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Abstract

Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization
processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly
interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels
of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song
system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial
nidopallium, or NCM) has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well
positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear
and distinct classes of songs with different functions and social values, and for a possible correspondence between these
responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly
show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons
responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded
to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific
to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication
signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist
between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.
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Introduction

One of the most basic questions of cognitive science is how do

organisms sort the objects of the world into categories?

Categorization is essential to all cognitive processes. Without

categorization, each object would be perceived as unique and no

generalization rules could be used to take rapid and appropriate

decisions [1]. However, because no single perceptual feature is

likely to be a necessary and sufficient condition for category

membership [2], identifying the neural substrates underlying

categorization processes is a real challenge.

One example of categorical perception is the perception of

phonemes in human speech [3]. However, categorical perception

is specific neither to humans nor to speech. Indeed, chinchillas

have been shown to categorically perceive speech much the same

way as humans do [4]. There has also been evidence of categorical

perception of species-specific vocalizations in monkeys [e.g. 5] and

in avian species [e.g. 6].

Among birds, songbirds are particularly interesting because,

without necessarily requiring categorical perception per se,

birdsongs often provide researchers with clear examples of

categories of signals allowing species, population and individual

recognition. For example, swamp sparrows sing two note

categories with different roles in song construction, and there

has been evidence of categorical perception for these notes by this

species [7]. Budgerigars, which, like songbirds, are vocal learners,

have been shown to group vocal stimuli according to functional

and acoustical categories [6].

These birds also have the advantage of possessing a system of

specialized brain structures found only in birds that learn to sing:

the song system [8]. Given the many parallels that exist between

birdsong learning and speech development [9–11], this system has

become a choice model for studying the neural bases of vocal

communication [12]. Nuclei involved in song production have

thus been well characterized [e.g. 13] but less is known about areas

involved in song perception and discrimination [for a recent

review, see 14]. Recently however, the caudo-medial telenceph-

alon has emerged as a plausible site for sensory representation of

birdsong.

Caudo-medial telencephalon contains thalamo-recipient Field

L2, which is comparable to thalamo-recipient layer IV of the

mammalian auditory cortex, and two of its targets, caudo-medial

nidopallium (NCM) and caudo-medial mesopallium (CMM),

which can be compared to supragranular cortical layers [15].

Based on electrophysiological responses [16–19] or on the

expression of an immediate early gene (IEG–ZENK) [20–22],

NCM auditory responses have been shown to be the strongest for

conspecific songs, followed by heterospecific songs and non-song

acoustic signals, and they are known to show a rapid and long-

lasting habituation effect that is song-specific. NCM neurons thus

appear to be able to discriminate between different conspecific
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songs, a property that is required for perceptual song discrimina-

tion. Moreover, the ZENK response to a social stimulus has been

observed to be proportional to the animal’s preference for this

stimulus: for example in female European starlings, where a

preference for male long bout songs over male short-bout songs

has been observed, NCM appears to show higher expression of

ZENK in response to long-bout than to short-bout songs,

independently of the total amount of song that the females heard

[23]. It has therefore been suggested that NCM may serve as a

common source for behaviourally relevant distinction among

conspecific song features, which would be then extracted by

different higher processing areas [see also 24–27].

Previous studies thus point to NCM as a well positioned brain

region for categorization of songs with different functions and

social values. For this reason, we hypothesized that, in our model

songbird, which is the starling, NCM neurons may respond

differentially to the distinct functional classes of songs that have

been described in this highly social species. Indeed, male starlings

sing three structurally and functionally distinct classes of songs that

are used for species, population and individual recognition (see Fig. 1

for examples) [28]. Class-I songs are short, simple and loud whistles

sung by all male starlings that are used in species and population

recognition (dialectal variants) [29,30]. Class-II songs are also short,

simple and loud whistles that are used in individual recognition,

especially between same-sex social partners [31]. Finally, class-III

songs, also called warbling, are long, complex and soft songs that are

used in individual recognition at short distance, especially between

males and females [32,33]. These three classes of songs differ not

only by their structure [34,35], but also by their pattern of

acquisition during song learning [36–38], and by their context of

emission [29,39–42]. They thus correspond to clear and distinct

classes of sounds with different functions and social values. Hence,

we used these songs to test for potential differential responses in the

NCM of awake-restrained adult male starlings and for a possible

correspondence between these responses and the functional aspects

of songs. Our study demonstrates that the activity of NCM neurons

can indeed indicate or represent a class of sounds corresponding to a

behaviourally-defined recognition process.

Figure 1. Stimuli used to test the neurons, with some examples of sonograms. Class-I songs are whistles that are produced by all male
starlings and that are used in species and population recognition, as confirmed by playback experiments with dialectal variants [29,30]. Among these
songs, 4 themes can be distinguished (from left to right and from top to bottom): harmonic themes (HT), inflection themes (IT), rhythmic themes (RT),
and simple themes (ST). Two unfamiliar variants of each theme were used. Class-II songs are individual-specific whistles that are used in long-distance
recognition, and that can be shared, in captivity, by a few socially affiliated birds [31]. Two exemplars from the tested bird (own), 2 unfamiliar and 2
familiar exemplars were used. A familiar exemplar was a song produced by a bird that had been caught at the same time as the tested bird, and that
had spent 2 years in the same aviary. Class-III songs, also called warbling, are mainly composed of highly individual motifs but also of some motifs
common to all starlings [32,33]. They are used in short distance communication. One species-specific motif (clicks) and two individual-specific motifs
(one unfamiliar and one from the tested bird) were used. Finally, 5 pure tones (0.5, 1 , 2, 4 and 8 kHz) and a white noise were used as artificial non-
specific stimuli. The stimuli (n = 23) were the same for all the birds except those corresponding to the bird’s own songs and to the familiar songs,
which changed from one bird to another.
doi:10.1371/journal.pone.0002203.g001

Complex Sounds in the Brain

PLoS ONE | www.plosone.org 2 May 2008 | Volume 3 | Issue 5 | e2203



Results

Using a multi-electrode array and a mapping method based on

systematic recordings (no search stimulus; see Material and

Methods), we recorded the electrophysiological activity of 1972

neuronal sites in the NCM of 6 awake-restrained adult male

starlings (mean6SE = 328.7621.4 sites/bird; 188.2626.9 sites in

the left hemisphere, 140.5618.3 sites in the right hemisphere;

Wilcoxon, p = 0.07), while broadcasting artificial non-specific

sounds (pure tones and white noise) and natural species-specific

stimuli corresponding to the three classes of songs described in

starlings (see Fig. 1). Among these sites, 32.3% were responsive to

at least one of the stimuli we used (mean6SE = 31.467.4% in the

left hemisphere, 35.666.5% in the right hemisphere; Wilcoxon,

p = 0.25). Only these responsive sites (n = 633; mean6

SE = 105.5622.2 responsive sites/bird) were further analyzed.

The relative frequency distribution of sites responding to 1, 2,

3,… or 23 (that is all) stimuli is shown in Figure 2. On average,

responsive sites responded to 6.560.6 stimuli (mean6SE

= 6.560.8 stimuli in the left hemisphere, 6.560.6 in the right

hemisphere; Wilcoxon, p = 0.34), that is about 30% of the stimuli

used. About 30% of the responsive sites responded to only 1 or 2

stimuli, and no site responded to all stimuli. Overall, more than

70% of the sites that responded to only one stimulus responded to

class-II or –III stimuli, and less than 10% responded only to

nonspecific stimuli (note that we could observe no site responding

only to the 4- and 8-kHz pure tones and to the white noise).

When responses to each stimulus were considered, it appeared

that, globally, many more sites responded to natural species-

specific sounds than to artificial non-specific stimuli (with overall

4.2–15.7% of the responsive sites responding to artificial non-

specific stimuli vs. 8.3–56.9% responding to natural species-

specific sounds; see Fig. 3). However, the different species-specific

song types were not equally effective at driving neuronal responses,

and some of them even elicited responses at a level similar to some

artificial non-specific sounds, such as some of the class-I songs (the

simple themes, with 17.5 and 18.0% of the responsive sites

responding; Fig. 3) and the species-specific class-III motif (clicks,

with 8.3% of the responsive sites responding; Fig. 3). In fact, most

sites responded to songs used in individual recognition, such as the

class-II whistles (with 41.0–48.4% of the responsive sites

responding; Fig. 3) and the individual-specific class-III motifs

(with 56.1 and 56.9% of the responsive sites responding; Fig. 3).

Most importantly, when we considered responses to each class

of stimuli, it appeared that both the proportion of responsive

neuronal sites (Fig. 4) and the magnitude of the neuronal responses

(as measured by Z scores; Fig. 5) significantly differed from one

class to another: responses were the strongest for the highly

individual class-III motifs, followed by the individual-specific class-

II songs, the species-specific class-I whistles, and finally the

artificial non-specific stimuli (two-way repeated-measures ANO-

VAs and PLSD Fisher tests, stimulus class effect: p,0.0001 for

both the proportion of responding sites and the Z scores, post-hoc

comparisons: p,0.05 for all pairwise comparisons in both cases,

Figure 2. Mean (+SE) percentage of responsive sites that responded to 1, 2, 3… or 23 (that is all) stimuli. Grey bars: pooled data of both
hemispheres; white bars: data of the left hemisphere; black bars: data of the right hemisphere.
doi:10.1371/journal.pone.0002203.g002
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no hemisphere effect, no interaction). These differences were

neither due to a specific bird (since within-bird comparisons

showed the same effect or trend in each bird) nor to one particular

subset of stimuli (as, with the exception of the species-specific clicks

in class III, proportions of sites responding to each stimulus

appeared to be relatively homogenous within each class; see Fig. 3).

Thus, intra-class variations appeared to be lower than inter-class

variations, especially for class-II and individual-specific class-III

stimuli which showed coefficients of variation (CVs) that were 3 to

more than 7 times lower than the CV observed across all stimuli

(mean CVs for class II = 21 and 22%, for class III w/o clicks = 12

and 9% and for all stimuli = 64 and 69%, respectively for the left

and right hemispheres).

Finally, for classes within which stimuli were familiar or not

(classes II and III, see Fig. 1), no effect of familiarity could be

observed: comparisons of unfamiliar, familiar and bird’s own songs

within classes II and III showed no significant difference between

these stimuli, neither in the proportion of responding neuronal

sites (see Fig. 3; two-way repeated-measures ANOVAs, p = 0.26

and 0.71 respectively for classes II and III) nor in the magnitude of

the neuronal response (two-way repeated-measures ANOVAs,

p = 0.21 and 0.60 respectively for classes II and III).

Figure 3. Mean (+SE) percentage of responsive sites that responded to each stimulus. Grey bars: pooled data of both hemispheres; white
bars: data of the left hemisphere; black bars: data of the right hemisphere. As the familiar and bird’s own class-II songs changed from one bird to
another, the data obtained for the two bird’s own whistles and for the two familiar whistles were combined. The dashed lines correspond to the
uniform expected distributions calculated using the standard method of predicting that the same proportion of sites (weighed by the mean number
of stimuli to which they responded) will respond to each stimulus.
doi:10.1371/journal.pone.0002203.g003
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Discussion

Our results show differential neuronal responses to ethologically

defined classes of songs that have different functions and social

values, in a non-primary, associative auditory area, both in the

number of neuronal sites responding, and in the magnitude of the

responses. Most importantly, these differential responses corre-

sponded to the functional classes of songs, with increasing

activation from non-specific to species-specific and from species-

specific to individual-specific sounds. Our data thus provide a rare

example of convergence between natural behaviour and neural

activity, and point to a potential neural substrate for categorization

of complex communication signals and vocal recognition of same-

species members.

These results suggest that NCM could be the place for sorting

sounds into categories in the songbird brain. Thus, although we

did not (and could not) test a continuum of sounds from one

category to another, the proportion of responding sites and the

magnitude of responses clearly differed between functional classes

of songs and less within them. Given the large structural variations

Figure 4. Mean (+SE) percentage of responsive sites that
responded to each class of stimulus. Grey bars: pooled data of
both hemispheres; white bars: data of the left hemisphere; black bars:
data of the right hemisphere. * p,0.001 compared to every other
groups (PLSD Fisher tests).
doi:10.1371/journal.pone.0002203.g004

Figure 5. Mean (6SE) Z scores obtained for each class of
stimulus. Grey bars: pooled data of both hemispheres; white bars: data
of the left hemisphere; black bars: data of the right hemisphere.
* p,0.05 compared to every other groups (PLSD Fisher tests).
# p,0.01 compared to class II and class III w/o clicks (PLSD Fisher
tests). 1 p,0.01 compared to non specific and class I (PLSD Fisher tests).
doi:10.1371/journal.pone.0002203.g005

Complex Sounds in the Brain
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within each class (e.g. between different individual-specific class-II

whistles or warbling motifs; see Fig. 1), it is therefore very likely

that NCM differential responses relied more on the stimuli

behavioural salience than on their acoustic structure. Another

element in this direction is the finding that clicks, which, contrarily

to other warbling motifs, are common to all starlings, and which

are normally produced within a sequence of other motifs, were

processed similarly to the very dissimilar structures that are pure

tones or white noise. Finally, the fact that familiarity did not

modify within-class responses demonstrates a capacity of gener-

alization, which is one of the cue properties of categorization.

Several authors have questioned the role of the NCM in the

emergence of the highly complex and song-selective responses

observed in higher-order song nuclei [16–22]. Here, we show that

NCM neurons appear to differentially respond to distinct classes of

songs corresponding to different levels of recognition (going from

species-specific to individual-specific). Interestingly, the most

effective stimuli at driving the neurons were the highly individual

class-III motifs, which are thought to be the basic units of

individual recognition in starlings [43,44]. NCM neurons could

therefore actually contribute to the processing resulting in the

strong selectivity for both spectral and temporal properties of song

observed in higher-order regions of the avian brain [45–47]. This

selectivity is known to arise during development in neurons that

are initially unselective [48]. One can therefore wonder what

happens at the level of the NCM, and how the differential

responses we observed develop. Evidence exists that NCM

neuronal responses are shaped by the animal’s prior experience

with song [49]. Moreover, we have shown experience-dependent

effects at the level of the main input to NCM (the Field L, which is

comparable to the mammalian primary auditory cortex) [50,51].

Given that, in a hierarchical scheme of sensory processing,

plasticity at the primary levels should influence higher-order

regions, it is very likely that NCM response properties are also

expressly determined by the animal’s unique experience. This will

have to be confirmed by studying how these response properties

develop, for example in birds lacking experience with one or

several classes of songs for which we here observed differential

neuronal responses. We already know that, in young starlings’

vocalizations, some classes of songs can be absent according to the

birds’ experience [36,38]. We also know that class-I songs are

learned later in development [40]. Interestingly, this class of songs

was the least effective natural class of songs in our study. We could

therefore imagine that NCM responses may modulate input to the

song system, thus playing the role of an ‘‘intrinsic perceptive filter’’

[52] and favouring learning of class-III songs first, class-II songs

next, and finally class-I songs. Such a mechanism would be

somewhat reminiscent of what is thought to happen in human

infants, who may use the acquired phonological categories of the

language to which they are exposed to guide speech development

[53].

The strong similarities that the process of vocal imitation

through which songbirds learn their vocalizations presents with the

mechanisms underlying the ontogeny of human language have

been known for long [9–11], and they have made songbirds the

most relevant biological model to understand language acquisition

and its neural correlates [54,55]. Much more recently, a

consortium of avian brain specialists has also unveiled similarities

in the brain structures of birds and mammals [56,57]. Some

authors have thus compared NCM to the superficial layers of

auditory cortex or to secondary mammalian auditory regions such

as the lateral belt in primates or Wernicke’s area in humans

[14,58]. We believe our study reinforces the parallel between these

structures, and widen the impact of studies on songbirds. Indeed,

we here observed differential representation of sounds with distinct

biological significance (as observed in the field), as seen in higher-

order fields of the auditory cortex of mammals, including humans.

For example, differences in the biological significance of calls, as

expressed in behavioural tests, can be seen in the activation of the

secondary auditory field of mice [59]. Neurons in higher-order

auditory cortical fields of monkeys prefer complex spectro-

temporal acoustic patterns compared to simple sounds [60].

Finally, functional imaging studies in humans have shown a

stronger activation in response to speech than in response to non-

speech sounds in areas outside the primary auditory cortex in the

temporal lobe [61]. Our results therefore show striking parallels

with what has been observed in mammals, including humans, and

point to an associative auditory area that provides starlings, and

probably other higher vertebrates, with a potential neural

substrate for the extraction of biologically relevant information

contained in complex acoustic signals used in vocal communica-

tion. Overall, by indicating that NCM as a brain area is a likely

candidate for sound categorization in birds, we believe that the

present study improves our knowledge of the representation of

sound significance in the songbird brain, and that it will participate

in comparing sound categorization in vertebrates.

Materials and Methods

Experimental animals
Six wild-caught male starlings were used. Birds were caught as

adults in Normandy (France) 2 years before the experiments, and

were kept together in an indoor aviary with food and water ad

libitum. Artificial light matching the natural photoperiod was

provided.

After recording every bird’s song repertoire in individual

soundproof chambers, a stainless steel pin was attached stereo-

taxically to the skull with dental cement, under halothane

anaesthesia. The pin was located precisely with reference to the

bifurcation of the sagittal sinus. Birds were given a 2-day rest after

implantation. From this time, they were kept in individual cages

with food and water ad libitum. During the experiments, the pin

was used for fixation of the head and as a reference electrode.

The experiment was performed in France (licence no. 005283,

issued by the departmental direction of veterinary services of Ille-

et-Vilaine) in accordance with the European Communities

Council Directive of 24 November 1986 (86/609/EEC).

Acoustic stimulation
In order to test responses of NCM neurons to both artificial

non-specific sounds and natural species-specific sounds corre-

sponding to distinct classes of songs, we used 23 stimuli including

(Fig. 1):

– 6 artificial stimuli (0.5-, 1-, 2-, 4- and 8-kHz pure tones and

white noise).

– 17 starling songs or song elements corresponding to the 3

classes described by Hausberger [28]:

* Class-I songs (universally shared male songs used in

species-specific and population recognition) were repre-

sented by 2 exemplars of each theme described by

Hausberger [28], recorded from a starling unknown to

the experimental birds (unfamiliar dialectal variants) [see

29,30].

* Class-II songs (used in individual recognition and

social partnership) [31] included 2 exemplars from an

Complex Sounds in the Brain
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unfamiliar bird, 2 exemplars from a familiar bird (a

familiar bird was a bird that had been caught at the

same time as the tested bird and that had spent 2 years

in the same aviary), and 2 exemplars from the tested bird

(bird’s own songs).

* Class-III songs (also called warbling; used in individual

recognition and in short-distance communication) in-

cluded individual-specific motifs from an unfamiliar bird

and from the tested bird, and one species-specific motif

described in all studies on starling song (clicks) [32,33].

Given that the class-I songs have been shown to be involved in

vocal exchanges in a variety of contexts [29], and that, in the bird’s

repertoire, each class-II song seems to convey individual—and

social—identity [31,62], we chose to have a good representation of

these songs in our stimuli. Therefore, the whole or most of the

whistled-song (Class-I and -II songs) repertoire of each bird was

represented in the stimuli. By contrast, given the high variability in

starling Class-III songs and the limitations of stimulus repertoire

sizes in electrophysiological experiments, we made no attempt to

exhaustively represent the Class-III song material of each bird,

and instead selected warbling motifs, which are thought to be the

fundamental perceptual unit of individual vocal recognition in

starlings [44].

The songs used were 398 to 1440 ms long (mean6SD

= 927.56314.4 ms), and the artificial stimuli were 100 ms long,

with 20 ms rise and fall times. The 23 stimuli were randomly

interleaved into a single sequence of stimuli that was repeated 10

times at each recording site. Note that, within this sequence,

different exemplars of the same class usually followed exemplars

from different classes, thus ensuring that the order in which the

vocalizations were played to the birds (which was the same for

every bird and every session) could not account for the observed

pattern. The duration of the whole sequence of 23 stimuli was

30 s. The mean interval between stimuli was 802.56399.2 ms

(mean6SD), with a minimum of 300 ms. Although the inter-

stimulus interval was reduced because of time limitations, stimulus

presentation mimicked natural sequences of whistle production.

Starlings tend to sing successions of whistles separated by 1 to

8 sec. Such sequences can include successions of up to 200

whistles, with repetitions of each whistle type in the repertoire.

According to the social context, these successions of whistles may

be followed by a sequence of continuous warbling or not [29,63].

Auditory stimuli were delivered in an anechoic, soundproof

chamber through a loudspeaker located 20 cm in front of the

bird’s head. The peak sound pressure at the bird’s ears was 85 dB

SPL for all the stimuli, which corresponded to a RMS of 65 dB.

Data collection
The systematic approach used to record neuronal activity in the

brain of our birds has been described in George et al. [64]. In

brief, we used a linear array of 4 microelectrodes made of tungsten

wires insulated by epoxylite, each spaced 625 mm apart (FHC

nuMX41XBWHC1). Electrodes impedance was in the range of 3–

6 MV.

Recordings were performed in awake-restrained starlings, in

one sagittal plane in each hemisphere, at 400–500 mm from the

medial plane. Recordings in the left and right hemispheres were

made alternately, at symmetrical locations. Each recording plane

consisted of 1 to 3 penetrations systematically placed at regular

intervals of about 230 mm in a rostrocaudal row (see Fig. 6),

between 100–905 and 2496–3245 mm from the bifurcation of the

sagittal sinus. In order to stay within the limits of the NCM, only

the most caudal penetrations (that is less than 2000 mm from the

bifurcation of the sagittal sinus) were kept for analyses. Despite this

precaution, we cannot rule out the possibility that a minor fraction

of our data derives from recordings outside of NCM. If so,

however, we might have expected to observe differences in the

Figure 6. Schematic representation of the positions of the
penetration and recording sites in one hemisphere (not to
scale). The numbers below and above the dots indicate the recording
sessions. A: Dorsal view. Black and grey dots indicate the penetration
sites. B: Sagittal view. Black and grey dots indicate the recording sites.
Modified from [64].
doi:10.1371/journal.pone.0002203.g006
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pattern of response within the sagittal plane, but we failed to

observe any such differences. Indeed, no particular pattern

appeared with respect to the stimuli to which the sites responded

(that is the same overall area was activated, whatever the stimulus

or class of stimulus).

Given that we used a linear array of 4 microelectrodes, each

plane was made of 4 to 12 electrode tracks. Only one session per

day, lasting 3 to 4 h, was made in each bird. Data were thus

collected over 2 to 6 days for each bird. Note that, between the

recording sessions, birds were placed in individual cages, with food

and water ad libitum, and a piece of plastic foam was placed over

the skull opening in order to avoid any damage to the brain.

Moreover, birds were weighed before each recording session, and

their weight remained stable over the whole data collection.

Neuronal activity was recorded systematically every 200 mm,

dorso-ventrally along the path of a penetration, independently of

the presence or absence of responses to the stimuli we used,

between 400 and 5600 mm from the surface of the brain. Among

the recording sites, some clearly responded to the stimuli, others

did not (see Results).

NCM neurons have been shown to habituate rapidly and

selectively to species-specific songs, and this habituation appears to

be long-lasting [16,17]. However, we did not observe any such

habituation effect in our recordings. This is very likely due to our

protocol. Indeed, our recordings typically started 400–2000 mm

below the surface of the brain, and responses began to be observed

between 800–3800 mm (mean6SE = 1892.36230.5 mm). This

means that birds had already heard each stimulus at least 20

times before we began to record responses to our stimuli.

According to Stripling et al. [19], electrophysiological responses

to song change immediately and dramatically after the first

stimulus presentation, and the spike rate declines slowly through-

out the first 20–30 presentations of a stimulus but then stabilize at

a level of about 60% of the initial response. It is therefore very

likely that our recordings were performed during this stable phase

of response.

All the data were collected between mid-February and mid-

March, at a time when wild starlings are very actively singing.

Note that, in starlings, the number of NCM cells expressing

ZENK in response to song playback does not vary with sex or

photoperiod [65].

Histology
The anatomical locations of the recording sites were determined

from reference marks consisting of Alcian blue injections made

after the last recording session through a glass micropipette, at 4

defined locations within the recording plane of each hemisphere.

Reference marks were made in the most anterior and posterior

penetrations, at 2 different depths. The precise coordinates of

these marks with reference to the bifurcation of the sagittal sinus

and to the surface of the brain were known. At the end of the

experiment, birds were given a lethal dose of urethane and

perfused with 0.9% saline followed by 4% formaldehyde. Dye

marks were located on 25 microns frozen sections stained with

cresyl violet.

Data analysis
At each recording site, before the stimulation, the experimenter

manually controlled the amplitude discrimination in order to limit

the recordings to the neuron exhibiting the biggest spikes, using a

custom-made time- and level-window discriminator [see also 64].

Although it has been argued that the amplitude is the most

effective feature for spike sorting [66; see also 67,68], we cannot

rule out the possibility that a small fraction of our recording sites

corresponded to multi-unit data consisting of a small cluster of 2–4

neurons. However, several studies found that analyses resulting

from single and multi units were similar [69,70].

The computer that delivered the stimuli also recorded the times

of action potentials and displayed on-line rasters of the spike data

for the 4 electrodes simultaneously. At each recording site,

spontaneous activity was measured during 1.55 s before the

presentation of the first stimulus of each sequence, which resulted

in 10 samples of spontaneous activity (that is a total of 15.5 s).

The neuronal activity related to the 10 repetitions of the

stimulus set, as well as the 10 corresponding samples of

spontaneous activity, were subdivided into 50-ms time bins of

activity, like in a previous study [71]. The activity level (number of

action potentials) within every 50-ms period was calculated.

The spontaneous activity measured during the 1.55 s preceding

the very first presentation of the stimulus sequence was used to

determine the frequency of occurrence of action potentials at rest.

For that, the 1.55-s sample was subdivided into 31 50-ms time

bins, each containing a given number of action potentials. A

binomial test was then used to determine whether the activity level

in each bin during the whole duration of each stimulus plus up to

100 ms after it had ended (to account for latencies in the neuron’s

responses) significantly exceeded the spontaneous activity level

observed during the 1.55 s preceding the first presentation of the

stimulus sequence, at the 0.05 level of significance. Due to the low

level of spontaneous activity, only excitatory responses were

detected. Note that this first test was in terms of the probability of

finding one or more action potentials in a bin [for more details, see

68]. For example, if the 1.55-s sample of activity preceding the

very first presentation of stimulus sequence contained four 50-ms

bins with 1 action potential, and 1 bin with 2 action potentials, the

probability to obtain one spike in one bin was 0.13 (that is 4

divided by the total number of 50-ms bins = 31), and the

probability to obtain two spikes in one bin was 0.03 (that is 1

divided by 31). In this case, all individual bins containing two or

more spikes were therefore considered as significant activations.

When a given number of spikes (e.g. two) showed a P#0.05 while

a higher number of spikes (e.g. three) had a P$0.05, then the next

higher number of spikes (e.g. four) exhibiting a P#0.05 was

considered as a reference to determine significant activation.

Then, each of the 10 stimulus repetitions was tested individually

and the same bin (with respect to the stimulus) had to reach the

responsiveness criterion independently over a significantly higher

number of repetitions than expected by chance (binomial test at

the 0.05 level of significance) to be considered as a reliable

response to the stimulus. The number of repetitions reaching the

responsiveness criterion expected by chance was determined from

the 10 samples of spontaneous activity collected during the 1.55 s

preceding each stimulus sequence and corresponded to the

maximum number of activations observed in the same bin. For

example, if the maximum number of trials without acoustic

stimulation showing significant activation at the same time bin was

one, it set P#0.1. We then used the binomial distribution to find

the number of trials k so that P(x$k) #0.05, where x is the number

of trials with acoustic stimulation showing significant activation at

the same time bin. In the example given, k = 4. The range of the

number of trials that were needed to find significance was four to

eight. A recording site was classified as responsive if and only if the

latter test was significant for at least one series of bin during a given

stimulus.

Only responsive sites were further analyzed. For that, we

calculated the proportion of sites responding to each stimulus, and

to each class of stimuli (see Fig. 3 and 4). Moreover, to assay the

strength of the neuronal responses, we used Z-scores (see Fig. 5). Z-
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scores are defined as the difference between the firing rate during

the stimulus and that during the background activity divided by

the standard deviation of this difference quantity [see 72]. This

measure gives a good idea of the strength of the response,

independently of the duration of the stimuli [see 67].

For statistical comparisons, we used the mean values calculated

for individual birds. Two-way repeated-measures ANOVAs and

PLSD Fisher tests (StatView 5.0 for Windows, SAS Institute Inc.)

were performed to test for potential differences between the two

hemispheres and the different classes of stimuli, independently for

proportions of sites and Z scores. For the proportions of sites, data

were normalized using an arcsin square-root transform. Unless

otherwise indicated, data are presented as mean6standard error

of the mean (SE).
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