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ABSTRACT  

A method based on DFT is used to obtained dielectric profiles. The high frequency ε∞(z) and the static εs(z) dielectric 
profiles are compared for 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP). A dielectric confinement is observed 
for the 2D materials between the high dielectric constant of the inorganic part and the low dielectric constant of the 
organic part. The effect of the ionic contribution on the dielectric constant is also shown. The quantum and dielectric 
confinements of 3D HOP nanoplatelets are then reported. Finally, a numerical simulation based on the SILVACO code 
of a HOP based solar cell is proposed for various permittivity of MAPbI3.  
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1. INTRODUCTION  
3D Hybrid Organic Perovskites (HOP) of general formula RMX3 with R is an organic cation, M is a metal and X a 
halide have recently attracted a lot of attention in the photovoltaic community due to the fast increase of their efficiency 
from 3.8 % in 20091 to 19.3 % in 20142. Actually, the hybrid organic perovskites can be in the 3D or also in the 2D 
structure. Since the 90s, they are investigated for applications such as Field Effect Transistor (FET)3 and Light-Emitting 
Diode (LED)4. The size of the organic cation R impact directly on the shape of the HOP: for small R (such as CH3NH3

+), 
the 3D structure is preferred whereas for large R (such as C4H12N+) the HOP exhibit a 2D structure with alternating 
organic and inorganic layers. The structure determines the electronic and optical properties of the HOP such as the 
excitonic properties. Indeed 2D HOP present an exciton with a large binding energy5 due to a dielectric confinement6,7 
whereas 3D HOP exhibit an exciton screened by the polar rotation of the organic cations8–10. We propose here a method 
to describe dielectric profiles that goes beyond the standard approximation for dielectric constant profiles with abrupt 
interfaces11,12. Besides, nanostructures of HOP have been recently reported13–20. Quantum size effects of nanoplatelets of 
CH3NH3PbI3 are also treated. With the benefit of the all solution process21–23 of HOP and mature silicon technology24,25, 
a cost-effectively and high-efficiency perovskite/Si tandem26–30 is desirable. The HOP top cell is studied for three 
different permittivity. The device simulation is based on the SILVACO31 code dedicated to optoelectronic device design.  
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2. INFINITE AND STATIC DIELECTRIC CONSTANT OF 3D AND LAYERED HYBRID 
PERVOSKITE 

The dielectric constant is obtained from the response of the material to an external electric field. Dielectric profiles are 
computed from an ab initio method based on Density Functional Theory (DFT)11,32. An external field is applied to a slab 
along its stacking axis (z) inducing a variation of the electron density. The electron density is then averaged in the 
directions perpendicular to the stacking axis and a nanoscopic average is performed in the direction (z). The induced 
polarization pind(z) is obtained by partial integration of the induced electron density. Finally the dielectric profile is 

obtained with
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Figure 1. Figure of the 3D HOP CH3NH3PbI3 (a), the 2D HOP (C4H12N)2PbI4 (b) and 2D/3D HOP (C10H24N)2PbI3 
CH3NH3PbI4 (c). 

The dielectric constant depends of the frequency of the applied electric field and is described by a tensor for anisotropic 
system. For optical frequencies, the high frequencies dielectric constant ε∞(z) is related to the reaction of the electronic 
density to the electrical field. For lower frequencies, the contribution of the ionic charges are added to the static 
dielectric constant εs(z). Here we propose the dielectric profiles ε∞(z) and εs(z) of HOP with different shape. The systems 
considered are the 3D HOP CH3NH3PbI3, the 2D HOP (C4H12N)2PbI4 and the 2D/3D (C10H24N)2PbI3CH3NH3PbI4 
(Figure 1). The slabs are constructed from the bulk materials: the 3D slab is built from the (010) pnma phase of 
CH3NH3PbI3 with 6 octahedra PbI3, the 2D/3D slab is composed of 2 two-octahedra inorganic layers sandwiched by 
aromatic organic cations and the 2D slab is composed of 3 one-octahedron inorganic layers sandwiched by aliphatic 
organic cations. The profiles ε∞(z) and εs(z) are depicted in the Figure 2. Considering first the high frequency dielectric 
profile of MAPbI3 (Fig2.a), the bulk dielectric constant is recovered in the center of the slab with a value about 5.6. It is 
in good agreement with the measured value of 6.533. Adding the ionic contribution the dielectric constant obtained is 
four times higher reaching the value of 22.0 at the center of the slab. This value is closed to the experimental value that 
oscillates between 23.3 and 37 depending of the sample, the phase and the method34–36. In the case of the 2D HOP, the 
dielectric constant exhibits a dielectric confinement between the low dielectric constant of the organic part and the high 
dielectric constant of the inorganic part (Fig 2.c). The 2.1 value obtained for the organic part compares well with 
experimental values reported around 2.2-2.337. The dielectric constant of the inorganic part amounts 4.0 and is as 
expected lower than the one obtained for the bulk due to dielectric confinement. For lower frequencies, disagreeing to 
the 3D HOP, the static dielectric constant of the inorganic part is only 2.5 times larger. It can be explained by the 
anisotropy of the system with an organic layer that softens the ionic displacement response of the inorganic part. Finally 
the dielectric profiles of the 2D/3D are depicted in fig 2.b. The high frequency dielectric constant reaches 4.8 and stands 
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between the 2D and the 3D HOP value. Adding the ionic contribution, the value increases to 15 this is 3 times larger 
than the infinite one. The enhancement is larger than for the 2D because the system is less anisotropic. We can also note 
that the ionic contribution is not critical for the organic dielectric constant. 

 

 
Figure 2. High frequency dielectric profiles ε∞(z) and static dielectric profiles εs(z) for the 3D HOP CH3NH3PbI3 (a), the 
2D/3D HOP (C10H24N)2PbI3CH3NH3PbI4 (b) and the 2D HOP (C4H12N)2PbI4 (c).  

 

3. DIELECTRIC AND QUANTUM CONFINEMENTS IN NANOPLATELETS OF MAPBI3 
In this section, we investigate the quantum and dielectric confinement in nanoplatelets of CH3NH3PbI3. Two slabs of 2 
and 8 octahedra are constructed from the pnma phase of CH3NH3PbI3. The surface perpendicular to the stacking axis of 
the slabs corresponds to the (010) direction of the bulk material. The bands structures are shown in the figure 3.a. The 
two nanoplatelets exhibit a direct band gap at the Γ point such as for the bulk material. The energy band gap obtained for 
2 octahedra slab is about 2.48 eV and is higher than the thicker one which is amounts 2.07 eV. Figure 3.b. shows the 
dielectric profiles ε∞(z) obtained for the two slabs. The dielectric confinement is due to the reduction of the slab thickness 
has shown on Fig. 3b from 8 to 2 octahedra. Nanoplatelets of CH3NH3PbI3 were recently reported20 and an increase of 
the band gap with decreasing the thickness was observed. However the band gap did not increase as anticipated by 
various model. It might be explained by an increase of the exciton binding energy which compensates the band gap 
increase and which is retrieved in our calculations. 
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Figure 3. Band structures (a) and high frequency dielectric profiles ε∞(z) (b) for the slabs of MAPbI3 considered. 

 

4. DIELECTRIC VARIATION ON PEROVSKITE TOP CELL  
Silvaco Atlas device simulator is used to numerically solve Poisson’s equation coupled with the continuity equations for 
both electrons and holes under steady state conditions. Figure 4.a shows the energy band diagrams of MAPbI3 based 
solar cell under an equilibrium state. The Fermi levels (Ef) of each layer are aligned through electron current flowing, 
while the vacuum levels are shifted according to affinities plus the differences of the conduction bands and Ef, or the 
work-function of electrodes. On the top of FTO cathode (Fig. 4.a), the structure successively consists of 141nm TiO2, 
350nm MAPbI3 and 36nm HTM ended with Au anode. The basic parameters of each layer are shown in Table 1, with 
several permittivity of MAPbI3 according to experimental measurements37,38,39 and simulations41.  The TiO2, MAPbI3 
and HTM are assumed to be intrinsic with unintentionally doping level equals to 1e1942, 1e1543,44 and 3e1845. The profile 
of the refractive image index of MAPbI3 derived from the UV-vis diffuse reflectance spectroscopy46. 

 

Table 1: Electronic properties of the multilayers in the MAPbI3 based solar cell cited from literatures. The carrier life 
time of MAPbI3 are calculated according to the diffusion length and mobility. 

  TiO2 MAPbI3 HTM 

Permittivity / 8547 6.538,39,47, 
31.938, 7041 3.5347 

Doping level cm3 ND=1e1942 NA=1e1544,48 NA=3e1845 

Affinity eV 4.149,50 3.9 2.0545 

Eg, 300K eV 3.551,52 1.4845 2.9845 

Mobility cm2V-1s-1 0.252853 6.254,55 0.00147 

Carrier life time µs 0.000656,57 0.1 0.1 

 

Figure 4 b and Table 2 present the photovoltaic results achieved from MAPbI3 based solar cell under 1 sun illumination 
(AM1.5), with three different permittivity of MAPbI3. By increasing the permittivity of MAPbI3, the VOC is improved 
more than 6% from 0.981V for the lower permittivity to 1.04 for the higher permittivity. In comparison, the effect on the 
Jsc is almost negligible from 28.81 to 28.95.    
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Figure 4. (Color online) Energy band diagrams of MAPbI3 based solar cell under an equilibrium state. The conduction band, 
valence band and vacuum level are depicted in blue, greed and orange respectively, with red dash dot line indicating the 
Fermi level. The device structure is presented above the vacuum level. (a). The current density versus the Voltage, for 
different permittivity of MAPbI3. (b).  

 

The simplified equivalent circuit model58 for a Photovoltaic Cell reveals that the shunt resistance is not affected too 
much but the series resistance is decreasing. When the series resistance is decreasing and the shunt resistance is 
identical, the fill factor is also increasing as one reported on Table 2.  As a consequence, the performance of solar cell is 
improved more than 10%. This value relates well with the experimentally measured efficiency of 17% (CH3NH3PbI3)43, 
well support our simulation for the further investigations of HOP tandem cells.  

  

Table 2:  Photovoltaic results of the MAPbI3 solar cell studied. 
Permittivity	 Jsc	 Voc	 Pmax	 FF	 Eff	

/	 mA/cm2	 V	 mW	 /	 %	
6.538,39,47	 28.81	 0.981	 15.76	 0.558	 15.88	

31.938	 28.95	 1.023	 17.4	 0.588	 17.52	

7041	 28.95	 1.04	 17.63	 0.586	 17.76	
 

5. CONCLUSION 
In this paper, dielectric profiles of 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP) are proposed using a method 
based on DFT calculations. The frequency-dependence of dielectric constant is treated by comparing high frequency 
ε∞(z) and the static εs(z) dielectric profiles. A dielectric confinement is found for the layered HOP due to the contrast of 
the dielectric constant between the organic and the inorganic layers. The quantum and dielectric confinements of 3D 
HOP nanoplatelets are also investigated. A device simulation of HOP based solar cell is performed. This simulation 
indicates some key parameters which are important for the optimization of HOP cells performances. An initial optimized 
HOP based with 17% efficiency is obtained in agreement with experimental measurements. 
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