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Abstract—Simultaneous development of photovoltaic genera-
tion and electric vehicles strengthens the solicitations on the
electric power system. This paper investigates the possible
synergy between these players to jointly improve the production
predictability while ensuring a low carbon mobility. It stands for
a step towards a quantification of its economic and environmental
fallout. First a context is described for a PV-EV collaboration.
Then this is gathered into an optimization problem. Grid com-
mitment constraints, battery aging and mobility needs are here
considered from the environmental point of view of equivalent
primary energy. Finally, a resolution method is presented which
achieve an time-efficient optimization of the power flow for
each vehicle, based on upstream computed charging policies. It
relies on a stochastic modeling of both vehicles availability and
forecast error of the PV production. The resolution framework
is the stochastic dynamic programming, coupled with on-line
minimization so as to avoid the curse of dimensionality. The
proposed resolution enables to compute optimal power flow for
each vehicle, even among large fleets. The emphasis is here set
on a versatile resolution method which could take over many
detailed objective functions.

Index Terms—Electric vehicles, Photovoltaic systems, Vehicle
to Grid, Dynamic programming

I. INTRODUCTION

Despite of its environmental performance, large scale photo-
voltaic (PV) production is bounded by its limited predictability
and high variability that enhances solicitations and raises needs
for spinning reserves as highlighted by Canova et al. [1]. The
introduction of large scale storage unit into the grid is one of
the investigated solutions so as to compensate for production
variability [2] [3]. The impact of the electrochemical aging
mechanism on the bulk storage of electricity relevance has
besides been highlighted by Lippert et al [4].

Furthermore, the development of electric vehicles (EV)
leads to additional stresses on the grid and increases electricity
consumption. Yet, electric mobility can only be a viable
alternative to petroleum fuels if the well-to-tank conversion
has a light environmental impact. The electricity demand
rise should thus be provided by clean plants. Up to now,
integrating a significant share of the vehicle fleet come along
with forwarding pricing rules so as to make consumption
match production. Moreover, EV fleets represent a flexible
load which could even become a storage capacity spread over
the grid. Indeed, EV fleets could participate to the grid
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Figure 1. Main players of the collaborative system and associated variables.
It would also be possible to consider a single grid connection point.

management [5]. We here consider bidirectional chargers so
as to cover situations of temporary vehicle discharging.

An example of such a grid service is a direct association of
a PV plant and a EV fleet, managed by a common information
system. Guillou et al [6] considered it with the sole aim of
maximizing the self consumption of the solar production. Vaya
et al. [7] has suggested a remote collaboration between wind
farms and EV fleets, which is on-line solved as a multitimestep
optimal power flow problem. Indeed, such a collaboration
could possibly lead to a reduced production variability while
ensuring a sustainable mobility.

The present study first will describe a framework for such a
collaborative system (see figure 1), which aims at both meeting
a commitment profile for the power injected to the grid
while ensuring the vehicle charging. The power management
of this system is set as an optimization problem. Despite
a resolution by dynamic programming seems doomed with
respect to the system large dimension, an efficient resolution
is described which combines off line control policies and on-
line minimization. Beyond the objectives that are here picked
for description purpose, the proposed resolution method can



handle numerous concerns, for instance grid constraints or
multi-generation units systems, that can not be presented here.
It stands for a step towards a quantification of economic and
environmental fallout of collaboration in energy systems [9].

II. DESCRIPTION OF THE COLLABORATIVE SYSTEM

The framework which is here used is an attempt toward a
partnership between EV fleets and renewable sources in order
to both foster the grid integration and ensure a sustainable
mobility. It relies on a joint management of a fleet charging
and a photovoltaic plant as firstly presented in [8]. In the
present case study, the goal is to build an operator who could
be considered from the grid manager point of view as a
single actor, to some extend similar to a virtual power plant
(VPP). Indeed, managing an EV fleet into a VPP has been
experimented by Binding et al [10].

Main players and associated variables are summarized in
figure 1. Production units and EV fleet are supposed to handle
together a commitment constraint over the day ahead power
profile P ∗

grid. They suffer some penalties according to the
gap between commitment profile and achieved profile. The
commitment profile has been computed using imperfect fore-
casts of PV production P̃pv and vehicles charging needs P̃ev .
According to real time situation, the best dispatch between
nev vehicles should then be found for each vehicle power
P iev, i ∈ J1;nevK and shedding power Pshed, which represents
the possibility not to produce the maximum producible power
Ppv . This possibility is achieved through the power point
regulation of the PV plant which permits to disoptimize the
efficiency of the conversion [11].

The instantaneous power flow into this system is written as
follows:

Ppv(t) = Pshed(t) +

nev∑
i=1

P iev(t) + Pgrid(t) (1)

where Pgrid is the net resulting power injected to the grid.

Scope of the collaborative system

The definition of a collaborative system framework aims
at gathering into a single mathematical description many
different situations. For instance, cases of a domestic solar
roof with personal electric vehicle or of a solar charging
station whose production is mainly dedicated to the vehicles
correspond to a unique interconnection point with the grid
and a commitment profile set to P ∗

grid = 0. The collaborative
system is then on a single location. Another example is a
market agent PV producer who manages a remote EV fleet to
reduce his commitment gap penalties. To enlarge the scope to
the broader range, the emphasis is both on the versatility of
the problem definition and on the resolution methodology.

III. DEFINITION OF AN OPTIMIZATION PROBLEM

Considering a discrete time context, managing a collabora-
tive system to maximize its profitability means computing at
each time step ∆T the shedding power Pshed and the charging
power of each vehicle P iev , i ∈ J1;nevK with nev the number of

vehicles. This profitability could either be considered from an
economy or an environmental point of view, under the same
methodology. Several antagonist concerns are at stake and
some of them are enumerated below. As indicated supra, the
scope is here neither to set up precise modeling for each of
these objective [12], or to propose some business model for the
collaborative system [13] by a combination of these objective
functions. As the emphasis is instead on the resolution
methodology, rough even though relevant modeling are firstly
chosen for each concern. Then the environmental criterion of
the equivalent primary energy is on purpose selected since it
may be regarded as a general welfare.
• mobility valuation Cimob : the vehicle is supposed to

ensure his owner mobility while being used for a grid
service. The user interest is thus to have his battery
charged by the departure time t2 he indicated at arrival
time t1. Cmob then depends on the state of energy at
the departure time SoEiev(t2). As a first intention, the
primary energy used to refill the battery is considered:

Cimob(SoE
i
ev(t2)) = Ei]ev · (

SoEiev
ηPV

+
1− SoEiev

ηEU
) (2)

where Ei]ev is the capacity of each vehicle. The share
of energy which is provided by photovoltaic is balanced
by the PV efficiency ηPV = EPVlife/E

pv
emb, the ratio of

the energy produced over life and the embodied energy.
We here adopted EPVemb = 7MWhprim/kWpeak [14] and
EPVlife = 30MWh/kWpeak with a 20 year life and a
measured potential of 1500 kWh/kWpeak/year in this
real case study. The energy provided by any other plant
through the grid is weighted by mean efficiency of the
European energy mix ηEU = 0.3 kWh/kWhprim.

• battery aging Ciage : providing another service than
mobility cannot but bring about additional damage to the
battery. The here chosen modeling assigns an elementary
damage di to each solicitation, defined by di = α·(P iev)β .
An elementary damage is similar to spend a share of the
battery embodied energy.

Ciage(Pev) = (di − di0) · Ebatemb · Ei]ev (3)

where Ebatemb = 200 kWhprim/kWh [15] is the battery
embodied energy and di0 the damage done when no grid
service is provided, ie when charging at rated power.

• grid penalties Cmis : the collaboration main added value
is to reduce the grid commitment mismatch ∆Pgrid =
Pgrid−P ∗

grid. For any commitment gap, another plant has
to compensate for the missing energy with the European
generation efficiency ηEU .

Cmis(∆Pgrid) =
∆T ·∆Pgrid

ηEU
(4)

• shedding power Cshed: Shedding a share of potential
PV production is equivalent to burden its environmental
performance ηPV .

Cshed(Pshed) = ηPV ·∆T · Pshed (5)



• Some other concerns could be added such as grid conges-
tion. There are not considered in the following, although
they could be handled by the here described methodology.

The minimization of the global cost can thus be set up as
the following optimization problem :

min
Pev,Pshed

∑
t

{
Cmis(∆Pgrid(t)) + Cshed(Pshed(t))+

nev∑
i=1

{
Cage(di(t)) + Cmob(E

i
ev(t

i
2))
}} (6)

subject to ∀t, ∀i,

state of charge constraint: SoEiev ∈ [0; 1] (7)
charging power limits: P iev ∈ [P i[ev;P

i]
ev] (8)

shedding limits: Pshed ∈ [0, Ppv] (9)
initial state of energy: SoEiev(t1) = SoEi,0ev (10)

dynamic equation: fdyn(SoEiev, P
i
ev)

SoEiev(t+ ∆T ) = SoEiev(t) +
∆T · P iev(t)

Ei]ev
(11)

The state vector X of this problem is made of the ca-
pacity of each vehicle (Ei]ev)i=1:nev , the state of energy of
each vehicle (SoEiev)i=1:nev

and the forecast error ∆Ppv(t).
Control vector U is composed of the charging power vector
Pev =

(
P 1
ev . . . P

nev
ev

)
and the shedding power Pshed. The

resolution of this optimization problem is challenging because
of its stochastic nature, its large scale when handling large
fleets, and finally the inertia of the battery storage which brings
a temporal coupling. Moreover, this optimization should result
in an operational decision, computable at each time step.
This particularities call for the preliminary development of
strategies which would cover all the possible situations. Real
time management could thus be limited to the interpolation
of these policies. Stochastic Dynamic Programming [16]
[17] enables to draw such strategies, describing for each
situation what is the optimal decision in a stochastic context.
Vehicles being supposed to daily commute, the horizon of
this optimization is midnight, each day being an independent
problem. The Bellman equation of problem (6) is therefore:

no cost at the horizon time: V (midnight, X) = 0 (12)

∀t < midnight,∀X := [(Ei]ev, SOE
i
ev)i=1:nev ,∆Ppv]

V (t,X) = min
U

Cshed(Pshed) + Cmis(∆Pgrid)

+

nev∑
i=1

{Cage(di) + 1t=ti2 · Cmob(SoE
i
ev)}

+P(∆Ppv(t+ ∆T )|∆Ppv(t)) · V (t+ ∆T, fdyn(X,U))

V is built all along the algorithm and stores the optimal
cost that can be achieved if the system is in a given state X at
a time t and follows the optimal strategy U∗, concurrently
computed by argminV (t,X). As the forecast error is a
random phenomenon P(∆Ppv(t+∆T )|∆Ppv(t)), a modeling
of its evolution is mandatory to compensate it as well as

possible [19]. It is here done by a specially designed cross
approach of typical main patterns, associated to a variability
and time structure around these main trajectories. Main typical
patterns are build using a hierarchical classification and have
been identified on a 3 year dataset gathering the production of
a 2.64MWpeak PV plant in Corsica and its forecast by Meteo
France, using the AROME model [20].

The main drawback of this optimization method is the
curse of dimensionality which is raised by the dimension of
the state vector X . As each possible situation of X has to
be considered, the computational cost increases exponentially
with X [21] [22]. The following sections will present a case
specific decomposition of (12) into two auxiliary problems,
achieving an efficient approximation of the future cost V .

IV. OPTIMAL POLICY FOR A STATIONARY ENERGY
STORAGE WITHOUT ELECTRIC VEHICLE

The addition of a stationary energy storage device to a PV
unit so as to enhance the grid commitment compliance is here
used as a first step towards the association of renewable plants
with EV fleets. Optimal storage strategies have been computed
by Haessig et al [18] in the case of wind power generation. As
the EV fleet is in this section replaced by a stationary storage
unit, equation (1) becomes:

Ppv(t) = Pshed(t) + Psto(t) + Pgrid(t) (13)

The state vector Xsto of this problem is simpler than X in
algorithm (12). It is made of the storage capacity E]sto, the
state of energy SoEsto and the measured forecast error ∆Ppv
which is necessary for estimating future hazards probabilities.
The control vector Usto is the shed power Pshed and the
storage power Psto. Keeping in mind that this stationary
storage problem is a step toward the fleet management, the
optimization horizon is still a day. Considered costs for this
problem are shedding Cshed and commitment mismatch Cmis.

Stochastic dynamic programming algorithm can then be
carried out as follows:
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Figure 2. Sectional view of the optimal storage strategy Psto without EV at
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Figure 3. Example of the optimal policy U∗
sto applied over a day for a

2.64MW PV plant and a 1.25MWh storage. ∆T = 1h

no cost at the horizon time: Vsto(midnight, Xsto) = 0 (14)

∀t < midnight,∀Xsto := [E]sto, SoEsto,∆Ppv],

Vsto(t,Xsto) = min
Usto

Cshed(Pshed) + Cmis(∆Pgrid)

+P(∆Ppv(t)|∆Ppv(t−∆T )) · Vsto(t+ ∆T, fdyn(Xsto, Usto))

A sectional view of the optimal storage power P ∗
sto con-

tained in U∗
sto is represented figure 2 according to the mea-

sured forecast error ∆Ppv(t) and the state of energy SoEsto,
for a particular time t = 2 pm , storage capacity E]sto =
1.25MWh and main trajectory of the forecast error. In this
particular example, as the main trajectory of the forecast error
has been supposed to over-estimate the production, most of the
considered situations lead to a positive optimal stored power.

Here is defined for further use the following notation for
the minimized quantity at each time step :

Υsto(t,Xsto, Usto) := Cshed(Pshed) + Cmis(∆Pgrid)+
(15)

P(∆Ppv(t+ ∆T )|∆Ppv(t)) · Vsto(t+ ∆T, fdyn(Xsto, Usto))

Figure 3 represents an application case of this storage and
shedding policy for a 2.64MW PV plant and a 1.25MWh
storage capacity.

V. OPTIMAL POLICY FOR VEHICLE CHARGING WITHOUT
PV PLANT

Similarly to the storage strategy computed in the previous
section, a charging strategy for a single vehicle will now be
defined. The last section will merge them to achieve the joint
management of the collaborative system. The EV strategy
aims at begin charged by the leaving hour and at minimal
cost. The state vector Xev is made of the battery capacity
E]ev and the state of energy SoEev . Time is measured as the
remaining duration τ before the user will get his vehicle back.
This duration is linked to the departure time t2 by:

τ = t2 − t (16)
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Figure 4. Optimal policy of a vehicle charging power Pev , computed by
dynamic programming, for a 25 kWh capacity.

The control Uev is here the vehicle charging power Pev .
Battery aging Cage and user mobility Cmob are taken into
account. This problem being deterministic, dynamic program-
ming algorithm is implemented as follows :

final cost at the horizon Vev(τ = 0, Xev) = Cmob(SoEev)
(17)

∀τ > 0,∀Xev := [E]ev, SoEev],

Vev(τ,X) = min
Pev

Cage(d)+

Vev(τ −∆T, fdyn(Xev, Pev))

As in the previous section, the result of this algorithm
is composed of an optimal cost matrix Vev and an optimal
charging power matrix P ∗

ev which could be applied by each
vehicle regardless to other concerns. A sectional view of
this policy is represented on figure 4, according to the state
of energy SoEev and the time before departure τ , for a
E]ev = 25 kWh capacity.

As each vehicle can be described using the state vector Xev ,
the charging policy can be used to set charging power of each
vehicle among an entire fleet. It could have been possible
to take into account more detailed objective functions for the
optimal charging problem, for instance advanced aging models
[23], grid considerations [24] or uncertain departure hour. It
is here considered as upcoming concerns as the scope of this
study is mainly the description of the resolution algorithm.

Here again is defined the following notation for the mini-
mized quantity at each time step :

Υev(τ,Xev, Pev) := Cage(d) + Vev(τ −∆T, fdyn(Xev, Pev))
(18)

VI. RESOLUTION OF THE GLOBAL PROBLEM

As soon as some optimal policies are available for each
auxiliary problem, the goal is to draw a coordination in order
to reach the global optimum decision of the initial problem
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Figure 5. Resolution scheme of the power flow optimization into the
collaborative system.

(6). As each auxiliary problem has already coped with time
coupling and dynamic behavior of the storage, the approxima-
tion of the original problem future cost V is restricted to the
instantaneous collaboration trade-off. This is carried out by
a minimization of the immediate costs associated to both of
the previously defined auxiliary problems Υev and Υsto. The
resolution scheme is sketched on figure 5.

The first step consists in gathering the different components
of the vector state. Time t, available vehicle individual
capacities E],iev and states of energy SoEiev , measured forecast
error ∆Ppv(t) are directly usable. Then, the equivalent storage
and remaining duration for each vehicle are deduced :

E]sto =
∑
nev

E],iev SoEsto =

∑
nev

SoEiev · E],iev
E]sto

(19)

τ i = ti2 − t

Once state vectors Xsto and Xi
ev built, associated costs

functions Υev(τ
i, Xi

ev, P
i
ev) and Υsto(t,Xsto, Psto) that have

been previously tabulated can be read. The minimization of
the sum of all costs is realized at each time step:

min
Usto,Ui

ev

∑
nev

Υev(τ
i, Xi

ev, U
i
ev) + Υsto(t,Xsto, Usto)

such that:

Psto =

nev∑
i=1

P iev (20)

As many of relevant cost functions that could be imple-
mented are either linear or convex, an efficient minimization
algorithm can be implemented. For instance, Nelder-Mead
simplex has been used in this study. It permits to compute the
best compromise Pshed, P

i∗
ev between global system interest

and local issues of each vehicle.
At the optimum power flow P ∗

ev , all the partial derivatives
of the quantity minimized in 20 are equal to 0. It will then
satisfy for all vehicle:

∂Υev

∂P iev
= −∂Υsto

∂P iev
(21)

which ensure that a vehicle would only worsen his individual
decision as long as it is balanced by global improvements.

Figure 6 represents the optimal vehicle charging power
following this coordination method for a 50 vehicle fleet,
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Figure 6. Upper graph: example of the charging power for a 50 EV fleet,
coordinating optimal policies P ∗

sto and P ∗
ev , same parameters as figure 3.

Lower graph: charging power of each vehicle.

under the same situation as figure 3. The behavior of the
fleet is randomly generated using French mobility statistics
[25]. Each vehicle capacity is also random, according to
the EV market shares in 2013. The equivalent capacity of
this fleet is 1.25MWh. As expected, the mitigation of the
forecast error can be achieved as long as vehicles are available.
Over estimations of the production on the morning and the
evening of the example day could be compensated when using
a stationary storage. It is no longer possible with a fleet which
is not supposed to be operable from home.

VII. CONCLUSION AND UPCOMING DEVELOPMENT

In this paper, a framework called collaborative system has
been presented to concurrently give a mathematical shape to
several situations, such as solar charging station for electric
vehicles or PV plant selling its production on the energy
market. In the broader scope, it aims at ensuring sustainable
mobility while making easier the integration of renewable into
the grid by introducing a day ahead power commitment not
on the single PV production nor vehicle consumption, but on
the difference of this two quantities. Shedding some of the
maximum producible power by shifting the operating point
and modulating the charging power of vehicles can be used to
meet the commitment profile.

The operational management of this system is build as a
large dimension and multi time step optimization problem, in a
stochastic framework because of the random PV forecast error
and vehicle availability. Several competing objectives have
here been taken into account: user mobility, battery aging, grid
penalties for commitment deviation and shedding power. This
is not an exhaustive list as the scope is here to dress several



operational problems in a formal context and to propose a
resolution method which can both handle stochasticity, high
dimension and time coupling.

The proposed resolution firstly solves the case of a PV plant
with a stationary storage. So as to cope with the random
nature of the PV production forecast error, a specific and
original modeling is used - although it could not been further
described in this paper - using a hierarchical classification of
forecast error trajectories. A resolution by stochastic dynamic
programming is thereafter carried out so as to compute a strat-
egy which indicates the optimal stored power and shedding
power for each possible value of the state vector. Secondly,
a strategy is built to describe the charging of any vehicle,
described by its battery capacity, state of energy and time
before leaving. Those strategies are off-line computed to make
easier the operational decision making. Then at each time step
and according to the measured situation, a minimization of the
total cost - the sum of each vehicle cost and the equivalent
stationary storage cost - is realised. This enables to perform
the optimal power flow in a 50 vehicle fleet and a 1 hour time
step in 0.5 s a day. However, further investigations should be
carried out to assess the quality of this approximation of the
future cost.

As we mainly focused here on a resolution method for
an optimization problem which covers several very different
situation, it was not possible to put the emphasis on the
definition of precise objective function for user mobility,
battery aging, et caetera. Moreover, a real agent such as
for instance a PV plant on an energy market, would define
a precise business model, ie a specific way to combine those
different objective functions. Because of the lack of economic
or business model, we have elected an environmental point of
view to describe objective functions as primary energy costs.
The goal was therefore to minimize the sum of all costs as an
overall general welfare. Further work will then provide some
examples of this resolution scheme in more precise situations
and also from an economy perspective.
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