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Abstract

Direct social contact and social interaction affect speech development in human infants and are required in order to
maintain perceptual abilities; however the processes involved are still poorly known. In the present study, we tested the
hypothesis that social segregation during development would prevent the proper development of a central auditory area,
using a ‘‘classical’’ animal model of vocal development, a songbird. Based on our knowledge of European starling, we raised
young female starlings with peers and only adult male tutors. This ensured that female would show neither social bond with
nor vocal copying from males. Electrophysiological recordings performed when these females were adult revealed
perceptual abnormalities: they presented a larger auditory area, a lower proportion of specialized neurons and a larger
proportion of generalist sites than wild-caught females, whereas these characteristics were similar to those observed in
socially deprived (physically separated) females. These results confirmed and added to earlier results for males, suggesting
that the degree of perceptual deficiency reflects the degree of social separation. To our knowledge, this report constitutes
the first evidence that social segregation can, as much as physical separation, alter the development of a central auditory
area.
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Introduction

Over the last decade the importance of social influences on

vocal development has become an evidence in a variety of species

[1,2]. Recent studies reveal how social cues affect speech

development in human infants [3], and also how direct social

contacts and interactions are required for infants to maintain

perceptual abilities to discriminate phonetic units [4]. Attention

and motivation are key elements in learning to communicate:

children involved in a social situation are more ‘‘awake’’ and

attentive, and therefore more prone to react and memorize [5].

Thus, early awareness of infant is a good predictor of their later

language skills [6]. Social interactions activate attentional

processes, enabling the processing and integration of information

[7], while the intersensory redundancy they provide facilitates

attentional focusing on certain aspects of the sensory stimulation

[8]. However, the processes involved in this link between

‘‘language brain’’ and ‘‘social brain’’ are still poorly known: the

interface between language and social cognition remains a mystery

[2].

Songbirds are good candidates for trying to unravel this

mystery: like humans, they are sensitive to social influences for

vocal learning and they are active in their choice of tutor [e.g. 9].

Again, the exact processes involved are not well known, but here

also social stimulations may enhance attention and arousal, as well

as motivation. According to Hultsch et al. [10], the positive effects

of social exposure on song learning could come from perceptual

mechanisms that make young birds more attentive to the tutors’

vocalizations. Indeed, socially deprived birds appear to show

hearing deficits [11]. Interestingly, visual stimuli may activate

auditory central parts of a songbird’s brain [12]. Moreover,

selective attention is one of the processes that may alter hearing by

changing the micromechanical properties of the cochlea [13]. This

could explain that vocal copying, as well as perceptual abilities, are

tuned on particular tutors [e.g. 4]. Social bonding appears

essential in many social songbird species, as well as in humans,

for vocal learning [14], and one wonders what consequences the

lack of such a bond would have. Children that interact more with

peers than with adults develop poorer language skills [15], and

neglected children show poorer language abilities than normally

developing children, but also than abused children [16]. The fact

that autistic children, who are characterized by impairments of

their social interactions, also present selective impairments in

attention to vocal-speech sounds [17], and abnormal cortical voice

processing [18], further emphasizes the link between social and

perceptual development.

In this present pioneering study, we aim to improve our

knowledge of this link by testing the hypothesis that social

segregation prevents the proper development of a central auditory

area. Our previous studies showed that neuronal preferences and
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general characteristics of development (proportion of auditory

sites, response types) of the field L (which is a homologue of the

primary auditory cortex of mammals) of male European starlings

depend not only on early auditory experience during development

[19], but also on social experience per se. Thus, young male

starlings that could hear adult song, but were socially deprived,

showed, when adult, deficits similar to those of auditory deprived

animals: larger auditory area, poor selectivity, altered tonotopy

[20], recalling findings for auditory deprived young rats [21]. Still

more intriguing was the finding that young males raised in direct

contact with adult males, although presenting a much better

structured auditory area than the above-mentioned deprived

animals, also showed consistent differences compared to wild-

caught males, with a higher proportion of auditory sites and lower

neuronal specialization. As these young males preferentially

developed bonds with their peers, this suggested that social

segregation from the adults, by lowering their selective attention

towards their song, may have induced these abnormalities [22].

Social segregation has also been suggested to be responsible for

limited recoveries in early deprived animals, when later they were

placed with adults [23].

In order to test this hypothesis, we needed a situation where

social segregation would be more clear-cut than in the previous

study with young males. Therefore, we focused here on young

females raised with male tutors. Female starlings are known to

form strong same-sex social pairs, to prefer to sing near another

female, and to learn song from same-sex tutors [22,24,25]. The

aim was not to examine whether the effects would differ according

to the tutor’s sex, but to ensure that placing young females with

male tutors would induce social segregation [26]; this has been

confirmed by behavioural observations and song recordings [22].

Electrophysiological recordings performed on these females when

they were adult revealed perceptual abnormalities that made these

male-tutored females resemble more socially isolated birds than

normal adult females. These findings agree with preliminary data

for males, and constitute, to our knowledge, the first evidence that

social segregation can, as much as physical separation [20], alter

the development of a central auditory area.

Results

We investigated the effects of adult male tutoring on the

development of auditory responses of six hand-raised female

European starlings (MT) when they had become adult (2 years

old). We compared these results to those obtained for four adult

wild-caught females (WC), by the same electrophysiological

procedure. The use of the same procedure for every bird, based

on systematic regular recordings in the same sagittal plane (2761

neuronal sites tested; X+SE~212:38+9:69 sites=bird; see mate-

rial & method), enabled us to compare the number of responsive

sites. This revealed clear differences between groups of birds.

Indeed, the proportions of auditory sites significantly differed

between the two groups (fig. 1A; MT ~93:29%+1:31,

WC~61:23%+0:64; Mann-Whitney, U = 0, p = 0.05); the MT

females showed a much higher proportion of responding sites than

the WC females. We compared these data to an additional group

of three females raised in social deprivation (SD, in pairs with one

young male or isolated; see material & method), but that had

heard the aviary vocal interactions through loudspeakers [see 22

for details]. Interestingly, the proportion of responsive sites of the

MT birds was similar to that of the SD females (fig. 1A;

SD~92:52+0:87). The MT females therefore appeared to be

closer to deprived animals than to adult wild-caught birds. Note

that their male peers were less affected as the proportions of their

auditory sites differed significantly from that of SD animals (92%/

98.5%), and male tutors (80%) [20]. These results clearly reflect

the degree of social segregation and vocal copying, as young males,

although staying mainly in same-age/same-sex groups, remained

more in proximity and copied more their tutors than did the

young females [22].

Neuronal specialization also differed between the two groups of

females: a majority of neuronal sites in WC females responded to 1

to 4 stimuli, whereas most neuronal sites in the MT birds

responded to all, or most stimuli, who again showed a pattern that

was closer to that of SD animals (fig. 1D).

The proportions of specialized neurons were estimated by

counting the recording sites that responded to 100% of the stimuli.

This method gives a good indication of the number of non-

specialized (or generalist) neurons in field L complex [19,20]. As

the fact that some types of stimuli (individual-specific whistle

themes) were not common to all subjects could bias this evaluation,

we compared here the responses to the six test stimuli that were

common to all subjects (class I whistles). This analysis confirmed

the preceding results: more auditory sites responded to only one

stimulus in WC females than in MT females (WC~7:03+1:39;

MT ~3:77+0:75; Mann-Whitney, U = 0, p = 0.05; fig. 1B),

whereas generalist sites (responses to all stimuli) were clearly more

numerous in MT females than in WC females

(MT ~62:44+2:23, WC~27:9+1:59, U = 0, p = 0.05 fig. 1C).

Again, results for MT females were similar to those for SD animals

(SD~62:93%+1:97). Note that, our results for MT males raised

under the same conditions were intermediate: they presented a

lower proportion of generalist neuronal sites than did SD animals

(37%/46%), but a higher proportion than male tutors (2%) [20].

Finally, PSTHs greatly differed between the two categories of

animals subjects (fig. 2): as WC females showed a typical pattern of

phasic selective responses to precise parameters of the stimuli,

whereas MT animals showed a tonic, non-selective pattern. Again

characteristics of MT females appeared close to those of SD animals.

Discussion

Young female starlings raised with only peers and adult male

tutors neither established close social bonds with males, nor did

they copy their songs, restricting song sharing to peers that were

equally inexperienced birds [22]. When tested as adults, it

appeared that these females showed abnormalities in neuronal

responses to the playback of species-specific stimuli in the main

central auditory area (Field L), compared to WC adult females.

Several features were affected: they had 1) a larger auditory area

(larger proportion of responsive sites), 2) a lower proportion of

specialized neurons (sites responding to only one stimulus) and 3) a

larger proportion of generalist sites (sites responding to all stimuli),

associated with tonic, non-selective responses. Comparison with

available data on SD birds showed similar abnormalities,

suggesting that social segregation from adults may induce the

same effects on perceptual development as a physical separation.

These results are consistent with previous data on male peers who

were, however, ‘‘intermediate’’ in that they differed not only from

WC adults but also from SD young males. This reflected an

intermediate social situation where young males, although forming

mostly a same-sex/same-age group, showed some proximity with

the adult males and copied some of their songs [20,22].

These findings therefore strongly suggest that the degree of

deficiency reflects the degree of social separation, be it physical or

merely social segregation.

Overall, the observed abnormalities were similar to those

described for other acoustically-deprived animals. Larger auditory
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areas have been observed in rats [21] and starlings [19] raised

without proper auditory stimulation. Young male starlings

deprived of auditory experience with adult song, also showed,

when adult, a higher proportion of generalist, and lower

proportion of specialized neuronal sites [19]. Interestingly, similar

impairments were observed in birds that could hear adult song but

had no contact with adults [20].

One could argue that the acoustic environment in the

laboratory did not offer the variety of sounds that WC animals

may experience in the field. However, first, the aviaries were

placed in rooms with large windows allowing birds to hear sounds

from outdoors (birds, dogs, cars etc., the usual sounds of a

university campus) as well as from indoors, such as human voices,

doors, other bird species, indicating that their acoustic environ-

ment was not totally impoverished. Second, while the acoustic

environment could explain to some extent the differences observed

between WC and MT females, it cannot explain the differences

observed in males. Moreover, further experiments have shown

that, under the same conditions, young males and females can

develop normal song repertoires if they are placed in a dyadic

situation with an adult, that is forced bonding, and do not if social

bonding does not occur [26]. Finally, we have observed that young

Figure 1. - A - Proportion of neuronal sites responding to at least one stimulus. The difference between wild-caught females (WC~61:23%+0:64)
and male-tutored females (MT ~93:29%+1:31) was significant (Mann-Whitney, U = 0, p = 0.05), but the proportion did not differ significantly
between male-tutored and socially-deprived females (SD~92:52+0:87). - B & C - Proportion of sites that responded to only one stimulus (B) and to
all stimuli (C). These values were obtained using 6 class I whistles that were common to all birds. The difference between wild-caught and male-
tutored females was significant in both cases (B- MT ~3:77+0:75, WC~7:03+1:39; Mann-Whitney, U = 0, p = 0.05 and C- MT ~62:44+2:23,
WC~27:9+1:59, U = 0, p = 0.05). Results for male-tutored females and for socially deprived birds did not differ significantly. - D - Proportion of
neuronal sites responding to the 1, 2..or all stimuli used. A majority of neuronal sites responded to 1 to 4 stimuli in the wild-caught females (WC),
whereas most neuronal sites responded to all or most stimuli in the male-tutored (MT) as well as in the socially-deprived birds (SD).
doi:10.1371/journal.pone.0002194.g001
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females do not learn better from playbacks of female songs than

from playbacks of male songs, showing that mere auditory cues are

very unlikely to be involved in sexual lines of learning [27].

Therefore, although acoustic conditions could explain some part

of the differences observed between experimental and WC birds, it

cannot fully explain it, which leaves room for the impact of social

influence.

Central deficiencies in the auditory area clearly reflected

differences in vocal copying according to social experience, both

in the females that are described here and in the males that were

raised with them. Thus, the fact that young males raised with an

adult male did not copy much of the latter’s song [20,22] suggested

that social segregation may have altered selective attention towards

the tutor. The present results for females, which are even less

prone to copy from adult males than young males, further

reinforce this hypothesis. Since social influences may be mediated

by attentional processes [22,28,29], the processing and integration

of sensory information may have been altered [5,7]. Selective

attention has been shown to alter hearing by changing the

micromechanical properties of the cochlea [13]. Moreover, Sturdy

et al. [11] showed that zebra finches require social interactions

with conspecifics to develop normal auditory perceptual abilities.

Finally, Humans who lack experience with a language during

development are considered ‘‘deaf’’ to some non-native language

characteristics [30], and this is confirmed by Kuhl et al.’s [4]

recent findings that infants need direct social interactions to

maintain discriminative abilities.

The aim of the present study was to investigate in more depth

the effects of social segregation on neural development suggested

by previous studies [20,23]. For that, we studied an extreme

situation that we knew would not allow social bonding, even

between birds in the same aviary, that is young females raised with

male tutors [22,24]. This extreme situation yielded the expected

results, and confirmed preliminary findings for males. As we do

not yet have data for females raised with adult females, no

comparisons can be made. However, we expect that this situation

would yield more ‘‘mixed’’ results, like those obtained for young

males [26].

This pioneering study shows that young birds, when socially

segregated from adults, exhibit abnormalities in the development

of their central auditory area, and this to the same extent as

socially-deprived animals. This confirmed previous indications in

this direction. Mere environmental acoustic conditions cannot

explain the entire array of evidence that this study, added to earlier

Figure 2. Examples of PSTHs calculated from three consecutive recording sites along a single penetration in a wild-caught (WC), a
male-tutored (MT) and a socially-deprived (SD) Female. This example shows a pattern of selective responses at precise parameters typical of
wild-caught birds: neurons responded to a restricted range of frequencies, shifting as frequency changed. While in male-tutored and socially-
deprived birds, neurons were activated during the entire duration of the stimulus. The sonogram of the whistle used as stimulus is shown below the
PSTHs.
doi:10.1371/journal.pone.0002194.g002
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reports [20,23], has us enabled to present. The present results

certainly add to the evidence that social and vocal brains are

linked [2] and they shed new light on findings such as those of

Gervais et al. [18] showing that socially-impaired autistic children

present abnormal cortical voice processing. Indeed, the lack of

social bonding due to the autistic syndrome might be responsible,

through a lack of selective attention, for the perceptual

impairments.

Further studies will be necessary to confirm our results that are,

to our knowledge, the first ones to suggest an impact of ‘‘social

isolation’’ on sensory development, and they have important

general implications that go far beyond birdsong research.

Materials and Methods

Experimental animals
The experiment included two series of animals. (1) A ‘‘core’’

experiment with two groups of birds: one group of four wild-

caught (WC) female starlings and one experimental group of six

aviary-raised female starlings. The WC females were our

‘‘controls’’ as, in their wild environment; they had benefited from

both female and male influences and were likely to have been able

to learn their song from adult females [24]. The experimental

females were raised in aviaries with peers (males and females) and

only male adults [see 22]. The aviaries were in a room where all

laboratory noises as well as external sounds (human voices, street

traffic …) could be heard. (2) For a larger comparison we used

additional data from three socially-deprived birds: one female

raised in a pair with a male and two females raised in isolation in

sound-proof chambers [22]. As no differences were evidenced

between these two groups (e.g. mean proportions of responsive

sites: raised in isolation = 92.1061.32 and pair raised = 93.37),

data from these three birds were pooled (socially deprived birds:

SD). Note that, these birds could hear, through loudspeakers, the

vocalizations emitted in the aviaries.

Data for song production of the experimental birds have been

described in Poirier et al. [22] and revealed that the male-tutored

(MT) females copied mainly songs of same-sex peers and very little

songs of adult males.

Stimuli
When the animals were 2 years old, neuronal responses to 22

species-specific stimuli were electrophysiologically tested, while the

birds were awake and restrained, (fig. 3). The song repertoire of each

female was recorded by placing them in individual sound-proof

chambers and automatic song recordings were made until the

complete repertoire of each bird was recorded [22]. The auditory

stimuli were a variety of species-specific songs chosen for their

behavioural relevance. Hausberger [31] described three classes of

starling song. Class-I whistles are simple, very loud, and mostly

unitary songs. They correspond to four whistle types, namely the

inflection (IT), the harmonic (HT), the simple (ST), and the

rhythmic (RT) themes, that are found in the repertoires of all male

starlings in most populations. These whistles are the basis of song-

matching interactions, and they are clearly categorized and

recognized by the birds, despite local variations [32]. Only one of

them (HT) is occasionally produced by females. Class-II whistles are

loud and simple structures composed of one or several notes. They

are mostly individual-specific within a colony, but they can be

shared by close social partners, both males and females [24,33].

Finally, class-III songs (also called warbling) are sung in long,

complex, and quiet sequences composed of three parts containing

motifs that are repeated one to several times with increasing tempo

[34,35]. Most of the motif types are individual-specific, but the

second and third parts of a sequence include clicks and high-pitched

trills that are found in all male, but not in female sequences.

Given that we were mostly interested in the songs’ social

implication, we decided to put more emphasis on whistles, which

are more specifically involved in social exchanges [see, e.g.,

31,32,33] and not on warbling song, which is involved in mate

choice and breeding [34,35]. Starlings tend to sing successions of

whistles separated by 1–8 seconds. Such sequences can include

successions of up to 200 whistles, with repetitions of each whistle

type in the repertoire (Fig. 4). According to the social context,

these successions of whistles may be followed, or not, by a

sequence of continuous warbling [32,36].

Class-I and class-II whistles were chosen for their social relevance:

we used each type of class I universal whistles that are usually used in

male-male interactions, and unfamiliar, familiar and bird’s own

exemplars of class II individual-specific whistles [31]. This covered

the whole range of starlings’ whistle repertoires [37]. Familiar

whistles were whistles that had been heard by the birds (adult songs)

but that were not present in their own repertoire. The stimuli were

broadcast with intervals of 300 ms. This time interval was sufficient

to avoid adaptation to stimuli. This method has been used for

several decades and no adaptation has been reported in the Field L

using this kind of stimulus set [38]. The stimulus set was presented in

an anechoic, sound-attenuating chamber through a loudspeaker

placed 20 cm in front of the bird’s head. The maximum sound

pressure at the birds’ ears was 60 dB SPL measured by a sound

calibrator (LEA S.S.T.4S). The stimulus set was repeated 10 times

at each recording site.

Multi-unit recordings
All neuronal recordings were made during the non-breeding

season (autum and winter) in order to avoid possible seasonal

influences, as known in other songbirds.

Figure 3. Examples of stimuli used in the experiment [20]. Every
stimulus set included class-I universal whistles (RT: rhythmic theme’s
introductory notes - 3 examples from the 3 adult male tutors; ST: simple
theme; IT inflection theme; HT: harmonic theme), and class-II individual
whistles (whistles sung by familiar and unfamiliar males, and whistles
from the bird’s own repertoire). While all birds had the same class-I
whistles, class II whistles differed among birds.
doi:10.1371/journal.pone.0002194.g003
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Multiunit recordings were chosen here to characterize neuronal

preferences in the field L. This recording method is very stable and

allowed us to record activity from a large number of neuronal sites

(X+SE~212:38+9:69 sites=bird). Whereas such recordings do

not enable precise evaluation of single cell selectivities, they do give

a gross idea of the local neuronal ‘‘preferences’’ [39,40,41,42].

Before the neurophysiological experiments, a stainless steel well

was implanted stereotaxically on the bird’s skull under halothane

anaesthesia (0.4 l/min of carbogene - 95% O2 – 5% CO2 -

saturated in halothane - 2bromo-2chloro-1,1,1trifluoroéthane -

and 0.6 l/min of carbogene). After implantation, the birds were

allowed to rest for 3 days, during which they were kept in cages

with conspecifics. During the experiments, the well was used for

fixation of the head and as the indifferent electrode.

The electrodes were made by Frederick Haer & Co. (Bowdoin-

ham, USA) and consisted of a tungsten wire insulated by epoxylite,

with a fine tip (angle 10–15u). The range of the electrode impedance

was 2–4 MV. An Amiga 4000 computer was used to record action

potentials. A home-made analogue/digital card was used to digitize

the recordings (22 kHz, 8 bits), and action potentials were counted

with a programmed window discriminator.

The implant was located precisely with reference to the

bifurcation of the sagittal sinus: 2.5 mm rostral and 1 mm in the

left hemisphere. These values were the coordinates of the centre of

the recording plane that was parallel to the sagittal plane. The

recording planes were at precisely the same locations for all birds.

Recordings were performed at 30 to 40 sites along the path of one

electrode penetration. One recording session usually lasted about

3 hours. During recording sessions, the birds were awake and kept

in a jacket in order to limit their movements. The recorded plane

covered a large part of field L centred on the L2 sub-area

described in wild starlings [40]. Penetrations within one recording

plane were 200 mm apart. Recordings started, for each penetra-

tion, 600 mm below the brain surface, at a site that gave no

auditory response, and continued until 4000 mm below the brain

surface, where auditory responses were no longer detectable. The

recording plane was considered completed when no response was

obtained in both outermost penetrations. Twelve penetrations

were necessary to complete a recording plane for most animals.

The dimensions of the recording plane were 2.4 mm caudo-rostral

and 3.6 mm dorso-ventral (8.64 mm2 area). After the last

recording session, four recording sites were marked by injecting

alcian blue to provide orientation points to check the location of

the electrode tracks in the forebrain [e.g. 19,39,40].

Data analysis
Experimental data were recorded with a temporal resolution of

0.1 ms. Peri-stimulus time histograms (PSTHs) were calculated,

using a temporal resolution of 2 ms, for all the recording sites and

all the stimuli. Spontaneous activity was determined from the

recording of activity during 100 ms before the beginning of each

auditory stimulus. To determine whether there was an activation

or an inhibition, the evoked activity was compared to the

spontaneous activity using a Student-Fisher t test. We decided

that there was activation when p was below 0.01. Since we were

trying to determine whether there was a response or not, we were

confident in our results using a 0.01 level. However, given the low

number of spikes during spontaneous activity (2–3.5 spikes/s), the

contrast between spontaneous activity and inhibition was difficult

to confirm statistically. We therefore decided to use a p-value of

0.05 for inhibition, which is still a good level [43].

Different measures of responses were made:

– Proportions of responsive sites that differ according to early

experience: these proportions are larger in inexperienced

animals [19,21].

– The degree of specialization of the neurons, which was difficult

to characterize because of the difficulty to evaluate selectivity

properly [44]. We chose an indirect evaluation of neuronal

specialization: -1- the proportion of neuronal sites that

responded to only one stimulus (specialized sites) and -2- the

proportion of sites that responded to all stimuli (generalist sites).

This measure proved to be useful in a previous study on

developmental plasticity [19].
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