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Abstract

Positron emission tomography using 18F-fluorodeoxyglucose (18F-FDG-PET) is a widely-used imaging modality

in oncology. It enables significant functional information to to be included in analyses of anatomical data provided by

other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, 18F-FDG

uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken

as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder’s physiological

uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting 18F-FDG

bladder artifacts based on a multi-feature double-step classification approach. Using two manually-defined seeds

(tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously

takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and

the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally-advanced

cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake

detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold

of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial

seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy.

These results suggest this method is able to detect most 18F-FDG bladder metabolism artifacts while preserving tumor

uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses.
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1. Introduction

In the last few decades, positron emission tomogra-

phy/computed tomography (PET/CT) has been increas-

ingly employed in cancer management,enabling the si-

multaneous assessment of tumor metabolic and morpho-

logical characteristics [1][2]. Of the different techniques,
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18F-fluorodeoxyglucose (18F-FDG) PET imaging is now

widely used to improve target delineation accuracy [3],

diagnostic accuracy [4][5] as well as early outcome pre-

diction in forms of cancer [6][7][8][9] that require ac-

curate delimitation and precise quantification of tumor

metabolism. PET imaging techniques’ weak points are

low spatial resolution, partial volume effect, low contrast,

and high noise features. Also, despite PET being highly

sensitive for detecting malignant metabolism, FDG up-

take is not specific to tumor activity. 18F-FDG fixation

can be observed both in healthy tissue and benign dis-
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Figure 1: Three examples of PET acquisition of locally-advanced cervi-

cal cancer, demonstrating a continuum uptake between tumor and blad-

der hyperfixation

eases like inflammation, which can thereby be mistaken

for cancer [10].

Today, numerous methodologies for 18F-FDG PET

segmentation have been proposed in the scientific liter-

ature using region-growing thresholds, edge detection,

clustering, stochastic models, and deformable models,

among other approaches [11][12][13][14]. However, de-

spite the accuracy achievable with these recent method-

ologies, most are based solely on the PET data, leading to

the possibility of including non-tumor 18F-FDG uptake in

the resulting segmentations.

When particularly considering cancers located in the

pelvic region, PET analyses may be especially hampered

by physiological uptake in the bladder, which could be a

confounder for tumor uptake [15]. Due to the bladder’s

natural flow mechanics of filling and emptying, 18F-FDG

uptake can vary, thereby generating a similar PET signal

for the bladder to that of a tumor. Fig. 1 presents three

cases of locally-advanced cervical tumors with continuum

uptake within the bladder.

To avoid 18F-FDG bladder hyperfixation, patients are

invited to empty their bladder before commencing 18FDG

PET/CT scanning [16]. In rare cases, urinary catheters

can be used to ensure the bladder is empty for the PET

acquisition. Nevertheless, urinary catheter positioning is

known to be difficult and carries a non-negligible risk of

increased irradiation damage [17].

Bladder uptake may also be suppressed by using expert

manual bladder CT delineation. However, manual delin-

eations are known to be laborious, subjective and inter-

observer dependant [11].

Current clinical practice involves manually positioning

a 3D-box encompassing the lesion to avoid adjacent struc-

tures [18][19][20][21]. Nevertheless, the 3D-box needs

to be large enough to contain the entire tumor metabolism

but also as small as possible to reduce high signals dam-

aging neighboring tissues. Evidently, these procedures

involve inter- and intra-user variability and can include

voxel artifacts depending on the proximity and shape of

the bladder.

To the best of our knowledge, no other automatic or

semi-automatic method for detecting metabolism artifacts

with the aim of improving and simplifying pelvic PET

analysis have previously been proposed. In this paper we

present a semi-automatic method for detecting 18F-FDG

bladder artifacts using a double-step clustering approach

that simultaneously exploits multimodal PET-CT data and

a priori spatial information. The k-means algorithm was

used to ensure an unsupervised clustering and low com-

putational cost. As bladder uptake is not systematically

found in these procedures, our detection method could

be considered a pre-processing step for PET imaging in

order to enable further non-parasitized tumor quantifica-

tion. From this point of view, the issue we wish to ad-

dress herein is how to distinguish the bladder signal while

preserving the information arising from the tumor uptake.

This methodology was applied to real clinical data from a

standardized clinical protocol where bladder uptake was

observed in several cases.

The paper is structured as follows: Section 2 introduces

the overall framework of the study; Section 2.2 exposes

each step of the proposed methodology, followed by val-

idation based on the clinical data; Section 3 presents the

results; Section 4 presents our discussion and conclusions.

2. Material and Methods

The overall framework of our proposed methodology

for semi-automatically detecting the bladder metabolic ar-

tifacts is presented in Fig. 2. This method is divided into
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Figure 2: Overall framework of the proposed methodology for semi-automatically detecting the bladder metabolic artifacts. First, k-means cluster-

ing was performed using only PET intensity to roughly select the voxels with the highest values, likely belonging to the tumor or bladder (2.2.1).

Following manual verification (2.2.2), an optional second step of clustering using PET/CT data and a priori spatial information was performed was

performed (2.2.3). Finally, morphological correction was applied to ensure the topological compactness of the detected region (2.2.4)

two major clustering steps. First, k-means clustering was

performed using only PET intensity to roughly select the

voxels with the highest values, likely to be those belong-

ing to the tumor or bladder (2.2.1). The largest connected

component in the resulting cluster was then considered

for the next step. Manual inspection was conducted to

verify if tumor metabolism could be visually detected in

the resulting area (2.2.2). If so, a second step of cluster-

ing was performed using PET/CT data and a priori spatial

information (2.2.3). Morphological correction was then

applied to ensure the topological compactness of the de-

tected region (2.2.4). Validation (2.3) was conducted on

a dataset of 52 PET/CT images by: i) comparing the de-

tected bladder voxel artifacts using expert manual bladder

CT delineation; ii) comparing tumor metabolism preser-

vation with respect to a segmentation on PET images us-

ing the commonly-used threshold of 42% of the maxi-

mum uptake within the tumor (T42).

The clustering algorithms and segmentations were car-

ried out using the C++ library Insight Segmentation and

Registration Toolkit (ITK).
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Figure 3: Example of pelvic region cropped according to coxal bone

structures on CT images

2.1. PET/CT dataset

We initially included 52 patients (median age: 52.44

years [32.15 - 84.62]) with locally-advanced cervical can-

cer treated at the Centre Eugene Marquis (CEM), Rennes,

France. All were treated using external beam radiation

therapy with concurrent cisplatin chemotherapy followed

by brachytherapy.

Each patient underwent an 18F-FDG PET/CT scan

prior to treatment. Patients were invited to void before

imaging. No intravenous contrast was used during the CT

acquisitions.

Each voxel from the PET scan was converted into a

standardized uptake value (SUV) for comparisons across

patients. The SUV is a standardized decay-corrected

value of 18F-FDG activity per unit volume of body weight

(MBq/kg) [22]. The full-body PET/CT images were

cropped to the pelvic region based on the coxal bone

structures visualized on CT imaging. The box boundaries

were delimited according to well-defined landmarks that

could be easily reproducible. Fig. 3 depicts an example of

a cropped pelvic region.

2.2. Detection of bladder metabolic artifacts

We defined bladder metabolic artifact (BMA) as areas

where the 18F-FDG bladder activity was highest and com-

parable to that originating from the tumor. We defined the

calculation of BMA detection as a classification formula

where each voxel of the PET image was assigned to one

of the three clusters of Set S:

S = {{B}, {I}, {A, T}}, (1)

where {B} and {I} refer to the voxels producing very

low and intermediate uptake values, respectively. Clus-

ter {A, T} refers to very high uptake voxels, which may

belong to either tumor {T} or non-tumor {A} classes, re-

spectively.

The BMA detection sought to accurately identify the

voxels belonging to {A}. It should be noted that {T}
does not correspond to tumor segmentation but only to

voxels with high uptake, which thus likely belong to a

tumor and should be preserved for further non-parasitized

quantitative analyses.

Due to the bladder shapes observed, we assumed that

the BMA revealed in PET imaging was a topologically

compact object. Two voxels roughly representing the

bladder and tumor barycenter were selected, denoted sb
and st, respectively.

2.2.1. SUV-based k-means clustering
In our calculations, X = {x1, x2, ..., xn} the set of n

voxels on the PET image.

In general terms, the k-means algorithm aims to parti-

tion the n voxels of X into k clusters by minimizing the

within-cluster sum of squares difference:

argmin
C

k∑

j=1

∑

xi∈cj

‖xi − μj‖2 , (2)

where C = {c1, c2, ..., ck} is the set of clusters and μj

denotes the mean of voxels in cj . With cluster set S, the

objective function becomes:

(3)

argmin
S

∑

xi ∈{B}
‖xi − μB‖2 +

∑

xi ∈{I}
‖xi − μI‖2

+
∑

xi ∈{A,T}
‖xi − μA,T ‖2 ,
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Figure 4: SUV-based k-means clustering example. (a) Original PET

exam. (b) k-means clustering result: (green) corresponds to Cluster

{A, T}, (red) to Cluster {I}, and (blue) to Cluster {B}

Fig. 4 presents an example of an SUV-based k-means

clustering with cluster set S.

As the SUV-based k-means clustering took no spatial

information into consideration, we selected the largest

connected component (lcc) of Cluster {A, T} connected

to seed sb to avoid distant regions and ensure that the re-

sulting area was only related to the BMA. The resulting

cluster was labeled {A, T}lcc.
Fig. 5a presents an example of Cluster area {A, T}lcc.

2.2.2. Manual verification
The potential presence of tumor metabolism in Clus-

ter {A, T}lcc was determined visually. If no tumor

metabolism was present in {A, T}lcc, the cluster was de-

noted as just {A}. If tumor metabolism was visually de-

tected in {A, T}lcc, a second step of clustering using CT

information and a priori information was performed with

the intention of splitting {A} from {T}.

2.2.3. Data fusion and k-means clustering
In the second clustering step, a k-means algorithm was

applied for further classification of Set {A, T}lcc, based

on a simultaneous exploitation of CT Hounsfield units,

PET SUVs, and normalized distance maps. The dis-

tance map was built as an artifact membership probability

(AMP) as follows:

AMP (xi) = 1− d2(xi, sb)

d2(xi, st) + d2(xi, sb)
, (4)

where d2(xi, st) and d2(xi, sb) are the squared Euclidean

distances of voxel xi from seed st and seed sb, respec-

tively.

(a) (b)

Figure 5: (a) Cluster {A, T}lcc and (b) the corresponding AMP for

each voxel in {A, T}lcc: (red) corresponds to AMP=1 and (black) to

AMP=0.

The hypothesis behind the AMP relies on the concept

that the further the voxel is from the tumor seed, the lower

the probability of it belonging to the artifacts. Similarly,

we assumed that the closer the voxel was to the bladder

seed, the higher the probability of it belonging to the blad-

der artifacts.

An example of AMP computed for each voxel in

{A, T}lcc is illustrated in Fig. 5b.

From each xi clustered in {A, T}lcc, three features

were considered: the SUV from the PET, labeled Ui; the

Hounsfield unity value (HUV) from the CT, labeled Hi;

the AMP, labeled Pi. The SUVs and HUVs were normal-

ized between 0 and 1. We denoted V{A,T}lcc
= {vi} the

group of vector vi = (Ui Hi Pi)
T .

Fig. 6a represents an example of V{A,T}lcc
projected

in the tri-parametric space [SUV HUV AMP ].

Each vi was assigned a label stating if it belonged to

cluster {T} or {A}, following the objective function be-

low:

argmin
{A,T}lcc

∑

vi∈{T}
‖vi − μT ‖2+

∑

vi∈{A}
‖vi − μA‖2 , (5)

Fig. 6b represents an example of the k-means clustering

in the tri-parametric space [SUV,HUV,AMP ].

In accordance with the compactness hypothesis on the

BMA shape, the largest connected component of the clus-

ter connected with seed sb was selected to be {A}.

2.2.4. Area correction
Topological transformations, namely closing and open-

ing were applied to ensure the compactness of the result-

ing area formed by {A}. The resulting corrected area was
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Figure 6: Data fusion and k-means clustering example. (a) voxels

belonging to {A, T}lcc placed in the tri-parametric clustering space

[SUV HUV TMP ] : SUV value (SUV), Hounsfield unity value

(HUV), and the artifact membership probability (AMP). (b) k-means

clustering result: cluster {A} in black and cluster {T} in green. (c)

Cluster {A, T}lcc and (d) the resulting cluster {A}.

labeled BMA. Fig. 7 presents an example of an area cor-

rection for obtaining the BMA.

2.3. Validation

2.3.1. Measures of performance of BMA detection
We measured the performance of the BMA detection

carried out by the proposed algorithm in two phases. First,

we considered solely an expert manual bladder CT de-

lineation as ground-truth (true-positives) and computed

the sensitivity, specificity and accuracy of the BMA de-

tection. Secondly, we considered a tumor segmenta-

tion mask as the background (true-negatives) and com-

puted the related sensitivity, specificity and accuracy in

order to assess the algorithm’s tumor preservation capa-

bility. The bladder was manually segmented by an ex-

pert on each CT image using the Phillips Pinnacle3 Ver-

sion 8.0m treatment planning software. The CT images

were then linearly down-sampled to the PET resolution

so that each PET voxel corresponded to only one voxel

of the CT, and likewise for the bladder delineations. Tu-

mor metabolic activities were segmented on PET images

(a) (b)

Figure 7: Area correction example. (a) Cluster {A}. (b) Bladder

metabolic artifact (BMA) following area correction.

by region-growing using a threshold of 42% of the max-

imum uptake within the tumor (T42). Residual bladder

uptake in the T42 segmentation mask was suppressed by

the corresponding manual bladder CT delineation.

The voxels outside the bladder mask were considered

true negatives (TN), whereas the voxels within the bladder

mask were the true positives (TP). The number of voxels

originally located in the bladder and not detected as arti-

facts were labeled false negatives (FN). Lastly, the num-

ber of voxels originally localted outside the bladder mask

and detected as artifacts were labeled false positives (FP).

In parallel, the detection was evaluated a second time

using the T42 segmentation mask. The number of voxels

detected as artifacts yet originally located inside the T42

mask were this time considered false positives (FPT42),

whereas the number of voxels in the T42 mask that

were not detected as artifacts were labeled true negatives

(TNT42).

Fig. 8 illustrates the PET and CT delineations used to

evaluate the detection of bladder metabolic artifacts per-

formed by the proposed methodology.

For the sake of clarity, we describe below how we

computed the measures of performance of the detection

method for each PET image, namely sensitivity (SEN),

specificities (SPE and SPET42) and accuracies (ACC and

ACCT42) :
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PET im-

ages (n=52)

CT images

(n=52)

Manual bladder

CT delineation

Bladder Mask

TP

Tumor segmen-

tation (T42)

TNT42

BMA detection evaluation

Bladder

metabolic artifact

Figure 8: PET and CT delineations used for evaluating the BMA detec-

tion method. Bladder Mask: Expert manual bladder CT delineations lin-

early down-sampled to the PET resolution. Tumor Segmentation (T42):

Metabolic activities segmented on PET images by region-growing using

a threshold of 42% of the maximum uptake within the tumor

SEN =
TP

TP + FN
,

SPE =
TN

TN + FP
,

ACC =
TP + TN

TP + TN + FP + FN
,

SPET42 =
TNT42

TNT42 + FPT42
,

ACCT42 =
TP + TNT42

TP + TNT42 + FPT42 + FN
.

(6)

2.3.2. Reproducibility evaluation
Reproducibility was assessed by randomly selecting 30

different seed pairs (sb and st) within a 2×2×2-cm region

around the initial manually-selected seeds. Thus, 30 dif-

ferent BMA detections were performed for each image.

3. Results

In this study, 47 out of 52 PET images presented tu-

mor uptake in region {A, T}lcc and were considered in

the second clustering step. Fig. 9 presents four examples

of BMA detection using the proposed method.

The values attesting to the proposed detection method’s

performance (SEN, SPE, SPET42 ACC and ACCT42) for

all PET images of our dataset have been presented using

a boxplot representation in Fig. 10. For all 52 BMA de-

tections evaluated, the averaged results were 0.94 ± 0.09
SEN, 0.98 ± 0.01 SPE and 0.98 ± 0.01 ACC. For the

T42 segmentation, the averaged results were 0.97± 0.05
SPET42 and 0.94± 0.08 ACCT42.

In the 30 seed pairs randomly selected for each image,

a total of 1,560 BMA detections (52 × 30) were obtained

to enable assessment of the method’s reproducibility.

For these BMA detections, the average SEN, SPE and

ACC were 0.91± 0.13, 0.98± 0.02 and 0.98± 0.02, re-

spectively. For the T42 mask, the average SEN values

were the same, and the SPET42 and ACCT42 averages

were 0.96± 0.07 and 0.92± 0.12, respectively.

The overall robustness of the results for the whole co-

hort is depicted in Fig. 11. This demonstrates that for

most of the seeds locations, the same segmentation was

obtained. However, if the seed was located outside the
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Figure 9: Example of BMA detection results for four patients. (a)-(d) Original PET exams. (e)-(h) 2.2.1 SUV-based k-means clustering results.

(i)-(l) Clusters {A, T}lcc. (m)-(o) cluster {A} following 2.2.3 data fusion and k-means clustering. (p)-(s) BMA regions following 2.2.4 area

correction. (t)-(w) PET image with BMA highlighted

bladder, the regions could naturally be erroneously de-

tected. In some cases, SEN=0 due to the random place-

ment of seed sb outside the bladder.

4. Discussion & Conclusion

In PET images, 18F-FDG fixation can be observed in

healthy tissue and benign disease, which are consequently

mistaken for cancer [10]. PET analysis can be particularly

hampered in cancers involving the pelvic region by the

physiological uptake of the bladder, which can obliterate

the tumor uptake of lesions located in this area [15].

In this paper we propose a semi-automatic method

to detect 18F-FDG bladder artifacts in PET imaging of

pelvic cancer using a k-means clustering approach by

combining PET and CT information.

Artifact detection was considered to be a means of pre-

processing PET voxel classification, and particular atten-

tion was paid to the preservation of tumor metabolism to

enable further non-parasitized PET analyses.

The problem of detection was tackled by a two-step

clustering relying on two assumptions. 1) That only the

voxels with high intensity would hamper the analyses of

tumor metabolism in PET imaging. To select these vox-

els, we applied an SUV-based clustering algorithm with

three classes (low, intermediate, and high intensities). 2)

That the bladder artifacts would be the sole artifacts de-

tected among the previously-selected voxels. Therefore,

the high-intensity voxels could belong to either artifacts or

tumors. A second clustering step using CT and a priori in-

formation was then performed to separate voxels belong-

ing to the artifacts from those belonging to tumor activity.

As the number of classes was fixed, we used the k-means
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Figure 11: Overall results for the 52 patients for different seed locations. SEN, SPE, and ACC values correspond to the evaluation of the BMA

detection method only considering bladder mask. SPET42 and ACCT42 correspond to the evaluation of BMA detection performance using both

bladder mask and T42 mask

algorithm to ensure unsupervised clustering and low com-

putational cost. Nonetheless, for one given patient, we

visually decided if the second classification step was nec-

essary. Numerous other clustering algorithms have also

been published in the literature [23]. For instance, the

affinity propagation algorithm [24] or the density-based

spatial clustering [25] could be used to automatically de-

termine the number of clusters needed and, therefore, de-

tect bladder artifacts in a one-step clustering process. Fur-

ther investigation will be required to evaluate the use of

such algorithms for the current challenge of reducing user

dependency by automating the decision procedure.

Our proposed bladder artifact detection algorithm was

tested on 52 PET/CT images of patients with locally-
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Figure 10: Values of the proposed algorithm’s performance for the 52

PET images. SEN, SPE, and ACC corresponding to the evaluation of

the BMA detection method, only considering bladder mask. SPET42

and ACCT42 correspond to the evaluation of the BMA detection method

considering both bladder mask and T42 mask.

advanced cervical cancer. We believe that the cancer’s

localization was relevant to our detection problem, as the

bladder often presents an uptake continuum with the cer-

vical tumor. However, in order to be applied to different

pelvic cancer localizations, the algorithm would need to

be adapted accordingly. To achieve this, further inves-

tigations should be carried out to evaluate the proposed

method in other cancer localizations.

On our dataset of 52 PET images, only five were con-

sidered well-clustered following the first k-means clus-

tering. This proves the interest of exploiting multimodal

PET-CT data combined with a priori spatial information

to distinguish bladder artifacts from tumor uptake.

We evaluated this proposed method firstly by compar-

ing the detected bladder voxel artifacts with expert man-

ual bladder CT delineation. Our results demonstrated

the ability of the proposed method to classify voxels

belonging to the bladder, with good average sensitiv-

ity, specificity, and accuracy (0.94±0.09, 0.98±0.01, and

0.98±0.01, respectively). We observed a lower sensitivity

corresponding to a general underestimation of the bladder

artifacts, which enabled the preservation of tumor activ-

ity. It should be noted that the 18F-FDG uptake of the

bladder did not systematically correspond to the bladder’s

anatomical shape. The bladder actually fills during PET

image acquisition, as it takes several minutes, while CT

data is acquired in a matter of seconds. Manual CT delin-

eations used for evaluation are thus not strictly represen-

tative of the bladder’s real metabolism.

The method was further evaluated using a threshold

method often used in clinical practice (T42) as a region

to spare. Specificity and accuracy were recomputed ac-

cording to the T42 mask. It should be noted that T42
mask was not considered here as a ground truth of tumor

metabolism, but rather as a reference enabling evaluation

of the method’s tumor-preservation capability. With its

average specificity (SPET42) of 0.97±0.05 and accuracy

(ACCT42) of 0.94±0.08, it demonstrated good conserva-

tion of tumor metabolism.

In order to initialize the second step of clustering to

separate bladder voxels from tumor voxels, an artifact

membership probability (AMP), derived from the squared

Euclidean distance of the a priori tumor and bladder lo-

cations, was computed. We assumed, however, that the

seeds were positioned near the barycenter of the blad-

der and tumor metabolism, positions that can lead to re-

sult variability. The robustness of the proposed algorithm

was assessed by randomly selecting 30 different initial

seeds for each of the 52 PET images. The overall aver-

ages indicate that the method is globally precise and ro-

bust for the seed initialization, achieving 0.91±0.13 SEN,

0.98±0.02 SPE, 0.98±0.02 ACC, 0.96±0.07 SPET42,

and 0.92±0.12 ACCT42. To reduce the variability, an al-

ternative method that could be employed in future studies

would be to include the possibility for users to select more

seed points, thus incorporating more a priori information.

In conclusion, this proposed semi-automated method

for detecting bladder metabolic artifacts on PET images

of the pelvic region offers good preservation of tumor

metabolism. This method can be used as a preprocessing

step for further non-parasitized analyses.
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