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Campus de Beaulieu Bat. 22/23. 35042 Rennes France
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1 Abstract

The discerning behavior of living systems relies on accu-
rate interactions selected from the lot of molecular col-
lisions occurring in the cell. To ensure the reliability of
interactions, binding partners are classically envisioned
as finely preadapted molecules, evolutionarily selected on
the basis of their affinity in one-step associations. But
the counterselection of inappropriate interactions can in
fact be much more efficiently obtained through difficult
multi-step adjustment, whose final high energy state is
locked by a fluctuation ratchet. The progressive addi-
tion of molecular bonds during stereo-adjustment can
be modeled as a predominantly backward random walk
whose first arrival is frozen by a micro-irreversible tran-
sition. A new criterion of ligand specificity is presented,
that is based on the ratio rejection/incorporation. In
addition to its role in the selectivity of interactions, this
generic recipe can underlie other important biological
phenomena such as the regular synthesis at low level of
supramolecular complexes, monostable kinetic bimodal-
ity, substrate concentration thresholds or the preparation
of rapidly depolymerizable structureswith stored energy,
like microtubules.

Keywords: Fluctuation ratchet; self-assembly; substrate
selection; binding specificity; induced fit.

2 Introduction

Macromolecular crowding is the rule in most cellular
compartments, but only certain interactions are appro-
priate, which imposes stringent partner selection. The
preference for appropriate over inappropriate interac-
tions, is classically assumed to rely on optimal confor-

mational preadjustment between co-evolved complemen-
tary macromolecules. This type of binding is exothermic,
that is to say thermodynamically driven by stabilization,
which can be monitored in microcalorimetry by a dissipa-
tion of heat. But beside this standard mode of binding,
authors understood that other mechanisms should exist
to discriminate closely related, wrong and correct sub-
strates. This discernment is necessary for example in the
case of polymerases which should accommodate different
substrate molecules at each polymerization step [1, 2]. To
ensure the counterselection of undesired substrates, the
activity of theses polymerases should be low enough and
the probability of substrate dissociation relatively high.
By this way, slight differences of dissociation rates are
amplified and more opportunities are given to inappro-
priate substrates to leave the enzyme before incorpora-
tion [2]. Authors then showed that increasing the number
of proofreading steps with irreversible ligand exit, can
strikingly decrease the error rate [3, 4]. In these studies,
the successive rounds of substrate checking are funda-
mentally driven and energy-consuming, in line with the
expected thermodynamic cost of accuracy. This property
is however not necessary if spontanous thermal fluctua-
tions can be exploited. The classical one-step lock-and-
key binding can be stabilized by induced fit, but the im-
portance of conformational adjustment is variable. Con-
trary to initial binding that is a single step, conforma-
tional adjustment is multistep and can lead to highly se-
lective interactions from moderately pre-adjusted macro-
molecules. Moreover, inefficient adjustment is shown
here capable of amplifying slight advantages of desired
interactions over nonrelevant ones, as quantified by the
ratio rejection/incorporation. This mechanism is mod-
eled as a chain of reversible events locked in its final
state by a micro-irreversible transition, similar to a ran-

∗Reference: Michel D, Boutin B, Ruelle P. 2016. The accuracy of biochemical interactions is ensured by endothermic stepwise
kinetics. Prog. Biophys. Mol. Biol. 121, 35-44.
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dom walk with a final absorbing state. Different applica-
tions of this general principle in biochemical systems are
presented.

3 Multistep interactions

Protein binding is a multifaceted mechanism including a
diffusion step, initial binding and conformational adap-
tation [5]. The two latter processes are generally com-
pressed into a single one, to give

k+ =
konki

koff + ki
(1a)

and

k− =
koffk−i

kon + k−i
(1b)

where kon is a pseudo-first order rate including the com-
ponent concentration and ki is the rate of conformational
adjustment. It is shown below that very interesting be-
haviors emerge if this conformational adaptation is itself
not a single step but a series of micro-reactions. In the
induced-fit mode of interaction, the molecular partners
first interact incompletely and then progressively adapt
to one another [6]. This conformational moulding can
be driven by an increase of overall stability through the
formation of additional bonds, but less intuitively, it can
also be counter-thermodynamic and obtained by chance
if the addition of intermolecular bonds is opposed to a
conformational resistance. This latter possibility can be-
come significant if the most adjusted complex is ratified
by a final irreversible step, whose nature depends on the
system considered. This general mechanism is illustrated
below in the context of the self-assembly of supramolec-
ular complexes and of enzyme-substrate interactions.

3.1 Hierarchical addition of components
in molecular complexes

Essential cellular functions are ensured by multimolecu-
lar complexes made of many individual components, es-
sentially proteins, but also sometimes structural RNAs,
whose assembly can be assisted by helper proteins (chap-
erones) and is generally ordered, at least by parts
[7] (Fig.1A). Microreversible adjustement chains can
have different thermodynamic properties, schematized
in Fig.2. They are traditionally considered as thermo-
dynamically favored and associated with a decrease of
energy (Fig.2A), but in fact nothing forbids counter-
thermodynamic binding to occur and to be stabilized
(Fig.2B).

Figure 1. Hierarchical multimolecular assembly with pro-

gressive adjustment and capping. (A) Components, or pre-

made polymeric building blocks, are added one by one when

the previous components are conveniently arranged. By this

way, the nucleating complexes are trapped and prevented to

dissociate. (B) Induced-fit interaction through progressive

zippering of chemical bonds (rates u for upstream), counter-

acted by resistance to deformation (rates d for downstream).

Only the most adjusted complex is capable of accommodat-

ing the next component (panel A), which in turn locks the

preceding stepwise adjustment chain.

Figure 2. Energy landscapes of: (A) exothermic vs (B)

endothermic stepwise adjustment. The former, traditional

case, is inherently stable and associated to a dissipation of

heat measurable by calorimetry. By contrast, in the later

case, a complex of high energy should be locked by a quasi-

irreversible final step (deep right well). Note that in this

scheme, the energy of the final step can be higher than the

starting one, which means that such a system is capable of

catching and storing thermal fluctuations.
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3.2 Enzyme-substrate adjustment prior
to reaction

The mechanism described here differs from [1, 2], in that
(i) there is a single entry of the substrate in the scheme,
and (ii) many steps of conformational adjustment after
initial binding. This adjustment is supposed to be nec-
essary for the enzyme-substrate complex to react. The
transformation reaction ensures the micro-irreversible
(non-equilibrium) nature of the whole scheme, repre-
sented below with many successive states of the enzyme
E,

E0 + S
u0−−⇀↽−−
d1

E1
u1−−⇀↽−−
d2

E2...
un−2−−−⇀↽−−−
dn−1

En−1
un−1−−−→ En + P

Figure 3. The multistep adjustment of the enzyme to its

substrate is a prerequisite for the reaction to proceed.

The enzyme state properly arranged for reacting is En−1.
E0 is waiting for a substrate, E1 is bound to a substrate,
the intermediate states E1 to En−1 are more and more
adjusted enzyme-substrate complexes, of which only the
last one can react to give the product. En has just
released a product or incorporated the substrate. The
forward (u) and backward (d) rates are numbered in
reference to the starting states. u0 is a pseudo-first order
constant including the concentration of the abundant
substrate [S], whereas all the other constants u and d
are genuine first-order kinetic constants.
As described below, remarkable biochemical behaviors
are provided by these chains. In the steady state mod-
eling used here, individual component concentrations
result from constant turnovers of synthesis/degradation
and the rate of degradation of the complexes is consid-
ered of the same order as their rate of synthesis.

Figure 4. Competition for binding between a correct (c) and

wrong (w) partner supposed to be at equal concentration and

uptaken from the medium with the same probability at rate

u0. Every transition from P0 to P1 is the introduction of

a candidate substrate; every transition from P1 to P0 is the

rejection of the substrate, and the transition from Pn−1 to Pn

corresponds to the definitive incorporation of the substrate.

This competition is simulated in the interaction tool ”com-

petitive binding” (Appendix A).

4 Substrate selection

Giving a substrate successive possibilities of dissocia-
tion before biological action, is a fundamental principle
of proofreading [1, 2]. The mechanism of competition
between binding partners presented here falls into this
framework. In the two examples described above, the rel-
ative efficiency of incorporation of correct vs wrong sub-
strates represented in Fig.4 can be evaluated by discrete
approaches, such as through the mean number of sub-
strate rejection before incorporation (Section 5), but it
is classically evaluated in a continuous approach through
the mean global conversion rate of substrates into prod-
ucts, corresponding to the reciprocal of the mean time of
arrival 〈T 〉. 〈T 〉 can be calculated through random walk
approaches, where the rates of forward (u) vs backwards
(d) jumps are energetically related to each other through

ui
di+1

= e(Ei−Ei+1)/kBT (2)

which says that the formation of a complex is favored
when its energy is lower than that of the isolated com-
ponents (u > d). When u < d, association reactions are
less frequent but remain possible. They are facilitated
by temperature increase at the macroscopic level and by
fluctuations at the microscopic level. For the enzymatic
reaction, in the stepwise enzymatic scheme, E0 and En
are in fact indiscernible. Hence, the mean frequency of
enzyme state recycling from E0 to E0 with release of one
product P , is the inverse of the mean time 〈T 〉 neces-
sary to go from E0 to En. The shortest is this time, the
most probable is the transformation of the substrate into
a product. We have shown in [9] that 〈T 〉 obeys the very
general formula

〈T 〉 =

n−1∑
i=0

n−i−1∑
j=0

1

dj

i+j∏
k=j

dk
uk

(3)

which naturally depends on the ratio between the up-
stream and downstream rates. In particular, 〈T 〉 dramat-
ically increases when backward transitions are slightly
more probable than forward ones. To easily evaluate the
influence of the ratio d/u on 〈T 〉, Eq.(3) can be advanta-
geously rewritten in an elegant form reminiscent of the
pioneering probabilistic approaches of [2, 10]

〈T 〉 =

n−1∑
i=0

1

ui

(
1 +

di+1

ui+1

(
1 +

di+2

ui+2

(
....

(
1 +

dn−1

un−1

)
....

)))
(4)
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In most real situations, all the individual reaction rates
are to some extent different, but in the case of induced-
fit, the individual micro-reactions are single noncovalent
chemical bond formations, which can be approximated as
roughly equivalent. Hence, we will consider that all the
forward rates are identical (u) and all the backward rates
are identical (d). The kinetics of achievement of this sim-
plified chain can be calculated using Laplace transforms
[8, 11], direct matrix (Appendix B), or more simply re-
covered by reduction of the powerful Eq.(4), as shown
below.

4.1 Easy binding through predominantly
forward walk

When the backward transitions are quasi-inexistent (di '
0), the random walk is radically forward and completed
very rapidly and Eq.(4) simplifies as

〈T 〉 =
n−1∑
i=0

1

ui
(5a)

For identical ui,

〈T 〉 =
n

u
(5b)

The mean time of achievement of the chain is simply
the sum of the waiting times of the individual steps.

4.2 Symmetric random walk

In the particular case where all the reverse and forward
rates are all identical, (d/u = 1), Eq.(4) reduces to

〈T 〉 =
1

u
([1] + [1 + 1] + [1 + (1 + 1)] + ...︸ ︷︷ ︸

n pairs of brackets

) (6a)

That is, given the sum of the n first integers,

〈T 〉 =
1

u

n(n+ 1)

2
(6b)

In the two cases examined above (d = 0 and d/u = 1),
substrate binding depends only on u0, so that the pos-
sible differences between competing molecules cannot be
further discriminated. A much more interesting situation
is obtained for a strong tendency to dissociate.

4.3 Endothermic adjustment

If there is a strong resistance to adjustment (d � u),
Eq.(4) simply becomes

〈T 〉 ∼ 1

u

n−1∑
i=0

(
d

u

)i
(7a)

that is dominated for large d/u, by the larger component

〈T 〉 ∼ 1

u

(
d

u

)n−1

(7b)

Strikingly in this type of random walk, the walker is
most often found at the first step or the origin of the walk,
which means that the binding partner is often rejected.
The walk can occasionally progress until the nth step
in a probabilistic manner. Eq.(7b) is a geometric func-
tion of the number of steps, which means that small dif-
ferences in conformational accommodation, are strongly
amplified. By this way, self-assembly occurs difficultly
but properly whereas the incorporation of wrong com-
ponents is precluded. The simulations presented in Ap-
pendix A clearly illustrate the critical importance of the
balance between backward and forward transition rates
for achieving this goal.

5 Back to zero

Another way to compare the capacity of substrate selec-
tion of the different walks is to define the function linking
the ratio d/u to the mean number of substrate rejections
before fixation. In case of competition between a correct
and wrong substrate (Fig.4), the probability of rejection
directly reflects the average number of returns to stage 0
before the first arrival to stage n. Each rejection of the
wrong substrate is a new opportunity to bind the correct
substrate. It is therefore important that the mean num-
ber of rejections of the bad substrate is much higher than
the number of rejections of the good one. This number
can be obtained through an original discrete method de-
scribed in Appendix C. It shows that the representation
ratio between any two states i and j preceding incorpo-
ration, is

〈Ni〉
〈Nj〉

=
1−

(
d
u

)n−i
1−

(
d
u

)n−j (8a)

The rarest state in the chain is the state n − 1 and
the number of substrate rejections before incorporation
(state 0), is higher than the number of states n − 1, ac-
cording to the ratio

〈N0〉
〈Nn−1〉

=
1−

(
d
u

)n
1− d

u

∼
(
d

u

)n−1

(8b)

For d/u = 1, this ratio tends to n, but it dramatically
increases for d/u exceeding unity. Fig.5 shows the rela-
tive number of passages in the different states of a short
walk of only 6 steps (i = 0, 1, 2, 3, 4, 5). Hence, repeti-
tive returns to the starting point become astonishingly
numerous in the predominantly backward random walks,
like for the mythic Sisyphus, who had to push up a rock
rolling again and again down the mountain. The same
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scenario holds for the thermodynamic mountain of the
backward walk, except that since there are many Sisy-
phus, some of them can occasionally succeed in reaching
the top of the mountain.

Figure 5. Number of passages in state i compared to n− 1,

the less represented state in a finite homogeneous walk, for

different values of d/u. In the example shown, n = 6. When

d > u, this mechanism allows to strongly separate two resem-

bling substrates with slightly different affinities.

6 Time dispersion of the arrivals

In addition to modify the mean completion time and the
mean number of rejections, the ratio d/u has also a great
impact on the dispersion of the arrivals, with interesting
biological consequences. This parameter, illustrated by
the standard deviation, is summarized in Table 1.

6.1 Predominantly forward walk

The strictly forward, no-return walk has the remarkable
property of being the most focused in time, compared
to a single transition of equivalent waiting time. This
property is an advantage in certain circumstances such
as signal transduction [12]. But it is likely to be not
desirable for the building of complexes because: (i) the
complexes would be often defective following misincor-
poration of incorrect components and (ii) their synthe-
sis would be synchronous and massive, thereby hardly
manageable by the cell. The ”randomness parameter” r
defined as (σ(T )/ 〈T 〉)2 [13], is 1/n for forward random
walks, but it is independent of the number of steps for
symmetric and backward walks.

6.2 Symmetric walk

The standard deviation varies as the square of the num-
ber of steps, according to the long established property
of diffusion.

6.3 The predominantly backward walks

For a predominantly backward walk, the standard devi-
ation is a geometric function of the number of steps, just
like the mean time of completion (Table.1), demonstrated
in Appendix B. This result means that individual arrivals
are widely scattered in time. As a consequence, multi-
molecular complexes are expected to appear sporadically
in the different areas of the cell where its components
are diffusing, thus preventing sudden particle accumula-
tion after increased synthesis of their constituents. This
dispersion, associated to a convenient lifetime of the
complexes, also prevents the complete removal of free
components from the medium.

Table 1. Mean time of arrival and its standard deviation

for backward, symmetric and forward finite random walks.

Walk 〈T 〉 σ(T )

Predom. forward (u� d) 1
un

1
u

√
n

Symmetric (u ' d) 1
u
n(n+1)

2
1
u
n2
√

6

Predom. backward (u� d) 1
u

(
d
u

)n−1 1
u

(
d
u

)n−1

7 Near absence of incomplete
complexes in the cell

In addition to their differential capacity of buffering
bursts of complex synthesis, the predominantly forward
and backward chains differ in the representation of par-
tial complexes. For a backward random walk, the ar-
rivals of new complexes in the cell are spread in time,
but the appearance of a single particle is both rapid and
complete, thus avoiding the presence in the cell of possi-
bly harmful or dominant negative complexes under con-
struction. In this scenario, the components expected to
prevail in the cell are either very small or complete mul-
timers, but partial complexes lacking a few components
are very transient. A simulation applet named ”Interme-
diate states” allows to visualize the dramatic influence of
the ratio d/u on the different state probabilities along the
chain (Appendix A, Fig.A2).

8 Thermodynamic cost of finite
backward random walks

As shown above, the backward random walk presents
many advantages for biochemical systems. It is a
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nonequilibrium process due to the irreversible final step,
but it does not necessitate NTP-consuming active mecha-
nisms. If binding selectivity can be obtained for free, one
may wonder why the first proposed mechanisms of sub-
strate selection are energetically expensive, concretely il-
lustrated by NTP consumption [1, 4]. A possible expla-
nation is that energy consumption concerns polymerases
(ribosomes or RNA polymerases), whose polymerization
rates (of translation or transcription), can not be too
low. Their coupling to energy-providing reactions allows
to rapidly check the quality of subtrates without waiting
for spontaneous positive fluctuations. By this way, the
delay of synthesis of RNAs or proteins remains reason-
able enough not to affect the reactivity of gene regulatory
circuits. By contrast, there are no temporal constraints
on the rates of complex formation which can be arbitrary,
provided they are associated with appropriate rates of re-
moval to maintain acceptable stationary concentrations
of complexes in the cell. In this case, the energy neces-
sary for endothermic reactions can be uptaken from spon-
taneous thermal fluctuations. At nonzero temperature,
thermal and density fluctuations are the rule; but at equi-
librium they are reversible. Hence, the essential aspect
of the principle described here is the capture of fluctua-
tions by final micro-irreversible steps acting as ratchets,
already identified as essential biochemical mechanisms in
the field of molecular motors [15]. The backward random
walk mechanism has nevertheless a cost, but which has in
fact already been paid in the past during the evolution-
ary design of lock-and-key ratchet components, through
information-retrieval cycles [16].

9 Extension of the principle of en-
dothermic chains to other situ-
ations

The substrate selection mechanism described here relies
on the delay of the final step of the chain. It offers the
opportunity to multiply substrate ”re-weighting” pro-
cesses to distinguish competing interactions [2]. In addi-
tion, long backward micro-irreversible chains can ensure
a multitude of other essential biological roles. Examples
of intracellular processes to which it applies are listed
below.

9.1 Preparing complexes subject to
rapid depolymerization

Certain complexes are made of a large number of the
same building unit. The concentration of this unit di-
rectly sets the value of the upstream pseudo-first or-
der rate u which is the same all along the polymeriza-
tion chain. A clear example is the formation of micro-
tubules. Over a certain concentration of elementary mi-
crotubule building blocks (αβ tubulin dimers), the for-

mation of microtubular fibrils proceeds in a seemingly
stochastic manner, just like the backward random walk.
More energy is clearly stored in the microtubules com-
pared to diffusing tubulin. This energy has been shown
to derive from the hydrolysis of GTP [17], but interest-
ingly, microtubules can also form in absence of GTP hy-
drolysis and in this case it has been shown endother-
mic, as determined by microcalorimetry [18]. The ini-
tial steps of microtubule formation are considered as
counter-thermodynamic [19]. Microtubules are then sta-
bilized by accessory apical proteins locking the micro-
tubule ends. Remarkably, the destabilization of micro-
tules, partly prevented by GTP-containing subunits at
the growing end of microtubules, leads to explosive de-
polymerizations named catastrophes. Non-hydrolysed
GTP remnants along the microtubule have been pro-
posed to prevent complete depolymerization [20] and to
reinitiate rescues. Rapid microtubule shrinking plays im-
portant biological roles [21], consistent with the fact that
tubulin dissociation is exothermic. Remarkably, poly-
merization of pure tubulin can be spontaneous [18] by
catching the energy of thermal fluctuations and in turn,
the energy stored in microtubules is exploited during
rapid cellular reorganizations.

9.2 An additional mechanism involved in
protein folding

Protein binding and protein folding are closely related
processes. According to current models, the initial stages
of soluble protein folding are hydrophobic collapses,
which are followed by the arrangement of surrounding
domains. The progressive establishment of these inter-
domain interactions can proceed through stepwise ad-
justement, as for the association of distinct proteins.

9.3 Kinetic genesis of isogenic hetero-
genetity

The dramatic change of standard deviation obtained
when shifting from forward to backward random walk
(bottom last line of Table.1), has a great interest in the
field of isogenic heterogeneity. This point is illustrated by
the induction of the lactose operon (lac). The molecular
event triggering lac induction is the complete dissocia-
tion of the transcriptional repressor (LacI) from the lac
DNA. As LacI contains four monomers which all contact
lac, complete LacI dissociation necessitates the achieve-
ment of a chain of LacI monomer dissociation. Complete
dissociation can then be maintained by a positive feed
back and is necessary for full and durable transcriptional
induction and to the switch of certain bacteria into a
self-sustained induced state [22, 23]. This chain of dis-
sociation events is controlled by antagonistic tendencies:
(i) of dissociation provoked by the inducer (modifying the
pseudo-first order rates u) and (ii) of strong association
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between LacI and lac [23]. Hence, at high inducer con-
centration, all the bacteria are expected to switch syn-
chronously to the induced state, whereas at low inducer
concentration, there is a strong resistance to LacI dissoci-
ation, so that only certain bacteria become induced in an
unpredictable manner. Moreover, owing to the positive
feedback of the lactose operon, these few activated bacte-
ria remain fully and stably induced [22, 23]. This purely
kinetic mechanism has a strategic importance at the pop-
ulation level as it can contribute to the bimodality of the
lactose operon induction at low doses of inducer, with-
out need for the conventional mode of bistability [23],
like other examples of extended transient bimodality in
monostable systems [14].

10 Origin and role of the micro-
irreversible step

The micro-irreversible final steps of the chains described
here act as thermodynamic ratchets. Their role is es-
sential for catching fluctuations as they make the dif-
ference between inexistent Maxwell demons and realistic
biochemical mechanisms [16]. Their origins are multiple,
as illustrated by the different examples used here.

• For hierarchical complex building. Micro-
irreversibility is ensured by locking the most ad-
justed complex (Fig.1). This capping phenomenon
allows to (i) initiate the next step and (ii) freeze
previous interactions, even if they are not very sta-
ble by their own. Capping steps are likely to be
scattered over the assembly line of large molecular
complexes.

• For enzymatic reactions. Enzymatic reactions have
long been modeled in (Fig.3) as micro-irreversible.
The irreversibility of the transition un−1 is not re-
lated to some irreversibility in the catalytic reac-
tion itself, but to the escape of the product P once
formed. The very low concentration of P in the
cell prevents it to rebind to the enzyme. Indeed,
P is generally immediately used as a substrate for
a subsequent reaction, or incorporated into larger
macromolecules.

• For tubulin polymerization Storing thermal fluctu-
ations is rendered possible by ratchet mechanisms
preventing their immediate dissipation. GTP-
containing subunits and various tip proteins have
been proposed to ensure this role for microtubules.

• For the example of the lactose operon derepression
(Section 9.3), the very low concentration of free
LacI in the cell strongly delays its rebinding to
lac after dissociation [22]. This long delay can
allow sufficient expression of the operon to defi-
nitely prevent LacI-lac rebinding through the fa-

mous positive feedback locking lac in the induced
state [24, 22, 23].

The micro-irreversibility of the first arrival to the final
stage of the chain, works as a fluctuation ratchet sta-
bilizing a low probability state. By this way, counter-
thermodynamic reactions can be achieved without need
for the conventional recipe of biochemistry of a coupling
with the consumption of an energy donor such as ATP
or GTP.

11 Discussion

The hallmark of life is its capacity to locally decrease
entropy, or in other words, to select improbable states.
This is precisely what is achieved here when states of
low probability are functionally selected. Inappropri-
ate interactions are generally assumed to be excluded
in lock-and-key interactions by the much higher affinity
for relevant binding partners but this principle suffers
from several drawbacks: (i) The requirement of a perfect
stereo-complementarity is not suitable for early, poorly
evolved living systems in the context of the origin of life.
(ii) Partner discrimination in the lock-and-key mecha-
nism, is possible only at the initial interaction (rates
kon and koff) which are clearly insufficient to distinguish
between resembling substrates [1, 2]. (iii) As a matter
of fact, many closely related proteins coexist in the cell,
for example deriving from multigenic families, and their
discrimination requires amplifying faint differences of dis-
sociation rates. Difficult induced-fit is well suited for this
purpose, as it allows discriminating competing binding
partners, not only through the initial association, but
more importantly on following conformational adjust-
ment that is spread over many sticking micro-reactions.
The gain of discrimination thus obtained is not merely
additive, but multiplicative, as clear in Eq.(7b) and in
accordance with the illuminating analogy of the coin
reweighing machines proposed in [25] for detecting false
coins. This recipe relies on the fundamental property of
probabilities, which also underlies entropy: the proba-
bility of a union of independent events is the products of
the probabilities of the individual events. This mode of
discrimination resembles the proofreading mechanisms
formerly described [1, 2] in that it delays the final reac-
tion of molecular incorporation. But beside this common
feature, it differs through other points: (i) Contrary to
[1], no ”hard-driven” energy-consuming step is required.
(ii) The number of ”discrimination steps” is not limited
as in the mechanisms of [1, 2], but covers a very large
series of elementary transitions.
The predominantly backward finite random walk pre-
dicts a probabilistic mode of assembly with several fea-
tures: (i) The building of supramolecular structures re-
sembles an all-or-none phenomenon, which presents the
advantage of reducing the abundance of incomplete com-
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plexes in the cell. (ii) Complete particles are expected
to appear in a sporadic manner in the cell, avoiding jolts
in their synthesis. (iii) In this model of energy storage,
the core of supramolecular complexes could continuously
”breath” through antagonistic constraints. Such ”living”
complexes could have interesting properties absent from
rigid lock-and-key complexes. The so-called dynamic in-
stability of microtubules is fundamentally related to the
energy content of this complex.
One of the essential virtues of the mechanism proposed
here is to allow discriminating resembling interaction
partners more surely than a single lock-and-key binding.
This principle is likely to be a general recipe allowing
living systems to filter inappropriate interactions.
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Appendices

A Discrete simulation

To clearly appreciate the crucial role of small differences between backwards and forward transitions in the final
achievement of finite random walks, A series of interactive simulation tools in discrete time is developed, which
agrees with the mathematical predictions in continuous time and allows to clearly visualize the singular behavior of
predominantly backward finite random walks. The set of applets using the simulation platform SimuLab (Observa-
toire de Paris, http://media4.obspm.fr/outils/simulab/) and accessible in: http://selfassembly.genouest.org/. The
tool ”Complex formation” (Fig.A1A) allows to compare the accumulation in space of correct vs wrong complexes,
while the simulation ”Competitive binding” (Fig.A1B) shows the comparative kinetics of incorporation of wrong
and correct substrates and their final incorporation levels.

Figure A1. Stochastic simulation of binding selectivity (A) Screen capture of the tool named Complex formation, showing

the great advantage conferred by small differences between backward and forward transitions. In spite of the slight difference

between the ratios u/d, the incorrect substrate is rarely incorporated (blue, darker spots). (B) Snapshot of the tool named

Competitive binding, showing a competitive substrate incorporation. The correct and wrong substrates are mixed in the

center of the graph and their differential capacity of incorporation in the final state is compared in left and right parts of the

graph respectively .

Single chain evolution tools are also proposed, among which the tool ”Intermediate states” allows to appreci-
ate the relative representations of the different states of complex association before final locking (Fig.A2) and the
tool ”Total number of 0” shows the evolution of the number of substrate rejections before incorporation, obtained
for different ratios d/u (Fig.A3).
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Figure A2. Snapshot of the degree of occupancy of each state during a 40 step-walk, compared for a predominantly forward

(top, u/d = 0.50/0.45) and predominantly backward walk (bottom, u/d = 0.45/0.50) at the mid time point of achievement.

The starting state is at left and the final state is at right. Large intermediate states are extremely rare for the backward walk.

In the forward walk, a wave of occupancy progresses through all the states. This occupancy tends to equalize between the

different states when d << u. In biochemical terms, this equal occupancy means for example that all the sizes of a polymer

would coexist in the cell.
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B Mean completion times and standard deviations in the homoge-
neous case

The general equations (3) and (4) from which the mean times of arrival 〈T 〉 have been deduced in this article,
have been demonstrated in (Michel and Ruelle, 2013). They are of course simpler in the homogeneous case for
which all forward and backward rates are equal, ui = u and di = d. The standard deviation related to the first
and second moments are derived below in this simplified case. Note that they can be equivalently obtained using
Laplace transforms (Bel et al. 2009; Munsky et al., 2009). The matrix A describing the vector of the differential

system ~P (t) = (P0(t), P1(t), . . . , Pn−1(t)) as

d

dt
~P (t) = A~P (t) , (9)

simplifies in the homogeneous case and essentially depends on the ratio κ ≡ d
u ,

A = u


−1 κ 0 . . . 0
1 −(1 + κ) κ . . . 0
0 1 −(1 + κ) . . . 0
0 0 1 . . . . . .
. . . . . . . . . . . . κ
0 0 0 . . . −(1 + κ)

 . (10)

This matrix, tridiagonal and almost constant along the main three diagonals, is simple enough to be explicitly
inverted B ≡ A−1. One finds

Bi,j =
−1

u
· κ

max(0,j−i) − κn−i

1− κ
, 0 ≤ i, j ≤ n− 1. (11)

The last row and first column of B read

Bn−1,i = − 1

u
, (12)

Bi,0 = −1− κn−i

u(1− κ)
= − 1

u
(1 + κ+ . . .+ κn−1−i), (13)

from which we obtain the mean time of arrival,

〈T 〉 =
1

u

n−1∑
i=0

(1 + κ+ . . .+ κn−1−i) =
n− (n+ 1)κ+ κn+1

u (1− κ)2
. (14)

When the walk is strongly forward (κ � 1), close to being symmetric (κ ∼ 1) or strongly backward (κ � 1), the
behavior of the mean arrival time is

〈T 〉 =


n
u for κ� 1,

n(n+1)
2u for κ ∼ 1,

1
uκ

n−1 for κ� 1.

(15)

The calculation of the second moment 〈T 2〉 is slightly longer but similar. In the general homogeneous case, we
find

〈T 2〉 =
2

u2(1− κ)3

{
n(n+ 1)

2
(1− κ) + 3nκn+1 − κ(2 + κn+1)

1− κn

1− κ

}
. (16)

In the three asymptotic regimes, it behaves as (the dominant terms given below do not assume n large)

〈T 2〉 =


n(n+1)
u2 for κ� 1,

n(n+1)(5n2+5n+2)
12u2 for κ ' 1,

2
u2κ

2n−2 for κ� 1.

(17)

The value of the standard deviation σ(T ) =
√
〈T 2〉 − 〈T 〉2 follows from (15) and (17) and, for n large, given in

Table 1.
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C Relative representation of intermediate states along the walk

The chain of reactions considered in the text can be viewed as the continuum limit of a discrete time random walk,
and can therefore be given a probabilistic interpretation. In order to see this in concrete terms, we define the
stochastic evolution of a hopping particle. The particle may be found at one of n + 1 sites (or states), numbered
from 0 to n, and jumps from site to site according to specific random rules. The particle makes one jump every time
interval, moving from site i to site j with a certain probability pji. In the present context, the hopping particle,
also referred to in the literature as a walker, is just a way to see a certain amount of product i change to product
j, the change occurring with probability or rate pji (in the limit of continuous time, the probabilities will become
instantaneous transition rates). Equivalently, we can say that the fraction pji of product i transforms to product j.

Let us now define more precisely the jumping rules, using the walk terminology, more convenient and intuitive.
The walker is initially at site i0 at time N = 0, and from then on, takes one step every time interval. However the
only steps he is allowed to take are ±1 or 0, with jumping probabilities

pji = p(i→ j) =


υi if j = i+ 1,

δi if j = i− 1,

1− υi − δi if j = i.

(18)

If the walker position at time N is i, his position at the next time N + 1 can only be i − 1, i, i + 1. Moreover
the associated probabilities are in general different for the three steps (and site-dependent). Because the positions
should remain in the set {0, 1, . . . , n}, we must specify the boundary conditions at the two end-points of the chain.
We decide that site i = 0 is reflecting by setting δ0 = 0, and that site i = n is absorbing by choosing δn = υn = 0,
meaning that once the walker reaches site n, he stays there forever, with probability 1.

The position of the walker at any fixed time N is a random variable, characterized by a distribution Pi0(•;N),
where Pi0(i;N) denotes the probability that the walker be at site i at time N , having started from site i0. The
initial distribution is Pi0(i; 0) = δi,i0 , and each fixed time distribution is normalized,

∑n
i=0 Pi0(i;N) = 1 for any

i0, N .
Simple probabilistic arguments show that the distributions satisfy the following discrete time evolution equation,

Pi0(i;N + 1) = υi−1 Pi0(i− 1;N) + δi+1 Pi0(i+ 1;N) + (1− δi − υi)Pi0(i;N). (19)

With the initial condition given above, it can be proved that the distributions at later times are uniquely determined,
and can be computed by standard methods. We observe that the previous recurrence equation can be written in a
matrix form as

Pi0(i;N + 1) =
∑
k

(I + Â)i,k Pi0(k;N), (20)

where the entries of I + Â are precisely the transition probabilities, (I + Â)i,k = pik. By iterating the recurrence,
we obtain a formal but useful expression,

Pi0(•;N) = (I + Â)N Pi0(•; 0), (21)

written in vector notation (Pi0(•;N) is a column vector with components Pi0(i;N)).
Though it may be tricky to obtain explicit expressions when δi, υi are arbitrary, the gross features of the behavior

for large times may be established by elementary means. In the generic case, namely when the probabilities υi are
all non-zero, we note that the walker has a non-zero probability pa to be absorbed in time n (whatever its starting
point), and therefore a probability ps = 1 − pa strictly smaller than 1 to survive up to time n. By considering
temporal windows which are multiples of n, the survival probability up to time kn (k integer) is bounded by
pks = (1− pa)k. It follows that the survival probability up to time N decays exponentially with N . Sooner or later,
the walker will be absorbed, with probability 1, or limN→∞ Pi0(i;N) = δi,n.

Our purpose here is two-fold. First we show that the continuous time limit of the discrete random walk defined
above precisely yields the deterministic reaction processes considered in the text. In a second step, we will be
interested in a quantity that can be conveniently computed in the discrete formalism, namely the average number
of returns to site 0 (or to any other site) before the walker gets eventually absorbed at site n.

In order to define the continuous time limit of the random walk, we take the time increment to be a small
quantity ε, instead of 1 as was done above, and let the walker take a step every ε unit of time. The time elapsed
after N moves is t = Nε. Eq. (19) then reads

Pi0(i; t+εε )− Pi0(i; tε ) = υi−1 Pi0(i− 1; tε ) + δi+1 Pi0(i+ 1; tε )− (δi + υi)Pi0(i; tε ). (22)
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For small and finite ε, the time variable t is discrete but comes closer and closer to a continuous variable as ε tends
to 0. Dividing the previous equation by ε and taking the limit ε→ 0 yields the following differential system

d

dt
Pi0(i; t) = ui−1 Pi0(i− 1; t) + di+1 Pi0(i+ 1; t)− (ui + di)Pi0(i; t), (23)

where the discrete and continuous rates are related by υi = ε ui, δi = ε di, and the continuous time distributions
are defined from

Pi0(i; t) = lim
ε→0
Pi0(i; tε ). (24)

Let us note that the limit over ε in the previous equation is not simply a large N limit of Pi0(i;N) but also applies to
the implicit dependence (not shown) of Pi0(i;N) on the parameters δi, υi, so that the limiting distributions Pi0(i; t)
depend on di, ui.

For i0 = 0, we recover the differential equations satisfied by the concentrations Pi(t) ≡ P0(i; t) recalled in (9)
and (10). The relationship between the probability distributions and the concentrations considered in the context
of the chain of reactions stems from the frequentist interpretation of probabilities. Pi(t) may be viewed as the
probability that a single complex is in state i or in case of a large number of complexes, as the proportion of those
in state i.

Let us now compute Ti0(i), defined as the average number of times the walker comes to site i before being
eventually absorbed (the starting site is i0 while the time of absorption is not fixed). A simple and classical
argument is sufficient to obtain a convenient formula.

For each discrete time N , let us define the binary random variable I(i;N): it is equal to 1 or 0 according
to whether the walker is or is not at site i at time N . Its distribution is simply Prob[I(i;N) = 1] = Pi0(i;N),
implying that its average value is 〈I(i;N)〉 = Pi0(i;N). Because the total time spent by the walker at i is equal to∑∞
N=0 I(i;N) (if i = i0), the initial time is included), the corresponding average value is

Ti0(i) =

∞∑
N=0

〈I(i;N)〉 =

∞∑
N=0

Pi0(i;N) =

n∑
k=0

∞∑
N=0

(I + Â)Ni,k Pi0(k; 0), (25)

where we have used (21) in the last step.
To carry out the two summations, we may assume i0, i 6= n since otherwise Ti0(i) is infinite. The summation

over k can then be restricted to k < n, and likewise the matrix (I + Â) can be restricted to its n × n submatrix
labeled by the sites 0, 1, . . . , n− 1, which we denote by (I +A). We obtain

Ti0(i) =

n−1∑
k=0

∞∑
N=0

(I +A)Ni,k Pi0(k; 0) = −
n−1∑
k=0

(A−1)i,k Pi0(k; 0) = −(A−1)i,i0 . (26)

The rest is just a matter of computing the inverse of A, whose explicit form is tridiagonal,

A =


−υ0 δ1 0 . . . . . . 0
υ0 −υ1 − δ1 δ2 . . . . . . 0
0 υ1 −υ2 − δ2 δ3 . . . 0
0 0 υ2 . . . . . . . . .
. . . . . . . . . . . . . . . δn−1

0 0 0 . . . . . . −υn−1 − δn−1

 . (27)

For i0 = 0 (starting site is the origin, the left end of the chain), the entries A−1
i,0 have a relatively simple form.

We find

T0(i) = −(A−1)i,0 =
1

υi

n−1−i∑
`=0

δi+1 . . . δi+`
υi+1 . . . υi+`

, i = 0, 1, . . . , n− 1, (28)

where the summand for ` = 0 is taken to be 1. We deduce in particular the relation

δi T0(i) = υi−1 T0(i− 1)− 1. (29)

Let us mention a few special cases. In the symmetric case δi = υi for 1 ≤ i ≤ n− 1 (left and right moves have
equal probabilities), we find the simple expression

T0(i) =
n− i
υi

, i = 0, 1, . . . , n− 1. (30)
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The ratio δ
υ is equal to the previous ratio κ = d

u from which the temporal aspect disappears. Hence, in the
homogeneous case, namely when all υi and all δi are equal to υ and δ respectively, the formula (28) simplifies to

T0(i) =
1

υ
(1 + κ+ κ2 + . . .+ κn−1−i) =

1

υ

1− κn−i

1− κ
, i = 0, 1, . . . , n− 1, (31)

Fig.A3 shows a discrete simulation of the number of returns to state 0 which accumulate nonlinearly in time in
the case of a slightly backward finite random walk.

Figure A3. Screen capture of the stochastic simulation applet showing the evolution of the number of returns to 0 for

a 15-step single walk weakly backward with backward transitions 5% more probable than forward steps. A mean number

of returns to zero of 77.14 is expected for this set of values. The expected time of absorption is 471.39, with a standard

deviation equal to 423.47.
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