F-FDG uptake can vary, thereby generating a similar PET signal for the bladder to that of a tumor. Fig. 1 presents three cases of locally-advanced cervical tumors with continuum uptake within the bladder.

To avoid 18 F-FDG bladder hyperfixation, patients are invited to empty their bladder before commencing 18 FDG PET/CT scanning [START_REF] Boellaard | Fdg pet/ct: Eanm procedure guidelines for tumour imaging: version 2.0[END_REF]. In rare cases, urinary catheters can be used to ensure the bladder is empty for the PET acquisition. Nevertheless, urinary catheter positioning is known to be difficult and carries a non-negligible risk of increased irradiation damage [START_REF] Roberts | Radiation dose to pet technologists and strategies to lower occupational exposure[END_REF].

Bladder uptake may also be suppressed by using expert manual bladder CT delineation. However, manual delineations are known to be laborious, subjective and interobserver dependant [START_REF] Foster | A review on segmentation of positron emission tomography images[END_REF].

Current clinical practice involves manually positioning a 3D-box encompassing the lesion to avoid adjacent structures [START_REF] Hatt | A fuzzy locally adaptive bayesian segmentation approach for volume determination in pet[END_REF][19] [20][21]. Nevertheless, the 3D-box needs to be large enough to contain the entire tumor metabolism but also as small as possible to reduce high signals damaging neighboring tissues. Evidently, these procedures involve inter-and intra-user variability and can include voxel artifacts depending on the proximity and shape of the bladder.

To the best of our knowledge, no other automatic or semi-automatic method for detecting metabolism artifacts with the aim of improving and simplifying pelvic PET analysis have previously been proposed. In this paper we present a semi-automatic method for detecting 18 F-FDG bladder artifacts using a double-step clustering approach that simultaneously exploits multimodal PET-CT data and a priori spatial information. The k-means algorithm was used to ensure an unsupervised clustering and low computational cost. As bladder uptake is not systematically found in these procedures, our detection method could be considered a pre-processing step for PET imaging in order to enable further non-parasitized tumor quantification. From this point of view, the issue we wish to address herein is how to distinguish the bladder signal while preserving the information arising from the tumor uptake. This methodology was applied to real clinical data from a standardized clinical protocol where bladder uptake was observed in several cases.

The paper is structured as follows: Section 2 introduces the overall framework of the study; Section 2.2 exposes each step of the proposed methodology, followed by validation based on the clinical data; Section 3 presents the results; Section 4 presents our discussion and conclusions.

Material and Methods

The overall framework of our proposed methodology for semi-automatically detecting the bladder metabolic artifacts is presented in Fig. 2 3) was conducted on a dataset of 52 PET/CT images by: i) comparing the detected bladder voxel artifacts using expert manual bladder CT delineation; ii) comparing tumor metabolism preservation with respect to a segmentation on PET images using the commonly-used threshold of 42% of the maximum uptake within the tumor (T 42).

The clustering algorithms and segmentations were carried out using the C++ library Insight Segmentation and Registration Toolkit (ITK). 

PET/CT dataset

We initially included 52 patients (median age: 52.44 years [32.15 -84.62]) with locally-advanced cervical cancer treated at the Centre Eugene Marquis (CEM), Rennes, France. All were treated using external beam radiation therapy with concurrent cisplatin chemotherapy followed by brachytherapy.

Each patient underwent an 18 F-FDG PET/CT scan prior to treatment. Patients were invited to void before imaging. No intravenous contrast was used during the CT acquisitions.

Each voxel from the PET scan was converted into a standardized uptake value (SUV) for comparisons across patients. The SUV is a standardized decay-corrected value of 18 F-FDG activity per unit volume of body weight (MBq/kg) [START_REF] Strauss | The applications of pet in clinical oncology[END_REF]. The full-body PET/CT images were cropped to the pelvic region based on the coxal bone structures visualized on CT imaging. The box boundaries were delimited according to well-defined landmarks that could be easily reproducible. Fig. 3 depicts an example of a cropped pelvic region.

Detection of bladder metabolic artifacts

We defined bladder metabolic artifact (BMA) as areas where the 18 F-FDG bladder activity was highest and comparable to that originating from the tumor. We defined the calculation of BMA detection as a classification formula where each voxel of the PET image was assigned to one of the three clusters of Set S:

S = {{B}, {I}, {A, T }}, ( 1 
)
where {B} and {I} refer to the voxels producing very low and intermediate uptake values, respectively. Cluster {A, T } refers to very high uptake voxels, which may belong to either tumor {T } or non-tumor {A} classes, respectively.

The BMA detection sought to accurately identify the voxels belonging to {A}. It should be noted that {T } does not correspond to tumor segmentation but only to voxels with high uptake, which thus likely belong to a tumor and should be preserved for further non-parasitized quantitative analyses.

Due to the bladder shapes observed, we assumed that the BMA revealed in PET imaging was a topologically compact object. Two voxels roughly representing the bladder and tumor barycenter were selected, denoted s b and s t , respectively.

SUV-based k-means clustering

In our calculations, X = {x 1 , x 2 , ..., x n } the set of n voxels on the PET image.

In general terms, the k-means algorithm aims to partition the n voxels of X into k clusters by minimizing the within-cluster sum of squares difference:

arg min C k j=1 xi∈cj x i -μ j 2 , ( 2 
)
where C = {c 1 , c 2 , ..., c k } is the set of clusters and μ j denotes the mean of voxels in c j . With cluster set S, the objective function becomes:

(3) As the SUV-based k-means clustering took no spatial information into consideration, we selected the largest connected component (lcc) of Cluster {A, T } connected to seed s b to avoid distant regions and ensure that the resulting area was only related to the BMA. The resulting cluster was labeled {A, T } lcc .

arg min S xi ∈{B} x i -μ B 2 + xi ∈{I} x i -μ I 2 + xi ∈{A,T } x i -μ A,T 2 , (a) (b)
Fig. 5a presents an example of Cluster area {A, T } lcc .

Manual verification

The potential presence of tumor metabolism in Cluster {A, T } lcc was determined visually. If no tumor metabolism was present in {A, T } lcc , the cluster was denoted as just {A}. If tumor metabolism was visually detected in {A, T } lcc , a second step of clustering using CT information and a priori information was performed with the intention of splitting {A} from {T }.

Data fusion and k-means clustering

In the second clustering step, a k-means algorithm was applied for further classification of Set {A, T } lcc , based on a simultaneous exploitation of CT Hounsfield units, PET SUVs, and normalized distance maps. The distance map was built as an artifact membership probability (AMP) as follows: The hypothesis behind the AMP relies on the concept that the further the voxel is from the tumor seed, the lower the probability of it belonging to the artifacts. Similarly, we assumed that the closer the voxel was to the bladder seed, the higher the probability of it belonging to the bladder artifacts.

AM P (x i ) = 1 - d 2 (x i , s b ) d 2 (x i , s t ) + d 2 (x i , s b ) , ( 4 
An example of AMP computed for each voxel in {A, T } lcc is illustrated in Fig. 5b.

From each x i clustered in {A, T } lcc , three features were considered: the SUV from the PET, labeled U i ; the Hounsfield unity value (HUV) from the CT, labeled H i ; the AMP, labeled P i . The SUVs and HUVs were normalized between 0 and 1. We denoted V {A,T } lcc = {v i } the group of vector v i = (U i H i P i ) T .

Fig. 6a represents an example of V {A,T } lcc projected in the tri-parametric space [SU V HU V AM P ].

Each v i was assigned a label stating if it belonged to cluster {T } or {A}, following the objective function below: In accordance with the compactness hypothesis on the BMA shape, the largest connected component of the cluster connected with seed s b was selected to be {A}. labeled BMA. Fig. 7 presents an example of an area correction for obtaining the BMA.

arg min {A,T } lcc vi∈{T } v i -μ T 2 + vi∈{A} v i -μ A 2 , ( 5) 

Validation

Measures of performance of BMA detection

We measured the performance of the BMA detection carried out by the proposed algorithm in two phases. First, we considered solely an expert manual bladder CT delineation as ground-truth (true-positives) and computed the sensitivity, specificity and accuracy of the BMA detection. Secondly, we considered a tumor segmentation mask as the background (true-negatives) and computed the related sensitivity, specificity and accuracy in order to assess the algorithm's tumor preservation capability. The bladder was manually segmented by an expert on each CT image using the Phillips Pinnacle 3 Version 8.0m treatment planning software. The CT images were then linearly down-sampled to the PET resolution so that each PET voxel corresponded to only one voxel of the CT, and likewise for the bladder delineations. Tumor metabolic activities were segmented on PET images by region-growing using a threshold of 42% of the maximum uptake within the tumor (T 42). Residual bladder uptake in the T 42 segmentation mask was suppressed by the corresponding manual bladder CT delineation.

The voxels outside the bladder mask were considered true negatives (TN), whereas the voxels within the bladder mask were the true positives (TP). The number of voxels originally located in the bladder and not detected as artifacts were labeled false negatives (FN). Lastly, the number of voxels originally localted outside the bladder mask and detected as artifacts were labeled false positives (FP).

In parallel, the detection was evaluated a second time using the T42 segmentation mask. The number of voxels detected as artifacts yet originally located inside the T42 mask were this time considered false positives (FP T 42 ), whereas the number of voxels in the T42 mask that were not detected as artifacts were labeled true negatives (TN T 42 ). (6)

Reproducibility evaluation

Reproducibility was assessed by randomly selecting 30 different seed pairs (s b and s t ) within a 2×2×2-cm region around the initial manually-selected seeds. Thus, 30 different BMA detections were performed for each image.

Results

In this study, 47 out of 52 PET images presented tumor uptake in region {A, T } lcc and were considered in the second clustering step. Fig. 9 presents four examples of BMA detection using the proposed method.

The values attesting to the proposed detection method's performance (SEN, SPE, SPE T 42 ACC and ACC T 42 ) for all PET images of our dataset have been presented using a boxplot representation in Fig. 10. For all 52 BMA detections evaluated, the averaged results were 0.94 ± 0.09 SEN, 0.98 ± 0.01 SPE and 0.98 ± 0.01 ACC. For the T 42 segmentation, the averaged results were 0.97 ± 0.05 SPE T 42 and 0.94 ± 0.08 ACC T 42 .

In the 30 seed pairs randomly selected for each image, a total of 1,560 BMA detections (52 × 30) were obtained to enable assessment of the method's reproducibility.

For these BMA detections, the average SEN, SPE and ACC were 0.91 ± 0.13, 0.98 ± 0.02 and 0.98 ± 0.02, respectively. For the T 42 mask, the average SEN values were the same, and the SPE T 42 and ACC T 42 averages were 0.96 ± 0.07 and 0.92 ± 0.12, respectively.

The overall robustness of the results for the whole cohort is depicted in Fig. 11. This demonstrates that for most of the seeds locations, the same segmentation was obtained. However, if the seed was located outside the bladder, the regions could naturally be erroneously detected. In some cases, SEN=0 due to the random placement of seed s b outside the bladder.
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Discussion & Conclusion

In PET images, 18 F-FDG fixation can be observed in healthy tissue and benign disease, which are consequently mistaken for cancer [START_REF] Rosenbaum | False-positive fdg pet uptake-the role of pet/ct[END_REF]. PET analysis can be particularly hampered in cancers involving the pelvic region by the physiological uptake of the bladder, which can obliterate the tumor uptake of lesions located in this area [START_REF] Lin | Unexpected accumulation of f-18 fdg in the urinary bladder after bladder irrigation and retrograde filling with sterile saline: a possible pitfall in pet examination[END_REF].

In this paper we propose a semi-automatic method to detect 18 F-FDG bladder artifacts in PET imaging of pelvic cancer using a k-means clustering approach by combining PET and CT information.

Artifact detection was considered to be a means of preprocessing PET voxel classification, and particular attention was paid to the preservation of tumor metabolism to enable further non-parasitized PET analyses.

The problem of detection was tackled by a two-step clustering relying on two assumptions. 1) That only the voxels with high intensity would hamper the analyses of tumor metabolism in PET imaging. To select these voxels, we applied an SUV-based clustering algorithm with three classes (low, intermediate, and high intensities). 2) That the bladder artifacts would be the sole artifacts detected among the previously-selected voxels. Therefore, the high-intensity voxels could belong to either artifacts or tumors. A second clustering step using CT and a priori information was then performed to separate voxels belonging to the artifacts from those belonging to tumor activity. As the number of classes was fixed, we used the k-means [START_REF] Xu | Survey of clustering algorithms, Neural Networks[END_REF]. For instance, the affinity propagation algorithm [START_REF] Frey | Clustering by passing messages between data points[END_REF] or the density-based spatial clustering [START_REF] Kriegel | Density-based clustering[END_REF] could be used to automatically de-termine the number of clusters needed and, therefore, detect bladder artifacts in a one-step clustering process. Further investigation will be required to evaluate the use of such algorithms for the current challenge of reducing user dependency by automating the decision procedure.

Our proposed bladder artifact detection algorithm was tested on 52 PET/CT images of patients with locally- advanced cervical cancer. We believe that the cancer's localization was relevant to our detection problem, as the bladder often presents an uptake continuum with the cervical tumor. However, in order to be applied to different pelvic cancer localizations, the algorithm would need to be adapted accordingly. To achieve this, further investigations should be carried out to evaluate the proposed method in other cancer localizations. On our dataset of 52 PET images, only five were considered well-clustered following the first k-means clustering. This proves the interest of exploiting multimodal PET-CT data combined with a priori spatial information to distinguish bladder artifacts from tumor uptake.

We evaluated this proposed method firstly by comparing the detected bladder voxel artifacts with expert manual bladder CT delineation. Our results demonstrated the ability of the proposed method to classify voxels belonging to the bladder, with good average sensitivity, specificity, and accuracy (0.94±0.09, 0.98±0.01, and 0.98±0.01, respectively). We observed a lower sensitivity corresponding to a general underestimation of the bladder artifacts, which enabled the preservation of tumor activity. It should be noted that the 18 F-FDG uptake of the bladder did not systematically correspond to the bladder's anatomical shape. The bladder actually fills during PET image acquisition, as it takes several minutes, while CT data is acquired in a matter of seconds. Manual CT delineations used for evaluation are thus not strictly representative of the bladder's real metabolism.

The method was further evaluated using a threshold method often used in clinical practice (T 42) as a region to spare. Specificity and accuracy were recomputed according to the T 42 mask. It should be noted that T 42 mask was not considered here as a ground truth of tumor metabolism, but rather as a reference enabling evaluation of the method's tumor-preservation capability. With its average specificity (SPET42) of 0.97±0.05 and accuracy (ACCT42) of 0.94±0.08, it demonstrated good conservation of tumor metabolism.

In order to initialize the second step of clustering to separate bladder voxels from tumor voxels, an artifact membership probability (AMP), derived from the squared Euclidean distance of the a priori tumor and bladder locations, was computed. We assumed, however, that the seeds were positioned near the barycenter of the bladder and tumor metabolism, positions that can lead to result variability. The robustness of the proposed algorithm was assessed by randomly selecting 30 different initial seeds for each of the 52 PET images. The overall averages indicate that the method is globally precise and robust for the seed initialization, achieving 0.91±0.13 SEN, 0.98±0.02 SPE, 0.98±0.02 ACC, 0.96±0.07 SPE T 42 , and 0.92±0.12 ACC T 42 . To reduce the variability, an alternative method that could be employed in future studies would be to include the possibility for users to select more seed points, thus incorporating more a priori information.

In conclusion, this proposed semi-automated method for detecting bladder metabolic artifacts on PET images of the pelvic region offers good preservation of tumor metabolism. This method can be used as a preprocessing step for further non-parasitized analyses.
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 1 Figure 1: Three examples of PET acquisition of locally-advanced cervical cancer, demonstrating a continuum uptake between tumor and bladder hyperfixation

Figure 3 :

 3 Figure 3: Example of pelvic region cropped according to coxal bone structures on CT images

Figure 4 :

 4 Figure 4: SUV-based k-means clustering example. (a) Original PET exam. (b) k-means clustering result: (green) corresponds to Cluster {A, T }, (red) to Cluster {I}, and (blue) to Cluster {B}
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 25 Figure 5: (a) Cluster {A, T } lcc and (b) the corresponding AMP for each voxel in {A, T } lcc : (red) corresponds to AMP=1 and (black) to AMP=0.

Fig. 6b represents

  Fig. 6b represents an example of the k-means clustering in the tri-parametric space [SU V, HU V, AM P ].In accordance with the compactness hypothesis on the BMA shape, the largest connected component of the cluster connected with seed s b was selected to be {A}.

2. 2 Figure 6 :

 26 Figure 6: Data fusion and k-means clustering example. (a) voxels belonging to {A, T } lcc placed in the tri-parametric clustering space [SUV HUV T MP ] : SUV value (SUV), Hounsfield unity value (HUV), and the artifact membership probability (AMP). (b) k-means clustering result: cluster {A} in black and cluster {T } in green. (c) Cluster {A, T } lcc and (d) the resulting cluster {A}.
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 7 Figure 7: Area correction example. (a) Cluster {A}. (b) Bladder metabolic artifact (BMA) following area correction.

Fig. 8

 8 Fig.8illustrates the PET and CT delineations used to evaluate the detection of bladder metabolic artifacts performed by the proposed methodology.

Figure 8 :

 8 Figure 8: PET and CT delineations used for evaluating the BMA detection method. Bladder Mask: Expert manual bladder CT delineations linearly down-sampled to the PET resolution. Tumor Segmentation (T 42): Metabolic activities segmented on PET images by region-growing using a threshold of 42% of the maximum uptake within the tumor
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 9 Figure 9: Example of BMA detection results for four patients. (a)-(d) Original PET exams. (e)-(h) 2.2.1 SUV-based k-means clustering results. (i)-(l) Clusters {A, T } lcc . (m)-(o) cluster {A} following 2.2.3 data fusion and k-means clustering. (p)-(s) BMA regions following 2.2.4 area correction. (t)-(w) PET image with BMA highlighted

Overall framework of the proposed methodology for semi-automatically detecting the bladder metabolic artifacts. First, k-means cluster- ing was performed using only PET intensity to roughly select the voxels with the highest values, likely belonging to the tumor or bladder (2.2.1). Following manual verification (2.2.2), an optional second step of clustering using PET/CT data and a priori spatial information was performed was performed (2.2.3). Finally, morphological correction was applied to ensure the topological compactness of the detected region (2.2.4) two major clustering steps. First, k-means clustering was
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  Figure10: Values of the proposed algorithm's performance for the 52 PET images. SEN, SPE, and ACC corresponding to the evaluation of the BMA detection method, only considering bladder mask. SPE T 42 and ACC T 42 correspond to the evaluation of the BMA detection method considering both bladder mask and T 42 mask.
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