

Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N–H/H–Si Dehydrocoupling Reactions

Clément Bellini, Clément Orione, Jean-François Carpentier, Yann Sarazin

► To cite this version:

Clément Bellini, Clément Orione, Jean-François Carpentier, Yann Sarazin. Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N–H/H–Si Dehydrocoupling Reactions. Angewandte Chemie International Edition, 2016, 55 (11), pp.3744 - 3748. 10.1002/anie.201511342 . hal-01274835

HAL Id: hal-01274835 https://univ-rennes.hal.science/hal-01274835

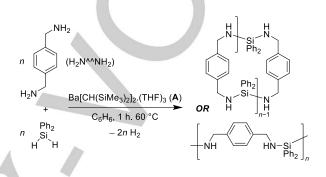
Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Tailored Cyclic and Linear Polycarbosilazanes via Bariumcatalysed N–H/H–Si Dehydrocoupling Reactions

Clément Bellini,^[a] Clément Orione,^[b] Jean-François Carpentier,*^[a] and Yann Sarazin*^[a]

Dedication ((optional))


Abstract: Ba[CH(SiMe₃)₂]₂(THF)₃ catalyses the fast and controlled dehydrogenative polymerisation of Ph₂SiH₂ and *p*-xylylenediamine to afford polycarbosilazanes. The structure (cyclic *vs.* linear; end-groups) and molecular weight of the macromolecules can be tuned by adjusting the Ph₂SiH₂/diamine feed ratio. A detailed analysis of the resulting materials (mol. wt. up to *ca.* 10,000 g mol⁻¹) is provided.

Following investigations in the 80-90's,^[1] there has been much interest in silicon-containing SiCN preceramic polymers, for the resulting amorphous SiCN ceramics offer excellent corrosion resistance, high temperature stability and long-term durability for applications as structural materials.^[2] Polysilazanes, with their -(Si-N)n- backbone, have enjoyed the most attention.^[1,3] They are commonly prepared by ammonolysis or aminolysis of chlorosilanes;^[4] the ring-opening polymerisation of cyclosilazanes is a cleaner method, [3a,4,5] but it first requires the synthesis of cyclic monomers;[5a,6] polycondensations by cross-dehydrocoupling of amines and hydrosilanes can be promoted by metal-carbonyl or titanocene precatalysts.^[7] By contrast, little is known about polycarbosilazanes, that is, polymers with -(Si-C-N)nbackbones. This owes much to the lack of synthetic routes and to a limited understanding of the microstructures of these polymers.^[1] Although it generates ammonium chloride wastes, the aminolysis of dichlorosilanes with diamines is the main pathway to polycarbosilazanes.^[8] The telechelic oligomers made from H₂NCH₂CH₂NH₂ and Me₂SiCl₂ consist of randomly distributed linear -(Me₂SiNHCH₂CH₂NH)- and cyclic -(Me₂Si-cyclo-[NCH₂CH₂NSiMe₂])- units.^[8a-c] The dehydropolymerisation of 1,4bis(dimethylsilyl)benzene with ammonia can be catalysed by Pd₂(dba)₂.^[9] A strategy based on Pt-catalysed hydrosilylation of vinyl- or allyl-silanes yielded hyperbranched and dendrimeric polycarbosilazanes.^[10] Elsewhere, we and others have shown that oxophilic, a⁰ metal complexes provide competent precatalysts to dehydrocouple hydrosilanes and amines.[11-14] Barium compounds in particular catalyse the coupling of diamines and di(hydrosilanes).^[14a,b] We present here an extension of this work to the Ba-mediated production of polycarbosilazanes. The rapid and controlled syntheses of either linear or cyclic polymers by dehydropolymerisation of p-xylylenediamine (= $H_2N^{N}NH_2$) and

[a] C. Bellini, Prof. Dr. J.-F. Carpentier, Dr. Y. Sarazin Equipe OMC, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS – Université de Rennes 1 Campus de Beaulieu, 263 avenue du Général Leclerc 35042 Rennes Cedex France E-mail: yann.sarazin@univ-rennes1.fr; jeanfrancois.carpentier@univ-rennes1.fr
[b] C. Orione CRMPO, Université de Rennes 1, Campus de Beaulieu Supporting information for this article is given via a link at the end of

Supporting information for this article is given via a link at the end of the document.

diphenylsilane, together with detailed characterisations, are reported (Scheme 1).

Scheme 1. Dehydropolymerisation of Ph₂SiH₂ and H₂N^NH₂ catalysed by A.

Ba[CH(SiMe₃)₂]₂·(THF)₃ (**A**), identified as the most efficient of our alkalino-earth precatalysts for N–H/H–Si coupling reactions thanks in particular to its combination of highly reactive metal and alkyl groups,^[14] catalyses the polycondensation of Ph₂SiH₂ and H₂N[^]NH₂ upon release of H₂ as sole by-product (Table 1). ¹H NMR indicated complete conversion of 100 equiv of the default monomer *per* metal within 10 min at 60 °C.

Table 1. Dehydropolymerisation of Ph₂SiH₂ and H₂N^NH₂ catalysed by A.^[a]

[H ₂ N^NH ₂]₀/ [Ph ₂ SiH ₂]₀/[A]₀	Conv [%] ^[b]	$X_{n,\mathrm{theo}}^{[\mathrm{c}]}$	<i>M</i> n,end-group [g mol ⁻¹] ^[d]	<i>M</i> _{n,DOSY} [g mol ⁻¹] ^[e]	$X_{n,\exp}^{[f]}$
P1 20:20:1	>99	n/a ^[g]	n/a ^[g]	5,600	n/a
P2 100:100:1	>99	n/a ^[g]	n/a ^[g]	7,100	n/a
P3 125:100:1	>99	8	1,500	1,900	11
P4 110:100:1	>99	18	5,500	6,500	38
P5 100:125:1	>99	8	1,300	1,500	9
P6 100:110:1	>99	18	4,600	4,400	28
P7 100:105:1	>99	29	9,200	10,400	61

[a] Reactions in C₆H₆ at 60 °C for 10 min. [b] Conversion of the default monomer determined by ¹H NMR. [c] Theoretical number-average degree of polymerisation calculated for 99% conversion using Carothers' equation: $X_{n,\text{theo}} = (1 + i) / (1 + r - 2.r.p)$ where *r* is the stoichiometric ratio and *p* is the extent of the reaction. [d] Number-average molecular weight established by ¹H NMR end-group analysis. [e] Number-average molecular weight estimated by ¹H DOSY NMR. [f] Experimental degree of polymerisation, calculated using the average values of $M_{n,\text{endgroup}}$ and $M_{n,\text{DOSY}}$. [g] Not applicable for the cyclic polymers recovered under these conditions.

The resulting polycarbosilazanes featured estimated molecular weights in the range 1,400-9,800 g mol^{-1,[15]} depending on the N–H/H–Si feed ratio. They were isolated in 75-80% yield, taking care to use dry, aprotic solvents due to their hydrolytic sensitivity. Reactions at 25 °C for 60 min gave similar outcomes.

Although the polycarbosilazanes were soluble in organic solvents, their molecular weights could not be determined by size exclusion chromatography, owing to their sensitivity under analytical conditions. They were evaluated instead by ¹H DOSY NMR spectroscopy in C₆D₆,^[16] following the diffusion coefficient – molecular weight (D_f - m.w.) method described by Grubbs and co-workers.^[17] This analysis confirmed the existence of a single main population of polymer chains. Exclusive formation of cyclic polymers (vide infra) was seen for polymerisations performed with equimolar amounts of Ph₂SiH₂ and H₂N[^]NH₂ (entries 1-2), whereas linear materials were selectively obtained when one of the comonomers was used in excess (entries 3-7). For linear polymers, the D_f – m.w. analyses were corroborated by ¹H NMR end-group analysis. In a reasonably good first approximation, the experimental number-average degree of polymerisation ($X_{n exp}$, calculated as the ratio of the experimental molecular weight^[15] divided by Flory's mean molecular weight of the Ph₂SiH₂ and $H_2N^{N}NH_2$ segments^[18]) was commensurate with its theoretical value ($X_{n,theo}$) given by Carothers' equation.^[18-19]

The question of the controlled formation of cyclic or linear polycarbosilazanes with these systems is both fascinating and central. The macromolecules produced by dehydropolymerising equimolar amounts of the two comonomers are exclusively *cyclic*, as revealed by spectroscopic and mass spectrometric analyses. The ¹H NMR spectrum of **P2** (Table 1, entry 2) exhibits diagnostic resonances: a doublet centred on $\delta_{1H} = 4.09$ ppm with a relative integration for 4H and belonging to the methylene hydrogens (³*J*_{H-H} = 8.0 Hz), a triplet at δ_{1H} 1.41 ppm (³*J*_{H-H} = 8.0 Hz) integrating for 2H and corresponding to the NH groups, and a broad resonance at δ_{1H} 7.73 ppm for the four *o*-*H* of the C₆H₅ groups (Fig. 1). This assignment was confirmed by ¹H–¹H COSY NMR. No resonance for end-group moieties was detected, consistently with a cyclic structure.^[20]

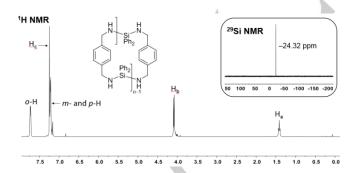
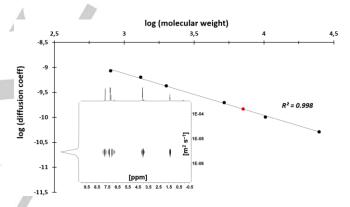



Figure 1. 1H (C₆D₆, 298 K, 400.1 MHz) and ^{29}Si (C₆D₆, 298 K, 79.5 MHz) NMR spectra of the cyclic polycarbosilazanes P2.

Full assignment of all resonances in the ¹H and ¹³C{¹H} NMR spectra was straightforward on the basis of the ¹H-¹³C HMBC and HMQC spectra. The resonance for the CH₂ methylene carbon atom appears at δ_{13C} = 45.80 ppm in the ¹³C{¹H} NMR spectrum.

The INEPT ²⁹Si spectrum of the polymer features a unique resonance at $\delta_{29Si} = -24.32$ ppm (Fig. 1), confirming the existence of a single type of silicon atoms as expected for a cyclic structure. The assignment of the key ¹H resonances and the absence of Si-H end-group was further corroborated by ²⁹Si-¹H HMQC NMR data. The presence of -(Ph₂SiNH^NH)- repetitive units (exact mass 316.1395 g mol-1) was substantiated by ASAP(+) mass spectrometric analysis of the low molecular weight component, where the main peak was found at 632.2757 g mol⁻¹ ($X_n = 4$), and another peak was located at 949.4177 g mol⁻¹ ($X_n = 6$). In the ATR-FTIR spectrum of the polymer, a single, characteristic absorption band of medium intensity was found for the N-H stretching vibration at $v(N-H) = 3,383 \text{ cm}^{-1}$; no band for SiH or NH₂ moieties could be detected. The diffusion coefficient $(1.456 \times 10^{-10} \text{ m}^2 \text{ s}^{-1})$ vs. molecular weight $(M_{n,DOSY} = 7,100 \text{ g})$ mol-1) analysis for the polymer is displayed in Fig. 2. The spectroscopic features for polymer P1, also a cyclic polymer, were identical to those of P2: only the diffusion coefficient and hence the value of $M_{n,DOSY}$ for P1 (1.776×10⁻¹⁰ m² s⁻¹ and 5,600 g mol⁻¹, respectively), differed from those of P2. Details are available in the Supporting Information.

Figure 2. Molecular weight determination by log (diffusion coefficient) vs. log (mol. wt.) analysis for **P2** (\bullet). Calibration curve established by ¹H DOSY NMR (C₆D₆, 298 K, 400.1 MHz), using four monodisperse PMMA and two JeffaminesTM (\bullet) as commercial calibrants.^[16] The ¹H DOSY analysis for **P2** itself (insert) shows the existence of a single main population.

Crucially, with excess H₂N[^]NH₂, linear macromolecules having identifiable chain-ends are returned. Polycarbosilazane P4 of estimated molecular weight ca. 6,000 g mol⁻¹ was obtained with 10 mol-% excess of the diamine (entry 4), while a 25 mol-% initial excess of the diamine yielded the shorter polymer P3 (entry 3). In agreement with Carothers' theory for linear polycondensation, $X_{n,exp}$ decreases as the deviation from equimolar contents of the comonomers increases. The two products only differ by their molecular weights, but their main spectroscopic features (NMR, FTIR) are mostly identical, and only those of the shorter P3 are discussed here. Its ¹H NMR spectrum is displayed in Figure 3. In addition to the same resonances as those observed for P2, it also contains a quadruplet centred on δ_{1H} = 3.59 ppm (³*J*_{H-H} = 8.0 Hz) and a broad resonance at δ_{1H} = 0.76 ppm, which are scalarly coupled to each other according to ¹H-¹H COSY NMR data. Since the INEPT ²⁹Si spectrum of P3 exhibits the same, sole sharp singlet as that seen for P2 ($\delta_{29Si} = -24.32 \text{ ppm}$), these resonances

were respectively attributed to terminal H₂NCH₂- methylene and H_2 NCH₂- amine residues. This assignment is further corroborated by examination of the ¹³C{¹H} (Fig. 3) and ¹H-¹³C HMQC NMR spectra, the aliphatic region of which contains only two resonances, a main one at δ_{13C} = 45.79 ppm (the same as for P2) and a less intense one at δ_{13C} 46.58 ppm, assigned to internal (backbone) -HNCH₂- and terminal H₂NCH₂- groups, respectively. The ²⁹Si-¹H HMQC NMR spectrum indicated that the resonances at δ_{1H} = 3.59 and 0.76 ppm are not coupled to any silicon atom. In the FTIR spectrum of P3 (in Nujol), the two absorption bands at v= 3,400 (m) and 3,308 (m) cm^{-1} were assigned to the stretching modes of N-H bonds in internal -NH- and terminal -NH₂ moieties, respectively. These spectroscopic data are congruent with a linear structure such as that depicted in Fig. 3, capped by -NHCH₂C₆H₄CH₂NH₂ at each chain-end.

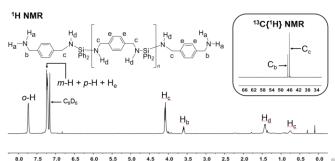


Figure 3. ¹H (C₆D₆, 298 K, 400.1 MHz) and aliphatic region of the ${}^{13}C{}^{1}H{}$ (C₆D₆, 298 K, 100.1 MHz) NMR spectra of the linear polycarbosilazane **P3**.

When Ph₂SiH₂ is used in excess compared to H₂N[^]NH₂. the dehydropolymerisations catalysed by A also produce linear polycarbosilazanes (Table 1, entries 5-7). With 10% excess, polymer P6 of molecular weight ca. 4,500 g mol⁻¹, corresponding to $X_{n.exp} = 28$, was obtained (entry 6). With a larger excess (25%), the shorter **P5** was synthesised, with $X_{n,exp} = 9$ (entry 5). Polycarbosilazane P7 of comparatively high molecular weight (ca. 9.800 g mol⁻¹) was produced when the excess in Ph₂SiH₂ was reduced to 5% (entry 7). Hence, here again, the observed molecular weight decreases rapidly as the deviation from the 1:1 stoichiometry becomes greater. The spectroscopic features of these three polymers are almost identical. The ¹H and ²⁹Si NMR spectra are complicated, and show several new resonances compared to the cyclic P2. This is likely due to coupling between reactive NH groups within the polymer chain and the excess Ph₂SiH₂, leading to the formation of dangling N–SiPh₂H silazanes and perhaps even N₂Si₂ cyclodisilazane (the formation of which can be catalysed by A in coupling reactions between dihydrosilanes, e.g. Ph₂SiH₂, and primary amines).^[14] Besides, two types of end-groups are also to be expected: -NHSiPh₂H and -N(SiPh₂H)₂. These different silicon environments to be found in P5-P7 are depicted in Figure 4.[21]

The main resonances in the ¹H (δ 4.09 and 1.42 ppm), ¹³C{¹H} (δ 45.79 ppm) and ²⁹Si{¹H} (δ –24.32 ppm) NMR spectra of **P5-P7** match those for **P2** and **P3**, confirming the preponderance of regular repetitive units in the polymer backbone (Fig. 4). The data for **P6** are discussed in the followings. In the ¹H NMR spectrum there are other identifiable minor resonances: singlets at $\delta_{1H} = 5.75$ and 5.74 (Si*H* atoms of disilazane end-groups), 5.65 (for the Si*H* atom of monosilazane end-groups) and 4.38 (C*H*₂N atoms of disilazane end-groups) ppm, a doublet at 3.91 ppm (C*H*₂N atoms of monosilazane end-groups), and a multiplet at 1.04 ppm (N*H* atom of monosilazane end-groups). The ratio of monosilazane to disilazane end-groups is *ca.* 3/2.

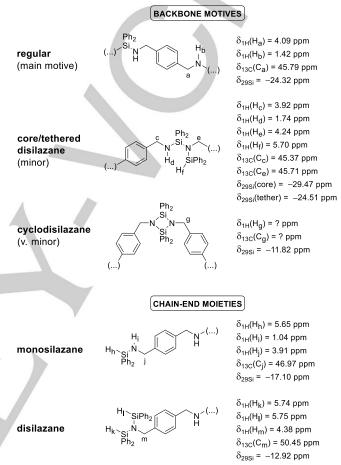


Figure 4. Possible silicon environments, in the polymer backbone and as endgroups, in **P5-P7** prepared in barium-promoted dehydropolymerisations with excess Ph₂SiH₂, with the assignment of the ¹H and ²⁹Si NMR chemical shifts.

In the ²⁹Si{¹H} spectrum, minor resonances at $\delta_{29Si} = -12.92$ and -17.10, -24.51 and -29.47 ppm are also visible.^[22] They were assigned to the different end-groups and irregular backbone units on the basis of the ¹H, ²⁹Si and HMQC ¹H-²⁹Si NMR data (Fig. 4). The INEPT ²⁹Si spectrum enhanced the intensities of specific resonances and showed the presence of an otherwise hardly undetectable singlet at $\delta_{29Si} = -11.82$ ppm. Previous knowledge^[14] allowed us to assign it to minute amounts of cyclodisilazane units; the pertaining resonances for H_g and C_g in the ¹H and ¹³C{¹H} spectra were too small to be detected. In the aliphatic region, the ¹³C{¹H} spectra contain the expected main resonance at $\delta_{13C} = 45.79$ ppm, and minor ones at $\delta_{13C} = 50.45$, 46.97, 45.71 and 45.37 ppm; the assignments in Fig. 4 were achieved by combining ¹³C{¹H} and ¹³C-¹H HMBC and HMQC NMR data. This analysis

suggests a complicated microstructure, where the backbone consists mostly of regular motives with minor inclusions of core/tethered motives and hardly detectable cyclosilazane units, and where the end-groups are distributed between mono- and disilazanes moieties. The identification of the chain-ends is eased by FTIR analyses. The ATR-FTIR spectrum of **P6** features two key absorption bands of medium intensities at 3,393 and 2,112 cm⁻¹, the latter being diagnostic of hydrosilanes. They were assigned to the stretching vibration modes of backbone N–H and chain end Si–H bonds, respectively. No band was detected around 3,300 cm⁻¹, testifying to the absence of NH₂ end-groups as expected from the use of excess dihydrosilane.

Such dehydropolymerisations catalysed by **A** without doubt follow the mechanistic pathway detailed previously for the bariumcatalysed cross-dehydrocoupling of amines and hydrosilanes.^[14] Starting from the barium bis(alkyl) **A**, the key successive steps involve: (*i*) the formation of the competent barium amide species by protonolysis with H₂N^^NH₂, (*ii*) nucleophilic attack of the N_{amide} atom onto the incoming hydrosilane, thus generating a hypervalent silicate, and (*iii*) a rate-limiting β-H transfer to barium with concomitant release of the silazane, producing a Ba hydride species which will then react with another amine to regenerate the catalytically active Ba amide compound.

The Ba-mediated dehydropolymerisation of diamines and dihydrosilanes introduced here is a clean, fast and versatile route to bespoke polycarbosilazanes. Fundamentally, the cyclic or linear microstructures (and, for linear polymers, end-group identity) can be tuned by adjusting the initial comonomer ratio. We are endeavouring to improve productivity figures, and so far we are able to obtain cyclic polymers by fully converting 500 equiv of each comonomers (500:500:1) within 2 h at 60 °C ($M_{n,DOSY}$ = 6,000 g mol⁻¹). This methodology can a priori be extended to other (co)monomers, for instance aryl-functionalised dihydrosilanes, di(hydrosilane)s, or other diamines (e.g. 1,2-ethylenediamine, piperazine) including functionalised ones. We are for now probing the use of phenylsilane to obtain higher molecular weight and/or reticulated polymers (early attempts seem successful, as insoluble materials have been obtained; this methodology now requires optimisation), N,N-dimethyl-p-xylylenediamine (to prevent the potential formation of backbone cyclodisilazane), and $H_2NCH_2C_6H_4CH_2NHSiPh_2H$, a self-sufficient α,ω -bifunctional monomer, to synthesise polycarbosilazanes with new properties.

Keywords: cross-dehydrogenative coupling • polycarbosilazane • barium catalyst • diamine • dihydrosilane

- a) M. Birot, J.-P. Pilot, J. Dunoguès, *Chem. Rev.* **1995**, *95*, 1443; b) E.
 Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedel, *Mater. Sci. Eng.* **2000**, *26*, 97.
- [2] a) L. V. Interrante, K. Moraes, Q. Liu, N. Lu, A. Puerta, L. G. Sneddon, *Pure Appl. Chem.* 2002, *74*, 2111; b) R. Riedel, G. Mera, R. Hauser, A. Klonczynski, *J. Ceram. Soc. Jpn.* 2006, *114*, 425; c) G. Glatz, T. Schmalz, T. Kraus, F. Haarmann, G. Motz, R. Kempe, *Chem. Eur. J.* 2010, *16*, 4231; d) M. Zaheer, T. Schmalz, G. Motz, R. Kempe, *Chem. Soc. Rev.* 2012, *41*, 5102; e) S. K. T. Pillai, W. P. Kretschmer, C. Denner, G. Motz, M. Hund, A. Fery, M. Trebbin, S. Förster, R. Kempe, *Small* 2013, *9*, 984; f) J.-K. Ewert, D. Weingarth, C. Denner, M. Friedrich, M. Zeiger, A. Schreiber, N. Jackel, V. Presser, R. Kempe, *J. Mater. Chem. A* 2015, *3*, 18906.

- a) D. Seyferth, G. H. Wiseman, *J. Am. Ceram. Soc.* **1984**, 67, C132; b)
 N. R. Dando, A. J. Perrotta, C. Strohmann, R. M. Stewart, D. Seyferth, *Chem. Mater.* **1993**, *5*, 1624; c) Y. D. Blum, K. B. Schwartz, R. M. Laine, *J. Mater. Sci.* **1989**, *24*, 1707.
- [4] A. Soum, in *Silicon-Containing Polymers* (Eds.: R. G. Jones, W. Ando, J. Chojnowski), Kluwer Academic Publishers, Dordrecht, **2000**, pp. 323-349.
- a) D. Seyferth, J. M. Schwark, R. M. Stewart, Organometallics 1989, 8, 1980; b) E. Duguet, M. Schappacher, A. Soum, Macromolecules 1992, 25, 4835; c) M. Bouquey, C. Brochon, S. Bruzaud, A-F. Mingotaud, M. Schappacher, A. Soum, J. Organomet. Chem. 1996, 521, 21.
- [6] a) D. Seyferth, G. H. Wiseman, C. Prud'homme J. Am. Ceram. Soc. 1983, 66, C13; b) G. H. Wiseman, D. R. Wheeler, D. Seyferth, Organometallics 1986, 5, 146; c) D. Seyferth, R. M. Stewart, Appl. Organomet. Chem. 1997, 11, 813.
- [7] a) Y. Blum, R. M. Laine, Organometallics 1986, 5, 2081; b) C. Biran, Y. D. Blum, R. Glaser, D. S. Tse, K. A. Youngdahl, R. M. Laine, J. Mol. Catal. 1988, 48, 183; c) W. D. Wang, R. Eisenberg, Organometallics 1991, 10, 2222; d) H. Q. Liu, J. F. Harrod, Organometallics 1992, 11, 822.
- [8] a) D. Kummer, E. G. Rochow, *Inorg. Chem.* 1965, *10*, 1450; b) K. Feng, Y. H. Mariam, *Macromolecules* 1991, *24*, 4729; c) K. Feng, P. Abrahams, Y. H. Mariam, *Appl. Organomet. Chem.* 1993, *7*, 253; d) I. M. Arafa, M. Al-Atrash, *J. Macromol. Sci., Pure Appl. Chem.* 2002, *A39*, 1475; e) D. Su, Y. Li, F. Hou, X. Yan, *J. Am. Ceram. Soc.* 2014, *97*, 1311.
- [9] Y. Li, Y. Kawakami, *Macromolecules* **1999**, *32*, 8768.
- a) Jin Hu, D. Y. Son, *Macromolecules* **1998**, *31*, 8644 ; b) G.-B. Zhang,
 X.-D. Fan, J. Kong, Y.-Y. Liu, M.-. Wang, Z.-C. Qi, *Macromol. Chem. Phys.* **2007**, *208*, 541.
- [11] J. F. Dunne, S. R. Neal, J. Engelkemier, A. Ellern, A. D. Sadow, J. Am. Chem. Soc. 2011, 133, 16782.
- [12] M. S. Hill, D. J. Liptrot, D. J. MacDougall, M. F. Mahon, T. P. Robinson, *Chem. Sci.* 2013, *4*, 4212.
- [13] A. E. Nako, W. Chen, A. J. P. White, M. R. Crimmin, Organometallics 2015, 34, 4369.
- [14] a) C. Bellini, J.-F. Carpentier, S. Tobisch, Y. Sarazin, *Angew. Chem. Int. Ed.* 2015, *54*, 7679; b) C. Bellini, V. Dorcet, J.-F. Carpentier, S. Tobisch, Y. Sarazin, manuscript chem.201504316R1 (Chem. Eur. J.) accepted; c) C. Bellini, T. Roisnel, J.-F. Carpentier, S. Tobisch, Y. Sarazin, manuscript in preparation.
- [15] For linear polycarbosilazanes, the values of estimated molecular weights quoted in the text are the average of the values determined by end-group and DOSY NMR analyses, see Table 1.
- [16] The calibration curve for the diffusion coefficient mol. wt. analysis was established using commercial calibrants, two Jeffamines $M (M_n = 800 \text{ and } 2,000 \text{ g mol}^{-1})$ and four monodisperse PMMAs in the range 1,310-24,830 g mol^{-1}. It was validated with known monodisperse poly(L-lactide) samples, the molecular weights of which were accurately determined by SEC and ¹H NMR end-group analyses.
- [17] W. Li, H. Chung, C. Daeffler, J. A. Johnson, R. H. Grubbs, *Macromolecules* **2012**, *45*, 9595.
- [18] P. J. Flory, J. Am. Chem. Soc. 1936, 58, 1877.
- [19] Principles of Polymerization, 4th Edition (Ed.: G. Odian), John Wiley & Sons, Hoboken, **2004**, pp. 75-80.
- [20] With a molecular weight of *ca.* 7,000 g mol⁻¹, the end-groups of a linear structure would be detected easily by NMR spectroscopy, as seen for the polymers corresponding to entries 4 and 7 in Table 1.
- [21] The grafting of a side-chain by coupling of H₂N/NH₂ with a –SiPh₂H_t moiety tethered to the backbone (see Fig. 4) cannot be excluded, but no evidence was detected in support of this event. By all account, such (...)–NH₂ side-chain residue would inevitably react with excess Ph₂SiH₂ to generate a (...)–NHSiPh₂ and perhaps even (...)–N(SiPh₂)₂ dangling groups undistinguishable from the main chain end-groups.
- [22] A minor resonance at δ_{29Si} = -7.43 ppm, assigned to degradation products, was sometimes visible.

Entry for the Table of Contents

COMMUNICATION

The rapid and controlled bariumcatalysed dehydrogenative polymerisation of a diamine with diphenylsilane affords thoroughly characterised polycarbosilazanes with microstructures (cyclic vs. linear), end-groups and molecular weights that can be tailored by selection of the comonomers feed ratio.

C. Bellini, J.-F. Carpentier,* and Yann Sarazin*

Page No. – Page No.

Tailored Cyclic and Linear Polycarbosilazanes via Bariumcatalysed N–H/H–Si Dehydrocoupling Reactions