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ABSTRACT:  

 

The origin of concentration fluctuations in a series of binary liquids is examined by small angle 

neutron scattering in relation with H-bonded micellar clusters and the aggregation of alcohol-

rich domains, which is also related to the well-known observation of a prepeak in diffraction 

spectra of alcohols. The results suggest that concentration fluctuations do not arise from size 

variation and re-arrangement of the mesoscopic domains but from the micellar-clusters 

themselves. We evaluate the scattering intensity at small angles and deduce the Ornstein-

Zernike correlation lengths, the Bhatia-Thornton concentration fluctuations and the Kirkwood-

Buff integrals. An alternative approach, based on the Guinier approximation was applied, 

indicating that the observed inhomogeneity could be related to spherical particles with diameter 

comparable to the H-bonded multimers. We compare the structure factor of different systems 

when varying the molecular interactions: the alcohol-solvent interaction has been tuned with 

Toluene and Cyclohexane aprotic solvents, and the amphiphilic character of the alcohol, by 

going from Tert-butanol to Ethanol and Methanol. 
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1. Introduction  

Many binary liquids containing alcohol molecules display a strong deviation from the ideal 

mixture behavior. This deviation can be attributed to the incomplete mixing of the distinct 

interacting molecules at the microscopic level even though these liquids are often 

macroscopically miscible [1,2,3,4]. These original features are often observed for small-chains 

alcohols, also denoted hydrotropes, which exhibit an amphiphilic character but are too small to 

form ordinary micelles in solution [5]. Recent studies have linked the structural complexity of 

aqueous solutions of small H-bonded molecules to the interplay between concentration 

fluctuations and self-aggregation, the concept of molecular emulsions being introduced by 

Kezic and Perera [6,7,8,9]. It turns out that multiscale approaches are required for the structural 

characterization of H-bonded micelle-like clusters and their spatial organization during dilution 

in water or in an aprotic solvent, the latter acting as H-bond diluent, which modulates the 

molecular interactions [10,11,12,13,14].    

Water - Tert-butanol (TBA) mixture is one of the systems that are the most debated 

currently, being considered as the prototypical system to advance our understanding of  

hydrotrope solubility in aqueous solution [5,8,9,15,16,17,18,19]. Analogous interest arises 

from studies on non-aqueous solvent – TBA mixtures. Distinct self-association and segregation 

processes have been examined in detail for Tert-butanol (TBA) - Toluene (TOL) and Tert-

butanol (TBA) - Methylcyclohexane (MCY) systems [10]. For this purpose, two techniques 

were applied: Raman spectroscopy to quantify the size distribution of the H-bonded micellar 

multimeric clusters and neutron diffraction to investigate the spatial correlation between these 

clusters at larger distances [10]. According to the analysis of Raman results, TBA molecules 

mostly form H-bonded tetrameric units, which exhibit an exceptional stability [20,21]. They 

persist under conditions of high dilution, i.e. molar fraction x of TBA as low as x=0.1 in TBA-

MCY mixtures. On the contrary, the spatial correlations between these neighboring micellar 

clusters seem much more sensitive to dilution. This phenomenon was revealed in the neutron 

diffraction structure factor by the suppression of a pre-peak, located at a momentum transfer 

qPP=0.7Å-1, which is a well-known signature of TBA intermediate range order and the existence 

of correlations between H-bonded units [10,22,23,24,25,26,27,28,29,30]. It was shown that the 

addition of a small amount of aprotic solvent is sufficient to turn off the prepeak intensity with 

a complete extinction for x<0.6-0.8 for TBA-TOL and TBA-MCY [10]. Accordingly, it was 

suggested that the microstructure of these mixtures could be expressed in terms of non-

interacting micellar TBA clusters for a broad range of compositions, while correlated clusters 
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and diluted monomers were prevailing for high and low values of x respectively (cf. Fig. 12 in 

ref. [10]).  

In this article, we extend the study of the segregation phenomenon towards a lower q-

region. Small angle neutron scattering (SANS) is a complementary method to address the 

inhomogeneity of the mixtures in terms of concentration fluctuations, which are signatures of 

single-component-rich domains triggered by selective molecular interactions. Different 

hydrogenated/deuterated isotopic compositions are used to vary the scattering length density 

of the components of the binary liquids, and optimize the contrast between domains of different 

compositions. The characteristic correlation length of the inhomogeneities has been determined 

using the Ornstein-Zernike model [31]. An alternative approach, based on the Guinier 

approximation was applied, indicating that the observed inhomogeneity could be expressed in 

terms of weakly interacting spherical particles with diameter comparable to the H-bonded 

multimers [32]. The formalism of Bhatia and Thornton has been applied to decouple the 

different correlation functions related to density and concentration from the total neutron 

structure factor at zero-q [33]. The fluctuations of the local composition have been quantified 

by the evaluation of the Kirwood-Buff integrals (KBI), which can be determined from the 

experimental forward scattering intensities [34].  

The aim of this study is to shed light on the different phenomena, expressed in terms of 

self-association, multimers and concentration fluctuations that contribute to the complex 

microstructure of prototypical alcohols mixed with aprotic solvents. Different systems have 

been considered to vary their molecular interactions. First, the alcohol-solvent interaction has 

been tuned by comparing TBA-TOL and TBA-Cyclohexane (TBA-CYC) mixtures. The 

amphiphilic character of the alcohol has been then varied, going from TBA, to Ethanol (ETA) 

and Methanol (MEA). The overall assessment suggests that concentration fluctuations are 

primarily determined by the existence of H-bonded micellar-clusters with weak inter-cluster 

interaction rather than from fluctuations of the size and arrangement of mesoscopic alcohol-

rich domains.  

2. Experimental  

Small-angle neutron scattering experiments were performed on the PAXY diffractometer 

(LLB, Saclay). The sample detector distance chosen was 1.6 m and the neutron wavelength 

used was 3.5 Å allowing the measurement of the diffracted intensity in a momentum transfer 

range (0.04 < q < 0.5 Å-1). The samples were prepared from hydrogenated Tert-butanol 
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TBA(H) mixed with deuterated Toluene TOL(D) or with Cyclohexane CYC(D) as well as their 

opposite isotopic compositions: the four types of mixtures are latter denoted TBA(H)-TOL(D), 

TBA(H)-CYC(D), TBA(D)-TOL(H) and TBA(D)-CYC(H), respectively. Methanol and 

Ethanol hydrogenated samples were also prepared with deuterated Toluene i.e. MEA(H)-

TOL(D) and ETA(H)-TOL(D) mixtures. The bulk samples were prepared in volume fraction 

covering the concentration range x= 0−1 (x being the volume fraction of the alcohol). The 

measurements were conducted at room temperature with a thermal bath regulator set to 22°C. 

The solutions were prepared in advance so the mixtures are thermodynamically at equilibrium. 

The solutions were filled in 1 mm quartz Hellma cells. The intensities were corrected from 

empty cell contribution by subtraction of the filled and empty samples spectra, divided by their 

own measured forward transmission. The correction of the systematic variation of the detector 

efficiency and normalization of I(q) to absolute unit were performed with respect to the 

measured intensity of hydrogenated water filled in the same cell, having a flat signal with a 

known value of its incoherent cross section ((H2O) /4π= 0.445cm-1).  

3. Tert-butanol-Toluene and Tert-butanol-Cyclohexane systems 

3.1 Experimental Results 

The neutron scattering profile shows an increase of the scattering intensity at low q for all 

the binary mixtures (Figs. 1 and 2), which firmly indicates that the molecular distribution in 

the liquid is heterogeneous. In the q-range covered by the SANS instrument, albeit a prominent 

maximum intensity centered at q=0, the scattered intensity does not exhibit any measurable 

peak at finite q-value.  

Teubner and Strey have introduced a phenomenological approach to interpret the scattering 

intensity of microemulsions [35]. The theory has been later discussed for aqueous solutions of 

short-chains amphiphilic molecules, including TBA and discussed in the frame of so-called 

molecular emulsions [6,7,8,9,36]. According to Teubner-Strey approach, the scattering 

function is expressed as the inverse four-order polynomial in q. The microstructure is defined 

by two characteristic lengths corresponding to the domain size d (i.e. periodic repeat distance) 

and the correlation length. A distinct prediction of this theory is the appearance of a prepeak 

located at q=2/d, that reflects the pseudo-periodic organization of the domains. The absence 

of a diffraction peak in the present SANS measurement suggests that on the length scale probed 

there is no observable microstructure with pseudo periodic order. We remind that the 

correlations between micellar clusters show up as a prepeak at q=0.7Å-1 which is then related 
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to smaller (near-molecular) repeat distances. In addition, it was shown that this prepeak rapidly 

vanishes with dilution, which is at variance with the small angle scattering intensity that readily 

increases [10]. This suggests that the intercluster correlations are effectively lost by dilution. 

The Debye-Bueche model is an alternative model which is often used to describe phase 

separated binary systems [31]. The scattering intensity is a squared Lorentzian function ܫሺݍሻ ∝
ଵ

ሺଵା௤మஞమሻమ
 introducing a unique correlation length It is indeed a special case of the Teubner-

Strey model for ξ ≪ ݀. In practice, it was observed in other studies that this is reduced to an 

Ornstein-Zernike function (single Lorentzian form) if the four-order term (qis not 

detectable, which turns out to be the case in the present study, given that q<1 [37]. This is 

analyzed quantitatively in the following.   

 

Fig. 1. SANS structure factors of Tert-butanol-Toluene mixtures, comprising hydrogenated TBA with deuterated 

TOL (left panel) and vice-versa (right panel). The different curves correspond to eleven values of the TBA volume 

fractions x from 0 to 1. The plotted solid lines are fits to the Ornstein-Zernike model. 
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Fig. 2. SANS structure factors of Tert-butanol-cylcohexane mixtures, comprising hydrogenated TBA with 

deuterated CYC (left panel) and vice-versa (right panel). The different curves correspond to eleven values of the 

TBA volume fractions x from 0 to 1. The plotted solid lines are fits to the Ornstein-Zernike model. 

3.2. Ornstein-Zernike Analysis 

The scattered intensity was modelled by a Lorentzian function according to the Ornstein-

Zernike theory [38]. Extending the case of phase separating systems [39,40], this formalism is 

also known to accurately reproduce the scattering intensity of many non-ideal binary mixtures 

[41,42,43] and can be defined as:  

ሺqሻܫ ൌ ஺

ଵା௤మஞమ
൅  (1)       ܤ

where the first term comprises the q-dependent coherent scattering, the second term 

represents the q-independent background and ξ is the correlation length characterizing the 

spatial extension of the scattering length density fluctuations. This formalism can be applied to 

describe the scattering intensity at zero angle which can originate from domains with distinct 

scattering length density caused by density and/or concentration fluctuations. Experimentally, 

the coherent forward scattering intensity Icoh(0) can be obtained via extrapolation to zero-q. 

The first term A arises from the q-dependent coherent scattering. The second term B comprises 

the coherent scattering arising from the isothermal compressibility and the incoherent 

scattering, which do not depend on q, according to    
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	ܣ ൌ ܫ
ୡ୭୦

ሺ0ሻ െ	ߩଶ		݇
஻
்ߢ	ܶ തܾଶ ൎ ܫ

ୡ୭୦
ሺ0ሻ				 (2) 

ܤ ൌ ఙ೔೙೎
ସగ

൅	ߩଶ		݇
஻
்ߢ	ܶ തܾଶ 	ൎ 	

ఙ೔೙೎
ସగ
	 (3) 

where kB, T, ߪ௜௡௖  are the molecules number density, the Boltzmann constant, the 

temperature, the isothermal compressibility, and the average incoherent cross section per 

volume, respectively. The average molecular scattering length ܾത is defined as ܾത ൌ ݔ
ଵ
ܾ
ଵ
൅ ሺ1 െ

ݔ
ଵ
ሻܾ

ଶ
 , where x1 is the aprotic solvent molar fraction, b1 and b2 are the sums of the coherent 

scattering lengths of the atoms constituting the aprotic and the alcohol molecules. The 

isothermal compressibility of the studied liquids being around 9 10-10 Pa-1, its contribution to 

the scattered intensity is very small compared to A and B for the studied mixtures compositions. 

For instance, it varies from 3.7 10-5 cm-1 (resp. 3.4 10-4 cm-1) for hydrogenated TBA (resp. 

TOL) to 1.5 10-2 cm-1 (resp. 1.2 10-2 cm-1) for deuterated TBA (resp. TOL).   

A fit of the coherent intensity with an Ornstein-Zernike type model was performed and 

plotted as solid lines in Figs. 1 and 2. The resulting fit parameters of the Lorentzian (correlation 

length, amplitude and background) for the different samples are plotted in Figs. 3 and 4. The 

correlation length seems to remain almost constant for all mixture compositions and all the 

samples, with values close to the molecular scale (about 2 Å). The background increases almost 

linearly as expected with increasing Hydrogen content due to incoherent scattering, in 

agreement with the calculated values of 
ఙ೔೙೎
ସగ

 shown as dashed lines. Regarding the amplitude, 

the general trend is characterized by a maximum reached around the intermediate 

compositions. The vanishing values obtained for the pure liquids are consistent with the 

absence of heterogeneities in the scattering length densities in these cases.  
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Fig. 3. Parameters (amplitude, correlation length and background) obtained from a fit with the Ornstein-Zernike 

model of the SANS structure factors of Tert-butanol-Toluene mixtures, comprising hydrogenated TBA with 

deuterated TOL (left panel) and vice-versa (right panel).  

 

Fig. 4. Parameters (amplitude, correlation length and background) obtained from a fit with the Ornstein-Zernike 

model of the SANS structure factors of Tert-butanol-Cyclohexane mixtures, comprising hydrogenated TBA with 

deuterated TOL (left panel) and vice-versa (right panel).  

3.3 Bhatia-Thornton analysis 

Following Bhatia and Thornton the zero angle coherent scattering of a binary mixture can 

be expressed as a linear combination of distinct fluctuation terms [33]: 
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SCC(0) represents the fluctuations in the concentration of one molecular type, SNN(0)  

describes the fluctuations in the molecular number and SNC(0) represents the correlation 

between the two types of fluctuations. The latter terms are linked to the SCC(0) at zero limit of 

the scattering intensity with the following relations:  

 

ܵேேሺ0ሻ  =  ݇஻்ܶߢ+δ2 ܵ஼஼ሺ0ሻ ൎδ2 ܵ஼஼ሺ0ሻ  (5) 

ܵே஼ሺ0ሻ  = −δ	ܵ஼஼ሺ0ሻ  (6) 

where δ=(1-2) is the dilatation factor and 1, 2 the partial molar volumes per molecule 

of the two components 

The slight dependence of 1 and 2 on the mixture composition, which arises from the excess 

volume was neglected in our calculation. We checked the weak influence of this assumption 

for the mixtures and compositions where these excess quantities were available. For instance, 

in the case of TBA-TOL mixtures, the excess volume found in the literature is Vexcess<0.5 

cc/mol and the molar volumes of TBA and TOL are 95 and 105 cc/mol respectively (i.e., 

ΔV=10 cc/mol) [44]. This result in an excess volume which is less than 5% of ΔV, which is 

within the error bars of our measurements.  

 Furthermore, SCC(0) can be calculated from the forward coherent scattering using the 

following equation, which is obtained after insertion of Eqs. (5) and (6) into Eq. (4):  

Icoh(0) =ߩଶ݇஻்ܶߢ. തܾଶ ൅	ൣߩതܾߜ െ ሺܾଵ 	െ	ܾଶሻ൧
ଶ
		ܵ஼஼ሺ0ሻ  (7) 

The fluctuation terms in the solutions were obtained from the amplitude of the Lorentzian 

fit combining Eqs. (3) and (7), which gives:  

ܵ஼஼ሺ0ሻ 	ൌ
஺	

దሾ௕തఋିሺ௕భ	ି	௕మሻሿమ	
	   (8) 

No significant density fluctuation takes place upon adding the diluting liquid, as shown in 

Fig. 5 (SNN(0) remains small). On the other hand, we witness an increase in the concentration 

fluctuation term SCC(0), which is directly related to the particle clustering in the mixture. This 

can be explained by the fact that TBA molecules interact preferentially by H-bonds leading to 

the formation of TBA-rich regions. The typical volume associated to the local variations of the 
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solute concentration could be estimated from the correlation length deduced from the Ornstein-

Zernike analysis. It is striking that it remains close to the molecular scale, which means that 

the concentration fluctuations roughly scale with the size of the multimeric species 

characterized by Raman spectroscopy [10].   

Another interesting point to check is if the two systems with opposite isotopic compositions 

i.e. TBA (H)-TOL (D) versus TBA (D)-TOL (H) present the same fluctuation terms SNN(0), 

SCC(0) and SNC(0) although they exhibit different SANS spectra (cf. Fig. 1). In fact, it is the 

case as long as isotopic effects on the liquid structure are negligible, which can be safely 

assumed. The results shown in Fig. 5 confirm that the computed fluctuation terms fulfill this 

requirement, which validates the method and especially the appropriate correction for the 

isotopic effects on the values of scattering length densities. 

A noticeable solvent effect is worth mentioning when comparing TBA-TOL and TBA-CYC 

systems, respectively Figs. 5 and 6.  The heterogeneous character of the mixture is prevalent 

around x=0.4 for TBA-TOL systems (highlighted by a maximum in SCC(0)). This position is 

shifted to lower composition (about x=0.3) for the TBA-CYC systems. This observation goes 

in line with the spectroscopic study mentioned previously, which showed that TBA tetrameric 

clusters are stable to extreme dilution conditions in aliphatic solvent (x=0.2) and to a lesser 

extent in TOL because of a competition between TBA-TBA association and TBA-TOL 

interaction [10]. Again, the phenomenon underlines the link between concentration fluctuations 

and the existence of multimeric species. 
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Fig. 5. Bhatia-Thornton fluctuation terms of Tert-butanol-Toluene mixtures, comprising hydrogenated TBA with 

deuterated TOL (left panel) and vice-versa (right panel). SCC(0), SNN(0) and SNC(0) correspond to concentration 

fluctuation, density fluctuation and the cross-correlation term, respectively. 

 

 

Fig. 6. Bhatia-Thornton fluctuation terms of Tert-butanol-Cyclohexane mixtures, comprising hydrogenated TBA 

with deuterated CYC (left panel) and vice-versa (right panel). SCC(0), SNN(0) and SNC(0) correspond to 

concentration fluctuation, density fluctuation and the cross-correlation term, respectively. 
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3.4. Kirkwood-Buff Analysis 

The Kirkwood–Buff theory illustrates the trends of molecular interactions in a solution via 

the Kirkwood–Buff integrals (KBIs) which can be expressed as [34]: 

	௜௝ܩ ൌ ׬ ሺ݃௜௝ሺݎሻ െ 1ሻ
ஶ
଴ 		4πݎଶd(8)  ݎ 

It is based on the partial pair correlation functions (gij(r), gij(r), and gij(r)), which relate the 

probability of finding a particle at a given distance from another one, appraising the solvent-

solvent, solute-solvent, and solute-solute interactions. The KBIs provide the tendencies of 

cluster formation around a given molecule.  

SANS is proven to be a suitable technique for a reliable KBIs determination in binary 

mixtures [41-43,45] where the KBIs can be expressed as linear combination of the different 

fluctuation terms, where the indices 1 and 2 refer to the aprotic solvent and the alcohol, 

respectively: 
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The values expected for ideal mixtures can also be computed using the partial volumes as 

recalled in ref. [46]. We added them to complement the results obtained from SANS 

measurements in the limit of pure components (x=0 and 1). The Kirkwood Buff integrals shown 

in Figs. 7 and 8 follow a similar trend in the four different systems. They show a tendency of 

TBA segregation (which is revealed by an increase in the magnitude of G22 at x <0.4). This 

segregation of TBA molecules can be linked to a remarkable stability of H-bonded multimeric 

micellar clusters that are already formed even for very low TBA concentrations through H-

bonding. It can be noted that the single value G220 obtained at x=0.1 for the TBA (D)-TOL 

(H) system stands out of the overall trend. This singular behavior was not observed for any 

other compositions and so it is likely artefactual. The negligible values of G22 at larger x suggest 

that the interaction between the multimeric H-bonded clusters is much weaker. The two 



 

13 
 

Kirkwood Buff integrals containing correlations with the aprotic molecules (G11 and G12) 

remain close to zero, which indicates that the interaction involving TOL or CYC molecules are 

non-specific. 

 

 

Fig. 7. Kirkwood-Buff integrals of Tert-butanol-Toluene mixtures, comprising hydrogenated TBA with 

deuterated TOL (left panel) and vice-versa (right panel).  G11 is the TOL-TOL KB integral, G22 is the TBA-TBA 

KB integral, and G12 is the TBA-TOL KB integral.  

 

 

Fig. 8. Kirkwood-Buff integrals of Tert-butanol-Cyclohexane mixtures, comprising hydrogenated TBA with 

deuterated CYC (left panel) and vice-versa (right panel).  G11 is the CYC KB integral, G22 is the TBA-TBA KB 

integral, and G12 is the TBA-CYC KB integral.  

3.5 Relation between concentration fluctuations, cluster size and prepeak  

In order to gain a more comprehensive description of the different levels of structural 

organization of the TBA-solvent binary liquids, we have combined the present results to 
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existing neutron diffraction and Raman spectroscopy studies [10]. The evolution of the size of 

the H-bonded micellar clusters deduced by Raman spectroscopy and the diffraction prepeak 

intensity (at q=0.7Å-1) are compared with the concentration fluctuation term SCC(0) in Fig. 9. 

For clarity, only the averaged value of SCC(0) on each couple of HD and DH systems is shown. 

It should be noted that the Raman spectroscopy and large angle neutron diffraction experiments 

were conducted for fully hydrogenated systems, though no isotopic effect is expected. Methyl-

Cyclohexane instead of Cyclohexane was used in these previous experiments, a difference 

which could have very limited effects on the comparison. Indeed, Methyl-Cyclohexane and 

Cyclohexane are comparable in molecular size, chemical nature. They have the same value of 

the dielectric permittivity and unlike benzene derivatives, they do not exhibit specific solvation 

interaction with TBA [47,48, 49]. 

 

 

Fig. 9. Bhatia-Thornton fluctuation concentration fluctuation term SCC(0) terms of Tert-butanol-Toluene mixtures 

(black triangles), compared with the H-bonded cluster size (red circles) and prepeak intensity (blue diamonds) 
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adapted from Abdel Hamid et al. [10]. Tert-butanol-Toluene mixtures (upper panel), and Tert-butanol-

Cyclohexane with Tert-butanol-Methylcyclohexane (lower panel). 

The distinct evolution of the cluster size and of the prepeak intensity suggested that the 

formation of H-bonded micellar cluster and the occurrence of interactions between them were 

independent phenomena. It was suggested the existence of two crossovers separating phases 

characterized by the predominance of diluted TBA monomers, diluted H-bonded multimeric 

clusters and TBA-rich domains comprising interacting clusters. 

As discussed previously, the low-q scattered intensity measured in the present study by 

SANS could have different origins, which are related to genuine concentration fluctuations 

observed in usual molecular binary liquids, the specific microstructures of hydrotropes (i.e. 

formation of micellar clusters), and the arrangement of domains which contains aggregated 

TBA clusters likewise the case of microemulsions. The results shown in Fig. 9 demonstrate 

that the concentration fluctuations increase concomitantly with the formation of micellar 

clusters, and reach maximum values in the region characterized by the predominance of 

‘diluted multimers’. A decay of the concentration fluctuations appear for larger concentrations, 

approaching the region where the aggregation of TBA in mesoscopic domains is indicated by 

the growth of a prepeak intensity. This confirms that the concentration fluctuations do not arise 

from mesoscopic domains but from the micellar-clusters themselves, in agreement with the 

small and constant values of the associated correlation length.  

However, it should be pointed out that the values of the correlation length   2Å obtained 

from the Ornstein-Zernike analysis seems too small to provide a consistent microscopic picture. 

We applied an alternative evaluation, assuming that the small angle scattered intensity involves 

the form factor of supermolecular units, namely the TBA micellar-clusters. D'Arrigo et al. 

compared both the Ornstein-Zernike and the Guinier approximation to fit the spectra of 

micelle-like structures in small-alcohol solutions [32]. They showed that these two alternative 

ways were numerically equivalent in the low-q region, assuming that the system consists in 

weakly or non-interacting spherical particles of diameter	ܦ ൌ 2√5. This result is obtained 

from a quadratic expansion of the Ornstein-Zernike and Guinier equations giving ܴ௚ଶ ൌ 3ଶ, 

and applying the relation between the radius of gyration and the radius of a sphere ܴ௚ଶ ൌ
ଷ

ହ
ܴଶ. 

The assumption that the TBA micellar-clusters do not interact is supported for small alcohol 

volume fraction x by the absence of prepeak (cf. Fig. 9), which means that the interparticle 



 

16 
 

structure factor is close to unity. The application of this relationship for  ൌ 2Å gives D = 8.9Å, 

which is consistent with the size of the TBA micellar-clusters characterized by Raman and 

neutron diffraction [10]. Moreover for x>0.6-0.8, the prepeak at qPP=0.7Å-1 arising from of the 

correlations between neighboring micellar-clusters allows getting a repeat distance	݀ ൌ 	 ଶగ
௤ುು

ൌ

9Å, which is indeed in very good agreement with the aforementioned  particle size. 

  

 

 4. Ethanol-Toluene and Methanol-Toluene systems 

4.1 Experimental Results and Ornstein-Zernike Analysis 

Intending to tune the amphiphilic character of the H-bonded molecules, a complementary 

study has been performed in order to follow a series of alcohol molecules with decreasing alkyl 

group size: from Tert-butanol (TBA) to Ethanol (ETA) and Methanol (MEA). The comparison 

between the three alcohols is performed for alcohol-Toluene systems. The SANS spectra of 

ETA-TOL and MEA-TOL shown in Fig. 10 exhibit an analogous increase in the intensity at 

low q, supplying evidence of aggregation in these solutions too. The parameters obtained from 

fits with the Ornstein Zernike model of the SANS spectra (lines in Fig. 10) are shown in Fig. 

11. Contrary to the TBA systems, the correlation length extracted from the fits varies with the 

concentration. The correlation length reaches its largest value (5.5 Å) for highly diluted alcohol 

mixtures (being constant in the region 0.1<x<0.3),  and then gradually decreases with the 

increasing quantity of the alcohol. It is also noticeable that the values of the correlation lengths 

for Methanol and Ethanol are twice as large as for TBA despite their smaller molecular size. 

The largest values of the correlation lengths are obtained for the smallest alcohol molecule 

MEA. 
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Fig. 10. SANS structure factors of Ethanol-Toluene (left panel) and Methanol-Toluene (right panel) mixtures, 

comprising hydrogenated alcohol with deuterated TOL. The different curves correspond to eleven values of the 

alcohol volume fractions x from 0 to 1. The plotted solid lines are fits to the Ornstein-Zernike model. 

 

Fig. 11. Parameters (amplitude, correlation length and background) obtained from a fit with the Ornstein-Zernike 

model of the SANS structure factors of Ethanol-Toluene (left panel) and Methanol-Toluene (right panel) mixtures, 

comprising hydrogenated alcohol with deuterated TOL. 

This different behavior is mostly determined by the balance between hydrophobic and 

hydrophilic interactions, which depends on the chemical nature of the molecule. A possible 

interpretation is the formation of extended linear H-bonded clusters in Methanol and Ethanol, 

while TBA forms cyclic multimers with limited size (typically 4 molecules) [10, 17, 22, 23, 

24,50,51,52,53,54,55]. Indeed, experimental and computational studies have reported that 

Methanol forms mostly chainlike structures comprising up to 10 molecules. They have been 

related to the prevailing hydrophilic interaction of small alcohol molecules. This situation 
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evolves for larger aliphatic group like TBA where the formation of cyclic micellar multimers 

is promoted by the steric hindrances.  

A reason for the variation of the correlation length with the concentration for MEA and ETA 

could also be proposed. For small alcohol fraction (0<x<0.3), the correlation length reflects the 

formation of H-bonded alcohol chainlike structures, which are diluted in the TOL solvent. In 

this region, the correlation length seems rather constant, or might even exhibit a maximum at 

about x=0.2. At variance, on the other side of the graph (i.e. 0.8<x<1), the concentration 

fluctuations arise from diluted TOL molecules in the alcohol solvent. Because TOL are non-

interacting molecules (G110), the associated correlation length is expected to be very small 

(molecular level). Then, the reduction of the correlation length with increasing alcohol 

concentration can be understood as the simple continuous behavior connecting these two limit 

cases. 

4.2 Bhatia-Thornton and Kirkwood-Buff analysis 

The fluctuation terms emphasize the observation of an aggregation process leading to large 

concentration fluctuation quantified by SCC(0) shown in Fig. 12. It also reveals that the 

heterogeneous character of the structure of Ethanol-Toluene and Methanol-Toluene solution 

prevails at lower concentrations (about x=0.2) than for TBA. To understand this result, it is 

worth mentioning that the strength of the H-bond interaction increases with decreasing the size 

of the alkyl part of the alcohol, which enhances the stabilization of H-bonded multimers of 

TEA and MEA diluted in Toluene. Hence, the systematic evolution of SCC(0) with the self-

association tendency going from TBA, ETA to MEA supports the idea that concentration 

fluctuations are dominated by the formation of the multimeric clusters themselves. 

Moreover a change in the density-density fluctuation SNN(0) is also witnessed in high 

dilution conditions following the same trend as SCC(0). This observation can be easily 

interpreted as the coupling between concentration fluctuations and density fluctuations for 

binary mixtures with constituents having different molar volumes (i.e. large dilatation factor  

according to Eq. (4)). This phenomenon was much weaker for TBA-TOL mixture, both 

components having comparable molar volumes so that their density did not depend 

significantly on the concentration. 

 The Kirkwood Buff theory also goes well with the precedent analysis as it shows in Fig. 

13 the increase of G22 at low alcohol concentrations, which demonstrates strong alcohol-
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alcohol interactions. The KBI remain very small on the alcohol-rich side because of weaker 

van-der-Waals TOL-TOL interactions [56]. 

 

 

Fig. 12. Bhatia-Thornton fluctuation terms of Ethanol-Toluene (left panel) and Methanol-Toluene (right panel) 

mixtures, comprising hydrogenated alcohol with deuterated TOL. SCC(0), SNN(0) and SNC(0) correspond to 

concentration fluctuation, density fluctuation and the cross-correlation term, respectively. 

 

 

 

Fig. 13. Kirkwood-Buff integrals of Ethanol-Toluene (left panel) and Methanol-Toluene (right panel) mixtures, 

comprising hydrogenated alcohol with deuterated TOL. G11 is the TOL KB integral, G22 is the alcohol-Alcohol 

KB integral, and G12 is the Alcohol-TOL KB integral.  

5. Summary and conclusion 

It is a long-established agreement that alcohol binary liquids are not homogeneous but 

exhibit peculiar molecular organizations. Going further in detail, it turns out that the structural 
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complexity of such systems reflects the interplay between different parameters related to the 

H-bond association itself, the self-aggregation with formation of H-bonded micellar clusters 

and the mesoscopic correlations or concentration fluctuations; different aspects that has been 

assessed in the present study. 

The present study has been performed in the context of many debated issues about the 

solvation of hydrotropes, highlighted by studies on small-chains alcohols in water. The 

introduction of the concept of molecular emulsions and the application of the Teubner and 

Strey models to assess the original structure of TBA-water solutions, raises questions about the 

inter-clusters correlations of TBA in other hydrophobic aprotic solvents. According to recent 

studies, the microstructure of pure TBA and TBA in aprotic solvents is characterized by H-

bonded micellar clusters, comprising typically four H-bonded molecules, which remain stable 

during dilution on the broad range of concentrations, as large as x=0.1-1 for TBA-MCYC. The 

cyclic structure of TBA multimers in the pure component resembles reverse-micelles, which 

can explain their larger stability in hydrophobic solvent (oil) than in water. Mesoscopic 

correlations between these clusters are indicated by a prepeak, but it is very sensitive to dilution 

and rapidly decays. This indicates that the microstructure of TBA-aprotic solvents mixtures 

could be rather expressed in terms of uncorrelated micellar clusters, at least for a broad range 

of intermediate compositions.  

The SANS experiments performed for a series of TBA-CYC and TBA-TOL mixtures with 

different concentrations and isotopic compositions exhibit a systematic increase of the scattered 

intensity at low-q. This feature having no connection with the prepeak nor any other diffraction 

peak, this asymptotic behavior is more likely related to concentration fluctuations. The 

characteristic correlation length of the inhomogeneities has been determined using the 

Ornstein-Zernike model. Its value remains close to the molecular size itself, and importantly it 

appears independent on the existence or non-existence of intercluster correlations (i.e. 

prepeak). This suggests that the low-q intensity could be alternatively modelled by the form 

factor of well-defined supermolecular units. Assuming a spherical shape, this evaluation 

provided a value of the diameter D= 8.9Å, which is in good agreement with the size of the TBA 

H-bonded micellar clusters deduced from the prepeak repeat distance ݀ ൌ ଶగ

௤ುು
ൌ 9Å	, 

corresponding to the interclusters interaction distance at much larger TBA fraction. 
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 The separation between density and concentration correlation functions has been 

performed by application of the formalism of Bhatia and Thornton at q=0. The evolution of the 

concentration fluctuation SCC(0) was compared with published data on the H-bonded cluster 

size and the prepeak intensity. The behaviors of both the Ornstein-Zernike correlation length 

and Bhatia and Thornton concentration fluctuation SCC(0) support that concentration 

fluctuations do not arise from fluctuations of the size and arrangement of the domains 

aggregating TBA micellar clusters but from the micellar-clusters themselves. The increase of 

the Kirwood-Buff integrals for very low TBA concentration, underlines that the microstructure 

of TBA is driven by strong H-bond interactions and the spectacular stability of micellar 

clusters, while their tendency to aggregate into TBA rich domains is related to much weaker 

interactions.  

While these conclusions seem to apply generally for smaller alcohol molecules too, such as 

Ethanol and Methanol, systematic variations are observed. The smaller the size of the alcohol 

molecule is, the larger the values of the correlation lengths. This effect could be related to the 

different microstructures, more often expressed in terms of extended linear H-bonded clusters 

in Methanol and Ethanol, while TBA is known to form cyclic multimers with limited sizes 

(typically 4 molecules). Beyond the interests for organic solvent properties, the mesoscopic 

approach provided by the SANS study on alcohol-aprotic solvent mixtures could bring new 

experimental views on issues currently debated for aqueous-alcohols mixtures about the 

relation between concentration fluctuations and supramolecular micellar clusters [5,8,16,57]. 
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