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Abstract 
 
The use of herbicides is increasing around the world. The benefits achieved by the use of these herbicides are 

indisputable. Despite their importance in agriculture, herbicides can be dangerous to the environment and the 

human health, depending on their toxicity, and the degree of contamination. Also, it is essential and evident that 

the risk assessment of herbicides is an important task in the environmental protection. The objective of this work 

was to investigate and implement an Artificial Neural Network (ANN) model for the prediction of acute oral 

toxicity of 77 herbicides to rats. Internal and external validations of the model showed high  and   values, 

in the range 0.782 – 0.997 for the training and the test. In addition, the major contribution of the current work 

was to develop artificial neural network-based equation to predict the toxicity of 13 other herbicides; the 

mathematical equation using the weights of the network gave very significant results, leading to an R2 value of 

0.959. The agreement between calculated and experimental values of acute toxicity confirmed the ability of 

ANN-based equation to predict the toxicity for herbicides that have not been tested as well as new herbicides. 
Key words: acute oral toxicity, ANN-based equation, domain applicability, herbicides, prediction.  

 
 
1. Introduction 
 

Herbicides are widely used in agriculture. They are indispensable to the farmer in his fight against plant 

pests and diseases. They are also used to slow the spread of insects. The benefits achieved by the use of 

herbicides are indisputable. Despite these advantages, several environmental dangers and some potential risk 

have emerged from the excessive use of these compounds. For nearly fifty years, they have been detected in the 

water of rivers and groundwater [1-10]. They are also found in agricultural and animal products (wheat, corn, 

fruits, vegetables, cereals, tea, fish, milk, eggs, meat, honey and medicinal herbs, etc.) [11-14]. As a result, this 

contamination could give rise to serious health and safety problems for consumers. 

Herbicides have a major drawback such as toxicity. Long-term exposure to herbicides can cause harm 

to human life and can disrupt the functioning of various organs in the body. This significant relationship between 

exposure to herbicides and some chronic diseases has been the subject of several scientific publications. 

Exposure to these persistent pesticides has been associated with health effects including cancer, headache, skin 

and eye irritation, immune system problems, stomach, kidney, Parkinson and Alzheimer’s disease, reproductive 

difficulties, birth defects, diabetes, cataracts and anemia [15-22].  As seen, humans and the environment are 

exposed to hundreds of herbicides. The pollution caused by these compounds has become an important issue 

affecting the survival and the development of humains. It is evident that the risk assessment for herbicides can 

provide a precaution against the corresponding pollution. In environmental risk assessment, knowledge of the 

acute toxicity and chronic toxicity is a basic need [23-25].  

Development of in silico predictive methods that are designed to reduce and replace the use of animals 

to predict biological activity of chemical compounds is a widely explored area of predictive toxicology [24]. 

This pathway is imposed for several reasons: economic considerations, reduction of time constraints, and 

pressure of public opinion [26]. These methods, which include Quantitative Structure–Activity Relationship 

(QSAR) has been used in medicinal chemistry and computational toxicology for a long time, find growing 

applications in chemical risk assessment and are indispensable tools for ecotoxicological risk assessment [27, 
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28]. Of the fact that is a promising technique, an increasing interest in the use of QSAR for environmental risk 

assessment and for predicting toxicity [29, 30] is observed. 

Quantitative structure–activity relationship (QSAR) models are increasingly used in toxicology, 

ecotoxicology, and pharmacology for predicting the activity of the molecules from their physicochemical 

properties and/or their structural characteristics. A QSAR model is a mathematical relationship between the 

chemical’s quantitative molecular descriptors and its toxicological, biological, and physicochemical activities. 

These descriptors are then correlated with a toxicological response of interest through a suitable statistical 

approach such as linear multiple regression, discriminant analysis and artificial neural networks [31]. The 

establishment of QSAR models involves a number of steps and conditions: accuracy of the input data, obtain and 

select the relevant descriptors capable to reflect the structure of the compounds, selection of appropriate 

statistical tools and checking the validity and stability of the suggested model. Reference books dealing with 

fundamental concepts of QSAR modeling and their basic concepts for applications in risk assessment are 

currently available in the literature [32, 33]. 

QSAR studies conducted by the use of artificial neural network (ANN) modeling approaches have been 

developed for a large number of toxic endpoints with varying methodologies and varying degrees of success. 

Their applications encompass both the human health effects and the environmental impact of chemicals [34]. In 

recent years, researchers have used different modelling techniques such as artificial neural networks (ANN) to 

reduce the numbers of expensive, complicated and time-consuming tests. Predictive models based on ANN have 

been studied extensively in many areas of medicine [35]. Advantageously, a neural network (NN) model has a 

distinctive ability of learning nonlinear functional relationships. It does not require any prior structural 

knowledge of relationships between important variables and processes to be modeled.  

There are many reports about QSAR prediction of pesticides toxicity [36-38]; however, among this 

abundant literature, studies specifically dedicated to QSAR prediction of herbicides acute oral toxicity appear 

rather limited. So far, no artificial neural network-based equation has been developed to predict acute oral 

toxicity of herbicides on rats. Currently, testing for acute oral toxicity is still required in the toxicological 

assessment of chemicals and agrochemicals worldwide [39]. Consequently, the aim of this study is to develop an 

ANN-based equation to predict acute oral toxicity of herbicides on rats.  

The step one of this work is to develop a QSAR model that could be used to predict oral acute (LD50) 

toxicity of a diverse set of 77 herbicides on rats. The QSAR model established by using artificial neural networks 

and molecular descriptors satisfies the guidelines required by the Organisation for Economic Cooperation and 

Development (OECD). The basic requirements to develop a QSAR model were respected. The first work is to 

use herbicides with toxicity data with high quality obtained under the same experimental conditions (i.e., the 

same protocol). Selection of non-redundant and non-correlated descriptors is the second requirement. Third, the 

statistical tool used to derive the QSAR can be in some cases a source of mistakes and hence the commercial 

software Statistica was used. Finally, the model is evaluated both in terms of her robustness as well as in terms 

of her prediction performances and its applicability domain (AD). 

The second step of this study is to calculate the oral acute (Lethal Dose: LD50) toxicity of other 13 

herbicides based on the developed mathematical equation using the weights of the network. The accuracy of this 

formula based on ANNs was investigated and the results were very encouraging. 
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2.   Materials and Methods 

2.1. Rat LD50 data 

It is well known that high-quality experimental data are essential for the development of high quality 

QSAR models [40]. If they are unreliable, the model will be unreliable. The rat lethal dose 50 (LD50 - rat, male 

via oral exposure) values were retrieved from Pesticide Properties DataBase (PPDB) [41]. The LD50 correspond 

to the concentration (mg/kg) of pesticide that leads to the death of 50% of rat. The LD50 is one way to measure 

the short-term poisoning potential (acute toxicity) of a material. All values of oral acute toxicity were first 

converted into mmol/kg body weight and the 1/LD50 [(mmol/kg)-1] as the endpoint was examined. The initial 

database that included 146 herbicides was rigorously reviewed and “cleaned” by removing pesticides whose 

LD50 was not experimentally determined or whose LD50 was not determined in the same experimental 

conditions. A total of 90 herbicides with experimental data were selected to form the final database and was 

divided into two sets. The first set with 77 herbicides (Table 1) was dedicated to develop the QSAR model (64 

herbicides for training, and 13 herbicides for test set. The second set which included 13 herbicides that had not 

been used for the development of the QSAR model, was left for the prediction of oral acute LD50 based on the 

developed mathematical formula using the weights and the bias of the network.  

2.2. Descriptor calculation 

All descriptors were obtained from the online program E-Dragon 1.0 (www.vcclab.org). The structure 

files of compounds under study, which are the input files for Dragon calculation, cannot be generated in Dragon. 

The structures have been drawn in SMILES (Simplified Molecular-Input Line-Entry System) notation. SMILES 

notations were obtained from the Pesticide Properties DataBase (University of Hertfordshire, 2007–2013). 

Herbicides compounds represented by SMILES format was used as input for calculation of 1666 molecular 

descriptors with the online software, E-DRAGON. The software converted the molecules from SMILES notation 

to 3-dimensional structures using the algorithm derived from CORINA [42]. Twenty types of descriptors were 

calculated by the Dragon software, like: (1) constitutional descriptors; (2) topological descriptors; (3) walk and 

path counts; (4) connectivity indices; (5) information indices; (6) two dimensional (2D) autocorrelations; (7) 

edge adjacency indices; (8) Burden eigenvalue descriptors; (9) topological charge indices; (10) eigenvalue-based 

indices; (11) Randic molecular profiles; (12) geometrical descriptors; (13) RDF descriptors; (14) 3D-MORSE 

descriptors; (15) WHIM descriptors; (16) GETAWAY descriptors; (17) functional group counts; (18) atom-

centered fragments; (19) charge descriptors; and (20) molecular properties.  

2.3. Selection of relevant descriptors 

An important step in QSAR model is to select robust and informative descriptors from a variety of 

descriptors. Several methods to simplify a database are used; for example the Principal Component Analysis 

(PCA), curvilinear component analysis, or the method of Gram-Schmidt orthogonalization can be used. The 

method used to select the most significant descriptors was described previously [43, 44]. In the first step, 

invariant descriptors, namely those with absent values (represented by the code ‘‘999’’), were manually 

removed. Next, any descriptor that had identical values for >75% of the samples and any descriptors with a 

relative standard deviation<0.05 were removed. Finally, half of the descriptors showing an absolute value of the 

Pearson correlation coefficient > 0.75 were also removed. The number of descriptors obtained after the selection 
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was 76. For relevant descriptors selection, stepwise regression was then used [45]; in this procedure, a variable 

that entered the model in the earlier stages of selection may be deleted at the later stages. Stepwise addition of 

further descriptors was continued to find the best multi-parameter regression models with the optimal values of 

statistical criteria (highest values of correlation coefficient R2). Stepwise regression were performed by the 

STATISTICA software (STATISTICA 8.0, Tulsa; StatSoft, Inc, OK, USA.) and XLSTAT software. Eighteen 

descriptors were selected with stepwise regression. However, it was important to reduce the number of 

descriptors [46, 47]. Finally, the number of descriptors used to develop the model was 8: HATS1e, HATS1v, 

ISH, MATS1m, Gats3p, R8u, Gats6m and H-046.  

2.4. Model development 

There are plenty of different models of neural networks to choose from, each one having its specific 

properties and advantages for its particular application. One of the most successful and most popular is the feed-

forward Multi-Layered Perceptron (MLP) [48-50]. The structure of an MLP consists of one input layer 

(corresponds to the independent variables: descriptors), one intermediate or hidden layer, and one output layer 

corresponds to the dependent variable (oral toxicity). Each layer can have a number of neurons, which are 

connected linearly by weights to the neurons in the neighboring layers. ANN calculations were performed by the 

STATISTICA software (STATISTICA 8.0, Tulsa; StatSoft, Inc.) to study the structure–activity relationship of 

various herbicides. A set of 8 descriptors were used as input parameters of the network.  

2.5. Model validation 

Validation is a crucial and important aspect for determination of reliability of models. There are several 

approaches of validation including internal validation and external validation. Recent studies [51] indicated that 

the internal validation is considered to be necessary for model validation. Recently, Roy et al. [52] proposed a  

metrics as additional validation parameters. The metrics can be computed from 

http://aptsoftware.co.in/rmsquare/. 

The most important statistical parameters used in our study to check the performance of the model are the root 

mean square error (RMS), the determination coefficient (R2), the cross validated correlation coefficient (Q2), 

 values for the training and test set, and  values for the overall set. In the cases where 

the size of the test set is small, the  (test set) may be less reliable and highly dependent on individual test set 

observations. Thus, the  statistical may be used, since it is based on both test set and training set 

predictions. Therefore, the result is based on the prediction of a comparably large number of compounds [53]. 

The statistical parameters are collected in Eqs. (1) - (8). The terms which are utilized in these equations are 

defined below: 

  Observed (experimental) value of Y 
 Predicted Y-value of training set, test set or validation set 

 Number of compounds in the data set (training, test, validation) 
 Average of  

 Squared correlation coefficient between the observed and predicted value of compounds 
               with intercept. 

 Squared correlation coefficient between the observed and predicted value of compounds 
               without intercept. 

 It bears the same meaning as   , but uses the reversed axes. 
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2.6. Applicability domain 

Application domain is defined as the “substantiation that a model within its domain of applicability 

possesses a satisfactory range of accuracy within the intended application of the model. QSAR models are only 

valid in the domain they were trained and validated. Extrapolation is dangerous and can lead to grossly 

erroneous model predictions [54]. The determination of AD is therefore of great importance [55]. The AD is a 

theoretical region in the space defined by the descriptors of the model and the modeled response for which a 

given QSAR should make reliable predictions. 

There are various approaches for determining AD of QSAR models. Each method has its own merits and flaws. 

As part of our work, we used for comparison purposes two methods: the first is the leverage approach (Williams 

plot) which has been largely employed to identify outliers and the compounds residing outside the AD. The 

second method is a simple statistical approach to define AD of a QSAR model. This approach, which has been 

reported by Roy et al. [56], is very easy, but she performs well in comparison to the leverage approach.  

2.6.1 Applicability domain using leverage approach 

The leverage hii is defined as follows [57]: 

n
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where xi is the descriptor value of the ith object, and   is the average value of the descriptor in the training set, 

and n is the number of substances in the training set. The warning leverage h* is, generally, fixed at 3(p + 1)/n, 
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where n is the total number of samples in the training set and p is the number of descriptors involved in the 

correlation.  

The applicability domain (AD) of QSAR model is defined from the Williams plot. In this plot, the two 

horizontal lines indicate the limit of normal values for Y outliers (i.e. samples with standardized residuals greater 

than 3.0 standard deviation units, ±3.0s); the vertical straight lines indicate the limits of normal values for X 

outliers (i.e. samples with leverage values greater than the threshold value, h > h*). For a sample in the external 

test set whose leverage value is greater than h*, its prediction is considered unreliable, because the prediction is 

the result of a substantial extrapolation of the model. Conversely, when the leverage value of a compound is 

lower than the critical value, the probability of accordance between predicted and experimental values is as high 

as that for the compounds in the training set [58]. 

2.6.2 Applicability domain using standardization approach 

This approach is a simple method for defining outliers (in the case of the training set) and the 

compounds residing outside the AD (in the case of the test set). An open access standalone application has also 

been developed for the calculation of the AD for QSAR models. The software can be accessed from the 

following link: http://dtclab.webs.com/softwaretools or http://teqip.jdvu.ac.in/QSAR_Tools/. The background 

theory, the algorithm and methodology and the advantages of the proposed approach are available in literature 

[56]. 

3. Results and Discussion 

3.1. Selection of relevant descriptors 

The selection of the optimum number of descriptors was shown in Fig. 1. The data set of descriptors 

obtained after selection by the stepwise method was composed of 18 descriptors. However, since the number of 

herbicides in the training set was 77, it was important to reduce the number of descriptors until the ratio "number 

of herbicides/predictors"’ is ≥ 5. To select the most important descriptors and the optimal number, the influences 

of the number of descriptors on the statistical parameters (R2, Q2 and RMSE) were investigated for 1–18 

descriptors. The selection of the optimum number of descriptors was shown in Fig.1. Fig.1 shows that beyond 8 

descriptors, there is no significant improvement of the statistical parameters. For these reasons, the number of 

descriptors used to develop the model was 8. The descriptors which obtained from stepwise multiple linear 

regression were HATS1e, HATS1v, ISH, MATS1m, Gats3p, R8u, Gats6m, H-046, respectively. Order to study 

the correlation between the selected descriptors, the correlation matrix has been established using the XLSTAT 

software. The value of the correlation coefficient of each pair of selected descriptors was < 0.639, which means 

that the selected descriptors were independent. 

Descriptors used in our model have been used in previous QSAR models in the literature, but this 

combination of descriptors has never been mentioned. A QSAR model with high statistical quality for predicting 

toxicity of phenols was developed by Habibi-Yangjeh [59] with MATS1m and H-046. A QSAR model to predict 

the toxicities of a diverse set of pharmaceuticals to fish developed by Tugcu [60] employed Gats3p. Moreover, 

some authors [61-64] found that among the descriptors that affect the toxicity of the compounds studied, a 

substantial number belong to the categories Getaway descriptors, 2D autocorrelations, and Atom-centered 
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fragments. In our study, the eight relevant descriptors involved in the model also belong to this category. It 

would seem that the descriptors in this category have major significance in the toxicity of herbicides. 

3.2. QSAR modeling 

In this investigation, the tanh (hyperbolic tangent) function was used as a transfer function of hidden 

layer and a logistic function for the output layer. The number of hidden neurons was optimized by trial and error 

procedure in the training process. One output neuron was used to represent the observed LD50. The network was 

trained using the BFGS quasi-Newton methods algorithm. To optimize the number of nodes in the hidden layer, 

several calculations were performed with different numbers of hidden nodes (1–30). The 77 herbicides were 

divided into two groups: training and test set composed of 64 and 13 herbicides, respectively.  This network 

consisted of 8 inputs and one output for LD50. Then, an ANN with architecture {8-12-1} was generated.  

The predictive results from the ANN model for the entire dataset (77 compounds) are obtained and 

presented in Table 1. Fig. 2 shows the regression line of the model equation, i.e. predicted vs experimental 

results for the training, and test set highlighted by different symbols. A close correlation between the values 

predicted by the ANN model and the observed values of toxicity was found. 

As can be seen from Table 2, the non-linear ANN model gave good results with higher correlation coefficients 

R2, as well as better robustness ( ) in training, and test set. In addition to the classical validation parameters 

(  and ), different  values were also checked for both training and test sets. The values of   for the 

training set (0.991) and the test set (0.753) are greater than 0.5. Furthermore, the  values for both training 

(0.002) and test (0.058) sets are lower than 0.2 [52]. Moreover, statistically significant results for all the  

metrics indicate that the predicted activity values of all the herbicides are close to the corresponding observed 

activity data. The model exhibits high predictive ability. An acceptable value (0.993) of  (overall) implies that 

the activity data predicted for the test set compounds using the model satisfies the desired range of observed 

activity data. These results indicated that the ANN not only performed well in model development, but also had 

excellent prediction and this fact suggested that a non-linear correlation between the acute toxicity and the 

relevant descriptors. The residuals plot for the observed values of LD50 in the training, and prediction sets against 

their predicted values were determined and studied. The model did not show proportional and systematic error, 

because the distribution of the residuals on both sides of zero was random. 

To see the importance of each variable for the prediction of acute toxicity, a sensitivity analysis was 

conducted using STATISTICA software. This method, proposed by Garson [65] then taken by Goh [66], 

provides a quantification of the relative importance of different inputs (variables) on the output of the NN. The 

contribution of each of the descriptors in the ANN model is as follows: HATS1e (37.5%), HATS1v (14.4%), 

ISH (13.7%), MATS1m (9.3%), Gats3p (8.8%), R8u 8.5%), Gats6m (5.6%), and H-046 (0.2%).                    

3.3. Applicability domain 

The leverage values (hi) for the studied herbicides are shown in Table1. The applicability domain of the 

model was analyzed using leverage approach (Williams plot) and standardization approach. As can be seen in 

Fig. 3, training set compound numbers 47 and 64 are identified as outliers and test set compound numbers 71 are 

identified as outside the AD by both approaches. However, the training compound 25 is identified outside the 

AD by the leverage approach but recognized within the AD by standardization approach. On the contrary, the 
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test compound 69 is identified outside the AD by standardization approach but recognized within the AD by 

leverage approach.  

It should be noted that over 95% of the domain was covered by the model when it was applied to predict the 

acute oral toxicity of 77 herbicides in the training and test set. Thus, these results show that ANN model is 

complies with the third principle of the OECD. It can be used to predict the acute oral toxicity of herbicides, 

particularly for those that have not been tested as well as new herbicides. 

 

3.4 Comparison with different models 

Following the steps of model validation, our model was compared with a limited number of QSAR 

models which are available in the literature for predicting the oral acute toxicity of herbicides to rats (Table 3). 

The evaluation of their advantages and disadvantages is quite difficult, because each published study used 

different data sets and a different modeling approach (chemical descriptors, algorithms, etc.). In addition, it 

should be noted that the most of these QSAR models were obtained with structurally similar chemicals such as 

amide herbicides [67, 68], sulphonylurea and phenylurea herbicides [69, 70] or organophosphorus pesticides 

[71].  

In Table 3, it is possible to observe that unlike our model, no approach for measuring external quality was 

carried out in the other models with the exception of three models. Can et al. [69] used a single parameter (R2) 

while Devillers [71] and Gough et al. [67] have used the root mean square error (RMS). Thus, the comparison 

was limited to the results obtained for statistics of the internal validation. Again, the number of statistical 

parameters used for internal validation of this QSAR models is limited. It is possible to observe that all of those 

models could give high prediction ability (correlation coefficient R2). However, our model exceeds the 

previously published models in all statistical indices available for comparison. Indeed, it gives the higher 

correlation coefficient and the acceptable RSM if compared to the other models. According to these results, the 

present model can be promisingly used for predicting the toxicity of new herbicides, thus contributing to the risk 

assessment, saving substantial amounts of money and time. 

3.5. Application of artificial neural network-based equation 

The architecture of the network developed in this study is a multilayered perceptron {8-12-1} (Fig. 4). 

The network has eight inputs (Xi, i=1 to 8), one output (Z) and twelve neurons in the hidden layer. The two 

transfer functions used in this study are hyperbolique tangent and logistic function. Their mathematical 

definitions are given in Eqs. (10) and (11): 

xx

xx

ee
eexf )(                                                                                                                                                       (10) 

xe
xf

1
1)(                                                                                                                                                           (11) 

Each of these twelve input layer’s neurons receive one input (Xi, i=1 to 8)) and broadcasts such signal to each 

one of the hidden layer’s neurons. Each hidden neuron computes its transfer function and sends its result (Y j, j=1 

to 12) to the output layer’s neuron which finally produces the response of the network (Z). The output signal of 

each hidden neuron (Yj) is calculated as: 
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while the output of the network is given by: 
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(13) 

In Eqs (13) wi, j is the weights of the connections between the input and hidden neurons, Xi are the input variables 

(relevant descriptors) and bj is the bias on hidden neuron j. Similarly, w1, j represent the weights of the 

connections between the hidden and output neuron and b1 is the bias on the output neuron. 

The mathematical formula for predicting the acute oral toxicity of herbicides on rat obtained using the 

ANN approach is given in equation (13). With this formula, toxicity of 13 herbicides is calculated and carried 

out for comparison with experimental values (Table 4). The toxicity of each herbicide is calculated by replacing 

Xi by the values of 8 descriptors of this herbicide, the values of weights and bias obtained. The weights 

generated for architecture ANN are presented in Tables 5 and 6. Fig. 5 shows the relationship between the 

observed 1/LD50 and the calculated (or estimated) 1/LD50 from the ANN-equation. The best linear fit is indicated 

by a dashed line. As can be seen from this figure, there is an excellent agreement between the results of our 

equation and the observed (experimental) data because most of the data points falls close to the 45 degree line 

(zero error line). The calculated RMS for the regression equation is 0.16 and the value of the R is 0.77.  

4. Conclusions 

In this study, artificial neural network model was developed for predicting the oral acute toxicity on rats 

of a series of 77 herbicides based on their molecular structure, represented by 1666 calculated descriptors. 

Experimental data have been selected from the Pesticide Properties DataBase. The best model was obtained by 

BFGS quasi-Newton algorithm with {8-12-1} network architecture. The built ANN model was assessed 

comprehensively (internal and external validations). It showed good values of R2 = 0.996 and Q2
LOO = 0.996 for 

the training set, good values of R2 = 0.956 and Q2
LOO = 0.977 for the test set. More than that, the robustness and 

predictive power of the model was verified by the different  values. In addition, estimating the oral acute 

(LD50) toxicity of 13 other herbicides based on the developed mathematical equation using the weights of the 

network gave very good results (R2 = 0.956). Based on the comparison with models previously published, the 

proposed QSAR model achieved good results and provided more than 95% predictions that belong to the 

applicability domain. According to the obtained results, the ANN model developed and the mathematical 

formula obtained using the ANN approache for predicting the acute oral toxicity of herbicides to rats gave 

correct and acceptable results. Therefore, instead of expensive, complicated and time-consuming experiments, it 

is highly recommended that the ANN can be used for predicting the oral acute toxicity of herbicides to rats, 

particularly for those that have not been tested as well as new herbicides and thus help reduce the number of 

animals used for experimental purposes. 
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Table 1 
Observed (experimental) values and Artificial Neural Predicted values of oral rat acute toxicity and leverage 
values for 77 Herbicides. 

N° Compound  CAS number 

1/LD50 (mmol/Kg)-1 
 Leverage 

(hi) Observed 

 
Predicted 

 

Training set 

1 2.4-dichlorophenoxyacetic acid 94-75-7 0.47 0.47 0.10 
2 2.4-DB 94-82-6 0.28 0.37 0.06 
3 4-chlorophenoxy)acetic acid 122-88-3 0.22 0.15 0.14 
4 Acifluorfen 50594-66-6 0.26 0.25 0.06 
5 Acrolein 107-02-8 1.93 1.95 0.34 
6 Alachlor  15972-60-8 0.29 0.23 0.10 
7 Aminocyclopyrachlor 858956-08-8 1.94 1.96 0.15 
8 Amiprofos-methyl  36001-88-4 0.98 0.95 0.12 
9 Anilofos  64249-01-0 0.78 0.78 0.08 

10 Aziprotryn  4658-28-0 0.08 0.11 0.12 
11 Bensulide 741-58-2 1.47 1.44 0.08 
12 Bentazone  25057-89-0 0.48 0.48 0.08 
13 Bromoxynil 1689-84-5 3.42 3.39 0.24 
14 Bromoxynil heptanoate  56634-95-8 1.34 1.29 0.12 
15 Bromoxynil octanoate  1689-99-2 1.69 1.71 0.13 
16 Butamifos  36335-67-8 0.53 0.49 0.17 
17 Butraline    33629-47-9 0.28 0.14 0.11 
18 Chlorthiamide  1918-13-4 0.27 0.20 0.11 
19 Clomazone 81777-89-1 0.18 0.22 0.04 
20 Cumyluron  99485-76-4 0.32 0.30 0.05 
21 Cyanazine 21725-46-2 0.84 0.81 0.06 
22 Dicamba  1918-00-9  0.14 0.17 0.15 
23 Dichlorprop  120-36-5  0.28 0.04 0.07 
24 Difenamide 957-51-7  0.25 0.23 0.08 
25 Dimethenamid 87674-68-8  0.69 0.21 0.04 
26 Dimethipin 55290-64-7  0.46 0.41 0.13 
27 Dinosebe  88-85-7  9.61 9.61 0.13 
28 Diquat  2764-72-9  0.86 0.87 0.11 
29 DNOC  534-52-1  7.93 7.93 0.28 
30 Endothal  145-73-3  3.65 3.66 0.07 
31 Ethyl dipropylthiocarbamate 759-94-4  0.21 0.22 0.09 
32 Fluazifop-p-butyl  79241-46-6 0.16 0.16 0.06 
33 Fluchloraline  33245-39-5 0.23 0.26 0.05 
34 Flufenacet  142459-58-3 0.61 0.39 0.03 
35 Fomesafen  72178-02-0 0.35 0.43 0.04 

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

Table 1 (continued) 
 

N° Compound  CAS number 

1/LD50 (mmol/Kg)-1 
 Leverage 

(hi) Observed 

 
Predicted 

 

Training set (continued) 

36 Glufosinate  51276-47-2 0.11 0.06 0.19 
37 Haloxyfop  69806-34-4 1.07 1.11 0.04 
38 Hexazinone  51235-04-2 0.15 0.12 0.11 
39 Isoproturon  34123-59-6 0.11 0.18 0.05 
40 MCPA  94-74-6 0.21 0.11 0.10 
41 MCPA-thioethyl  25319-90-8 0.54 0.49 0.05 
42 MCPB  94-81-5 0.05 0.21 0.03 
43 Metamitrone  41394-05-2 0.17 0.13 0.04 
44 Methazole 20354-26-1 0.34 0.51 0.04 
45 Metribuzine  21087-64-9 6.70 6.69 0.51 
46 Molinate 2212-67-1 0.39 0.17 0.06 
47 Monuron  150-68-5 0.19 0.20 0.05 
48 Naproanilide  52570-16-8 0.11 0.24 0.05 
49 Naptalame  132-66-1 0.16 0.21 0.04 
50 Nitrofene  1836-75-5 0.11 0.08 0.05 
51 Paraquat  4685-14-7 1.69 1.68 0.39 
52 Pebulate  1114-71-2 0.18 0.21 0.05 
53 Pethoxamid  106700-29-2 0.30 0.24 0.05 
54 Piperophos  24151-93-7 1.09 1.10 0.18 
55 Pretilachlore  51218-49-6 0.05 0.23 0.08 
56 Propyrisulfuron  570415-88-2 0.12 0.32 0.07 
57 Prosulfocarbe 52888-80-9 0.14 0.13 0.11 
58 Pyrazoxyfene  71561-11-0 0.25 0.25 0.05 
59 Simetryn  1014-70-6  0.28 0.29 0.12 
60 Tebutam  35256-85-0  0.04 0.13 0.11 
61 Tebuthiuron 34014-18-1  0.35 0.37 0.11 
62 Tralkoxydim 87820-88-0  0.35 0.35 0.65 
63 Triclopyr 55335-06-3  0.41 0.39 0.08 
64 Vernolate  50471-44-8 0.14 0.10 0.06 
      

 Test set 
65 Ancymidole 12771-68-5 0.15 0.19 0.03 
66 Butachlor  23184-66-9 0.16 0.23 0.08 
67 Butroxydim  138164-12-2 0.24 0.24 0.08 
68 Dimetachlor 50563-36-5 0.16 0.29 0.07 
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Table 1 (continued) 
 

N° Compound  CAS number 

1/LD50 (mmol/Kg)-1 
 Leverage 

(hi) Observed 

 
Predicted 

 

Test set (continued) 

69 Dimexano  1468-37-7 0.89 0.90 0.50 
70 Fluazolate  174514-07-9 0.09 0.33 0.03 
71 Mecoprop 7085-19-0 0.18 0.26 0.08 
72 Mepiquat  15302-91-7 0.08 0.24 0.22 
73 Monalide  7287-36-7 0.09 0.13 0.06 
74 Pendimethaline  40487-42-1 0.09 0.26 0.12 
75 Prometone  1610-18-0 0.10 0.21 0.21 
76 Propanil  709-98-8 0.23 0.18 0.07 
77 Tribufos  52-68-6 1.34 1.36 0.20 
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                            Table 2     
                            Performance of MLP-ANN model for herbicides 

Statistical  

parameters 
Training set  Test set Overall set 

n 64 13 77 

RMS 0.102 0.111 0.104 

R2 0.996 0.956 0.996 

Q2
LOO 0.996 -- -- 

Q2
test -- 0.977 -- 

 0.990 0.782 0.993 

 0.992 0.724 0.991 

 0.991 0.753 0.992 

 0.002 0.058 0.002 
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                           Table 4 

                           Observed (experimental) values of 1/LD50 and those calculated by Equation (8)  
                           for 13 herbicides. 

Herbicide 

Expérimental 

1/DL50 

(mmol/Kg)-1 

Calculated 

1/DL50 

 (mmol/Kg)-1 

2, 4, 5-trichlorophenol  0,24 0.30 
Barbane 0,49 0.40 
Clethodim  0,32 0.24 
Cycluron 0,13 0.52 
Desmetryne  0,15 0.23 
Diallate  0,68 0.69 
Florasulam  0,07 0.13 
Halosulfuron-methyl  0,06 0.29 
Ioxynil 2,85 2.85 
Metolachlor 0,24 0.14 
Phenolthiol 0,54 0,35 
Propachlore  0,39 0.55 
Prosulfuron  0,79 0.62 
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                                   Table 5 

                                  Weights and bias between input and hidden layers 

j Wj, 1 Wj, 2 Wj, 3 Wj, 4 Wj, 5 Wj, 6 Wj, 7 Wj, 8 bj 

1 -12,5623 10,4659 6,8128 4,5163 -7,1717 -1,3836 10,555 -1,2162 -0,117 
2 2,3897 -2,1796 -0,425 -0,7403 0,8791 -0,7835 -0,7414 -0,13 0,3378 
3 12,0091 -8,6073 -3,7229 -4,7296 7,8074 0,5646 -10,1373 0,6098 0,8454 
4 7,5259 -7,9819 -3,4047 -2,1069 7,7919 0,3547 -5,1061 3,1768 0,1007 
5 5,0956 -4,3988 -2,4442 -1,9796 2,9182 0,0413 -3,9515 0,0441 -0,0232 
6 -6,0043 2,8097 3,5531 1,4624 -2,8002 -0,8917 5,1207 -1,1257 0,9697 
7 12,3996 -7,2041 -4,7913 -4,5002 8,5899 0,8677 -8,8004 1,0754 1,4131 
8 8,7480 -8,0968 -4,0673 -4,0747 4,1031 -0,4312 -5,3961 0,1292 0,3236 
9 10,4868 -7,1432 -2,4627 -3,7122 4,4835 0,8243 -8,4937 -0,0287 0,0351 

10 -11,7132 5,1074 5,5185 3,5189 -6,0079 -0,9015 9,4268 -1,8093 1,5312 
11 7,0875 -1,0575 -2,0678 -3,0068 4,3843 0,4329 -5,1146 -0,6053 2,0435 
12 7,2244 -5,1105 -3,5352 -2,5464 4,2691 0,3826 -5,8234 0,4035 0,0393 
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Table 6 

                  Weights and bias between hidden and output layers 

W1, 1 W1, 2 W1, 3 W1, 4 W1, 5 W1, 6 W1, 7 W1, 8 W1, 9 W1, 10 W1, 11 W1, 12 

-
1,359

2 

-
0,567

1 

3,990
7 

-
5,352

5 

-
0,084

5 

-
2,071

1 

-
4,987

1 

-
2,563

5 

2,959
4 

4,669
2 

5,782
3 

0,228
1 

b1 = -2,0559 
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Highlights 

Herbicides can be dangerous to the environment and the human health. 

The risk assessment of herbicides is crucial 

QSAR model for acute oral toxicity of herbicides is developed and proposed. 

This  model  has  been  developed  and  validated  on  the  basis  of  the  OECD  principles. 

Artificial neural network-based equation to predict the toxicity of herbicides was established 


