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Abstract

We present efficient and accurate numerical methods for computing the ground state and dynamics of the
nonlinear Schrödinger equation (NLSE) with nonlocal interactions based on a fast and accurate evaluation
of the long-range interactions via the nonuniform fast Fourier transform (NUFFT). We begin with a review
of the fast and accurate NUFFT based method in [29] for nonlocal interactions where the singularity of the
Fourier symbol of the interaction kernel at the origin can be canceled by switching to spherical or polar
coordinates. We then extend the method to compute other nonlocal interactions whose Fourier symbols
have stronger singularity at the origin that cannot be canceled by the coordinate transform. Many of these
interactions do not decay at infinity in the physical space, which adds another layer of complexity since it is
more difficult to impose the correct artificial boundary conditions for the truncated bounded computational
domain. The performance of our method against other existing methods is illustrated numerically, with
particular attention on the effect of the size of the computational domain in the physical space. Finally, to
study the ground state and dynamics of the NLSE, we propose efficient and accurate numerical methods by
combining the NUFFT method for potential evaluation with the normalized gradient flow using backward
Euler Fourier pseudospectral discretization and time-splitting Fourier pseudospectral method, respectively.
Extensive numerical comparisons are carried out between these methods and other existing methods for
computing the ground state and dynamics of the NLSE with various nonlocal interactions. Numerical
results show that our scheme performs much better than those existing methods in terms of both accuracy
and efficiency.

Keywords: nonlinear Schrödinger equation, nonlocal interactions, nonuniform FFT, ground state,
dynamics, Poisson equation, fractional Poisson equation

1. Introduction

In this paper, we present efficient and accurate numerical methods and compare them with existing
numerical methods for computing the ground state and dynamics of the nonlinear Schrödinger equation
(NLSE). In dimensionless form, the NLSE with a nonlocal (long-range) interaction in d-dimensions (d =
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3, 2, 1) is

i ∂tψ(x, t) =

[
−1

2
∆+ V (x) + β ϕ(x, t)

]
ψ(x, t), x ∈ Rd, t > 0, (1.1)

ϕ(x, t) =
(
U ∗ |ψ|2

)
(x, t), x ∈ Rd, t ≥ 0; (1.2)

with the initial data
ψ(x, t = 0) = ψ0(x), x ∈ Rd. (1.3)

Here, t is time, x is the spatial coordinates, ψ := ψ(x, t) is the complex-valued wave-function, V (x) is a given
real-valued external potential, β is a dimensionless interaction constant (positive for repulsive interaction
and negative for attractive interaction), and ϕ := ϕ(x, t) is a real-valued nonlocal (long-range) interaction
which is defined as the convolution of an interaction kernel U(x) and the density function ρ := ρ(x, t) =
|ψ(x, t)|2. The NLSE with the nonlocal interaction (1.1)-(1.2) has been widely used in modelling a variety
of problems arising from quantum physics and chemistry to materials science and biology. It is nonlinear,
dispersive and time transverse invariant, i.e., if V (x) → V (x) + α and ϕ(x, t) → ϕ(x, t) + δ, then ψ(x, t) →
ψ(x, t)e−i(α+δ)t, which immediately implies that the physical observables such as the density ρ(x, t) =
|ψ(x, t)|2 are unchanged. In addition, it conserves the mass and energy defined as follows:

N(ψ(·, t)) :=

∫

Rd

|ψ(x, t)|2dx ≡
∫

Rd

|ψ(x, 0)|2dx =

∫

Rd

|ψ0(x)|2dx = N(ψ0), t ≥ 0, (1.4)

E(ψ(·, t)) :=

∫

Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + 1

2
β ϕ(x, t)|ψ(x, t)|2

]
dx ≡ E(ψ0). (1.5)

One of the most important nonlocal interactions in applications is the Coulomb interaction whose inter-
action kernel in 3D/2D is given as

UCou(x) =





1
4π |x| ,

1
2π|x| ,

⇐⇒ ÛCou(k) =





1
|k|2 , d = 3,

1
|k| , d = 2,

x,k ∈ Rd, (1.6)

where f̂(k) =
∫
Rd f(x) e

−ik·x dx is the Fourier transform of f(x) for x,k ∈ Rd. In 3D, the Coulomb
interaction kernel UCou(x) is exactly the Green’s function of the Laplace operator and thus the nonlocal
Coulomb interaction ϕ in (1.2) also satisfies the Poisson equation in 3D

−∆ϕ(x, t) = |ψ(x, t)|2, x ∈ R3, lim
|x|→∞

ϕ(x, t) = 0, t ≥ 0. (1.7)

In this case, (1.1)-(1.2) is also referred as the 3D Schrödinger-Poisson system (SPS) which was derived from
the linear Schrödinger equation for a many-body (e.g., N electrons) quantum system with binary Coulomb
interaction between different electrons via the “mean field limit” [12, 13, 23]. It has important applications
in modelling semiconductor devices and calculating electronic structures in materials simulation and design.
On the other hand, the Coulomb interaction kernel U(x) in 2D is the Green’s function of the square-root-
Laplace operator instead of the Laplace operator and thus the nonlocal Coulomb interaction ϕ in (1.2) also
satisfies the fractional Poisson equation in 2D

√
−∆ϕ(x, t) = |ψ(x, t)|2, x ∈ R2, lim

|x|→∞
ϕ(x, t) = 0, t ≥ 0. (1.8)

In this case, (1.1)-(1.2) could be obtained from the 3D SPS under an infinitely strong external confinement in
the z-direction [9, 14]. This model could be used for modelling 2D materials such as graphene and “electron
sheets” [20].

Another type of interaction from applications is that the interaction kernel U(x) is taken as the Green’s
function of the Laplace operator in 3D/2D/1D [41]

ULap(x) =





1
4π|x| , d = 3,

− 1
2π ln |x|, d = 2,

− 1
2 |x|, d = 1,

⇐⇒ ÛLap(k) =
1

|k|2 , x,k ∈ Rd. (1.9)
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When d = 3, ULap(x) = UCou(x) for x ∈ R3. When d = 2, the nonlocal interaction ϕ in (1.2) with (1.9)
satisfies the Poisson equation in 2D with the far-field condition

−∆ϕ(x, t) = |ψ(x, t)|2, x ∈ R2, lim
|x|→∞

[
ϕ(x, t) +

C0

2π
ln |x|

]
= 0, t ≥ 0; (1.10)

and when d = 1 with x = x, it satisfies the Poisson equation in 1D with the far-field condition

−∂xxϕ(x, t) = |ψ(x, t)|2, x ∈ R, lim
x→±∞

[
ϕ(x, t) +

1

2
(C0|x| ∓ C1)

]
= 0, t ≥ 0, (1.11)

where C0 =
∫
Rd |ψ(x, t)|2dx = |̂ψ|2(0, t) ≡

∫
Rd |ψ0(x)|2dx = |̂ψ0|2(0) = N(ψ0) and C1 =

∫
R
x|ψ(x, t)|2 dx =

̂(x|ψ|2)(0, t), which indicate that the nonlocal interaction ϕ(x, t) → −∞ as |x| → ∞ in 2D/1D. In fact, when
d = 2 or d = 1, (1.1)-(1.2) with (1.9) is also referred as the 2D or 1D SPS. They could be obtained from
the 3D SPS by integrating the 3D Coulomb interaction kernel UCou(x) along the z-line or (y, z)-plane under
the assumption that the electrons are uniformly distributed in one or two spatial dimensions, respectively.
The 2D/1D SPS is usually used for modelling 2D “electron sheets” and 1D “quantum wires”, respectively,
as well as lower dimensions semiconductor devices [32].

Recently, the following nonlocal interaction kernels in 2D/1D were obtained from the 3D SPS under
strongly confining external potentials in the z-direction and (y, z)-plane, respectively

UεCon(x) =





2
(2π)3/2

∫∞
0

e−
u2

2√
|x|2+ε2u2

du, x ∈ R2

1
4

∫∞
0

e−
u
2√

|x|2+ε2u
du, x ∈ R

⇐⇒ ÛεCon(k) =





2
π

∫∞
0

e−
ε2s2

2

|k|2+s2 ds, k ∈ R2,

1
2

∫∞
0

e−ε2s/2

|k|2+s ds, k ∈ R,
(1.12)

where 0 < ε≪ 1 is a dimensionless constant describing the ratio of the anisotropic confinement in different
directions in the original 3D SPS [9]. In this case, the convolution (1.2) for the nonlocal interaction ϕ can
no longer be re-formulated into a partial differential equation. For other nonlocal interactions considered
in quantum chemistry and dipole Bose-Einstein condensation, e.g., the dipole-dipole interaction, we refer to
[4, 5, 17, 29] and references therein.

The ground state φg of the NLSE is defined as follows:

φg = argmin
φ∈S

E(φ), where S := {φ(x) | ‖φ‖2 :=
∫

Rd

|φ(x)|2dx = 1, E(φ) <∞}. (1.13)

For the existence, uniqueness and exponentially decay properties of the ground state as well as the well-
posedness and dynamical properties of the NLSE, we refer to [36, 18, 15, 4, 14, 19, 33, 34] and references
therein.

In order to numerically compute the ground state of (1.13) and the dynamics of (1.1)-(1.2), one of the
key difficulties is to efficiently and accurately evaluate the nonlocal interaction (1.2) with a given density
ρ = |ψ|2. As we know, a natural way to evaluate a convolution is to compute it in the Fourier domain, i.e.,
to re-formulate (1.2) as

ϕ(x, t) =
1

(2π)d

∫

Rd

Û(k) |̂ψ|2(k, t) eik·x dk =
1

(2π)d

∫

Rd

Û(k) ρ̂(k, t) eik·x dk, x ∈ Rd, t ≥ 0. (1.14)

And the integral on the right hand side of (1.14) will be truncated on a rectangular box Ω in Rd, discretized
via the trapezoidal rule, and then computed via the fast Fourier transform (FFT) [11]. However, the accuracy

of this approach is hampered by the fact that the Fourier transform of the interaction kernel Û(k) is singular
at the origin. Indeed, for the Coulomb interaction in 3D, it is equivalent to solving the Poisson equation
(1.7) using the Fourier spectral method on Ω with periodic boundary conditions. It is easy to see that this
approach introduces an inconsistency due to the inappropriate periodic boundary conditions as follows:

0 <

∫

Ω

|ψ(x, t)|2dx = −
∫

Ω

∆ϕ(x, t)dx = −
∫

∂Ω

∂ϕ

∂n
ds = 0. (1.15)
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Thus, this approach suffers from no convergence in terms of the mesh size of partitioning Ω when Ω is
small and fixed (a phenomenon known as “numerical locking” in the literature); and its convergence is
very slow, e.g., linearly convergent for the 3D/2D Coulomb interaction, in terms of the size of Ω because ϕ
decays like 1

|x| . To overcome this “numerical locking”, a numerical method was proposed by imposing the

homogeneous Dirichlet boundary condition on ∂Ω, and then solving the truncated problem via the discrete
sine transform (DST) [6, 17, 41]. This method avoids numerically the singularity of Û(k) at the origin
k = 0 and thus significantly improves the accuracy in the evaluation of the Coulomb interaction potential.
However, the truncation error of this method still decays only linearly in terms of the size of Ω due to
the slow decaying property of the Coulomb potential. Thus when high accuracy is required, the bounded
computational domain Ω must be chosen very large, which increases significantly the computational cost in
both memory and CPU time for evaluating the nonlocal interaction potential (1.2) and solving the NLSE
(1.1). Moreover, for the purpose of solving the NLSE, a much smaller computational domain actually suffices
since the wave-function ψ decays exponentially fast when |x| → ∞ in most applications. We would also like
to point out that this method could not be extended to the cases where the potential in (1.1) either does
not decay at infinity (for example, 1D/2D cases of (1.9)) or cannot be converted to a PDE problem (as in
(1.12)).

Recently, a fast and accurate algorithm was proposed for the evaluation of the Coulomb interaction
(1.6) in 3D/2D via the NUFFT [29]. The key observation there is that the singularity in the Fourier

transform of the interaction kernel Û(k) at the origin is canceled out with the Jacobian in spherical or
polar coordinates, thus making the integrand in (1.14) smooth. The integral is then approximated via a
high-order quadrature and the resulting discrete summation is evaluated via the NUFFT. The algorithm
has O(N logN) complexity with N the total number of unknowns in the physical space and achieves very
high accuracy for the evaluation of Coulomb interactions [29]. The main aims of this paper are fourfold: (i)
to extend the algorithm in [29] to evaluate the nonlocal interactions whose Fourier symbols have stronger
singularity at the origin which cannot be canceled by coordinate transform; (ii) to compare numerically the
newly developed NUFFT based method with the existing numerical methods that are based on either FFT
or DST for the evaluation of these nonlocal interactions in terms of the size of the computational domain Ω
and the mesh size of partitioning Ω; (iii) to propose efficient and accurate numerical methods for computing
the ground state and dynamics of the NLSE with the nonlocal interactions (1.1)-(1.2) by incorporating the
algorithm based on the NUFFT for the evaluation of the nonlocal interaction into the normalized gradient
flow method and the time-splitting Fourier pseudospectral method, respectively, and (iv) to compare these
two new schemes with those existing numerical methods based on FFT or DST for computing the ground
state and dynamics of the NLSE.

The paper is organized as follows. In Section 2, we briefly review the NUFFT based algorithm in [29]
for the evaluation of the Coulomb interaction in 3D/2D, then extend it to the general nonlocal interaction
(1.2), including the cases where U(x) is taken as either (1.9) or (1.12). In Section 3, we present an efficient
and accurate numerical method for computing the ground state of the NLSE (1.1)-(1.2) by coupling the
efficient and accurate evaluation of the nonlocal interaction via the NUFFT and the normalized gradient
flow discretized with the backward Euler Fourier pseudospectral method, and compare the performance of
this method and those existing numerical methods. In Section 4, an efficient and accurate numerical method
is proposed for computing the dynamics of the NLSE by coupling the efficient and accurate evaluation of the
nonlocal interaction via the NUFFT and the time-splitting Fourier pseudospectral method. Finally, some
concluding remarks are drawn in Section 5.

2. An algorithm for the evaluation of the nonlocal interaction via the NUFFT

In this section, we will propose a fast and accurate evaluation of the nonlocal interaction

u(x) = (U ∗ ρ)(x) = 1

(2π)d

∫

Rd

Û(k) ρ̂(k) eik·x dk, x ∈ Rd, d = 3, 2, 1, (2.1)

where ρ := ρ(x) ≥ 0 for x ∈ Rd is a given smooth density function rapidly decaying at far field and satisfies
C0 := ρ̂(0) =

∫
Rd ρ(x)dx > 0. We will first briefly review the algorithm in [29] for fast and accurate
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evaluation of the Coulomb interactions in 3D and 2D, and then extend the algorithm to the cases where
U(x) in (2.1) is taken as either (1.9) or (1.12).

2.1. Coulomb interactions in 3D/2D

When U(x) in (2.1) is taken as the the Coulomb interaction kernel (1.6), by truncating the integration
domain in (2.1) into a bounded domain and adopting the spherical/polar coordinates in 3D/2D, respectively,
in the Fourier (or phase) space, we have [29]

u(x) =
1

(2π)d

∫

Rd

eik·x ÛCou(k) ρ̂(k) dk =
1

(2π)d

∫

Rd

1

|k|d−1
eik·x ρ̂(k) dk

≈ 1

(2π)d

∫

|k|≤P

1

|k|d−1
eik·x ρ̂(k) dk

=
1

(2π)d





∫ P

0

∫ π

0

∫ 2π

0

eik·x ρ̂(k) sin θ d|k|dθdφ, d = 3,

∫ P

0

∫ 2π

0

eik·x ρ̂(k) d|k|dφ, d = 2,

x ∈ Ω ⊂ Rd. (2.2)

Here, P = O(1/ε0)
1/n, ε0 > 0 is the prescribed precision (e.g., ε0 = 10−10), and n is the decaying rate

of ρ̂(k) at infinity (i.e., ρ̂(k) = O(|k|−n) as |k| → ∞). Correspondingly, we choose a bounded domain Ω
large enough such that the truncation error of ρ(x) is negligible. It is easy to see that the singularity of the
integrand at the origin in phase space is removed in spherical or polar coordinates. Thus, the above integral
can be discretized using high order quadratures and the resulting summation can be evaluated efficiently
via the NUFFT. This leads to an O(N logN)+O(M) algorithm where N is the total number of equispaced
points in the physical space and M is the number of nonequispaced points in the Fourier space. However,
although M is roughly the same order as N , the constant in front of O(M) (e.g., 24d for 12-digit accuracy)
is much greater than the constant in front of O(N logN). This makes the algorithm considerably slower
than the regular FFT, especially for three dimensional problems.

An improved algorithm is developed to reduce the computational cost in [29]. First, the integral in (2.2)
is further split into two parts via a simple partition of unity:

u(x) ≈ 1

(2π)d

∫

|k|≤P

1

|k|d−1
eik·x ρ̂(k) dk

=
1

(2π)d

∫

|k|≤P
eik·x

1− pd(k)

|k|d−1
ρ̂(k) dk +

1

(2π)d

∫

|k|≤P
eik·x

pd(k)

|k|d−1
ρ̂(k) dk

≈ 1

(2π)d

∫

D
eik·xwd(k) ρ̂(k) dk +

1

(2π)d

∫

|k|≤P
eik·x

pd(k)

|k|d−1
ρ̂(k) dk := I1 + I2, x ∈ Ω. (2.3)

Here, D = {k = (k1, . . . , kd)
T
∣∣ − P ≤ kj ≤ P, j = 1, . . . , d} is a rectangular domain containing the ball B,

the function pd(k) is chosen such that it is a C∞ function that decays exponentially fast as |k| → ∞ and

the function wd(k) :=
1−pd(k)
|k|d−1 is smooth for k ∈ Rd.

With this pd(k), I1 can be computed via the regular FFT and I2 can be evaluated via the NUFFT with a
fixed (much fewer) number of irregular points in the Fourier space (see Figure 1). Thus the interpolation cost
in the NUFFT is reduced to O(1) and the cost of the overall algorithm is comparable to that of the regular
FFT, with an oversampling factor (23 for 3D problems and 22–32 for 2D problems) in front of O(N logN).

2.2. Poisson potentials in 2D/1D

When U(x) in (2.1) is taken as the Green’s function of the Laplace operator ULap(x) (1.9) in 2D/1D,
the algorithm discussed in the previous section cannot be applied directly to evaluate the Poisson potential
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(a) Regular grid (b) Polar grid

Figure 1: Two grids used in the Fourier domain in the improved algorithm in [29]: the regular grid on the left panel is used to
compute I1 in (2.3) via the regular FFT; while the polar grid (confined in a small region centered at the origin) on the right
panel is used to compute I2 in (2.3) via the NUFFT. Note that the number of points in the polar grid is O(1), thus keeping
the interpolation cost in NUFFT minimal.

u(x) due to the stronger singularity of ÛLap(k) =
1

|k|2 at the origin. Obviously, the Poisson potential u(x)

satisfies the Poisson equation −∆u(x) = ρ(x) with the far field condition

lim
|x|→∞

[
u(x) +

ρ̂(0)

2π
ln |x|

]
= 0 (2.4)

for 2D problems and

lim
x→±∞

[
u(x) +

1

2

(
ρ̂(0)|x| ∓ (̂xρ)(0)

)]
= 0 (2.5)

for 1D problems, respectively.
Let us first consider the evaluation of the 2D Poisson potential. To overcome the above mentioned

difficulties, we introduce the auxiliary functions

G(x) =
1

2πσ2
e−

|x|2

2σ2 , G1(x) = ρ̂(0)G(x)− (̂xρ)(0) · ∇xG(x), x ∈ R2, (2.6)

and the function u1(x) which satisfies the Poisson equation with the far-field condition:

−∆u1(x) = G1(x), x ∈ R2, lim
|x|→∞

[
u1(x) +

ρ̂(0)

2π
ln |x|

]
= 0. (2.7)

Here, σ > 0 is a parameter to be chosen later. Solving (2.7) via the convolution, we have

u1(x) = (ULap ∗G1)(x) = ρ̂(0)u1,1(x) − (̂xρ)(0) · u1,2(x), x ∈ R2, (2.8)

where
u1,1(x) = (ULap ∗G)(x), u1,2(x) = ∇x u1,1(x), x ∈ R2. (2.9)

Note that G(x) is radially symmetric, i.e., G(x) = G(|x|) = G(r) with r = |x| ≥ 0 and u1,1(x) satisfies the
Poisson equation

−∆u1,1(x) = G(x), x ∈ R2, lim
|x|→∞

[
u1,1(x) +

1

2π
ln |x|

]
= 0. (2.10)

It is clear that u1,1(x) is also radially symmetric, i.e., u1,1(x) = u1,1(r). Thus, the Poisson equation (2.10)
can be re-formulated as the following second order ODE:

−1

r
∂r(r∂ru1,1(r)) = G(r), 0 < r <∞, lim

r→∞

[
u1,1(r) +

1

2π
ln r

]
= 0. (2.11)
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Integrating the above ODE twice with the far-field boundary condition, we obtain

u1,1(x) =





− 1
4π

[
E1(

|x|2
2σ2 ) + 2 ln(|x|)

]
, x 6= 0,

1
4π

(
γe − ln(2σ2)

)
, x = 0,

x ∈ R2, (2.12)

where E1(r) :=
∫∞
r t−1e−tdt for r > 0 is the exponential integral function [1] and γe ≈ 0.5772156649015328606

is the Euler-Mascheroni constant. Differentiating (2.12) leads to

u1,2(x) =





− 1
2π

x

|x|2

(
1− e−

|x|2

2σ2

)
, x 6= 0,

0, x = 0,

x ∈ R2. (2.13)

Denote
u2(x) = u(x)− u1(x) ⇐⇒ u(x) = u1(x) + u2(x), x ∈ R2. (2.14)

We have
−∆u2(x) = ρ(x)−G1(x), x ∈ R2, lim

|x|→∞
u2(x) = 0. (2.15)

Solving the above problem via the Fourier integral, noticing (2.6) and using the fact that

∇kρ̂(0) = −i (̂xρ)(0) = −i
∫

R2

xρ(x) dx,

we obtain

u2(x) = (ULap ∗ (ρ−G1))(x) =
1

(2π)2

∫

R2

ρ̂(k)− Ĝ1(k)

|k|2 e i k·x dk

=
1

(2π)2

∫

R2

W (k)

|k| eik·x dk ≈ 1

(2π)2

∫ P

0

∫ 2π

0

W (k) eik·x d|k|dθ, x ∈ Ω ⊂ R2, (2.16)

where

W (k) =





ρ̂(k)−Ĝ1(k)
|k| =

ρ̂(k)−
(
ρ̂(0)+k·∇kρ̂(0)

)
e−

1
2
|k|2σ2

|k| , k 6= 0,

0, k = 0,

k ∈ R2. (2.17)

Note that the singularity of W (k)/|k| at the origin in (2.16) is removed by switching to polar coordinates
in the Fourier space, and thus u2(x) can be evaluated by the algorithm in [29].

In practical computations, the parameter σ in (2.6) should be chosen appropriately such that the Gaussian

e−
1
2 |k|

2σ2

and k ·∇kρ̂(0)e
− 1

2 |k|
2σ2

in the Fourier space decay at the same rate or faster than ρ̂(k) when |k| is
large. With this choice of σ, there is no need to enlarge the computational domain in the Fourier space for
the evaluation of (2.16) via the NUFFT. On the other hand, there is no need to oversample the truncated

Fourier domain due to the rapid decaying of the Gaussian e−
1
2 |k|

2σ2

in the Fourier space. Thus, setting
the Gaussian to 2 · 10−16 at |k|∞ = P with P being the side-length of the bounded computational box
B = {k | |k| ≤ P} in the Fourier space, we can choose σ = 6/P , a constant that is independent of the
density function ρ.

For the convenience of the readers, we summarize the algorithm to evaluate the Poisson potential u(x)
in 2D in Algorithm 1.

Similarly, for the 1D case, i.e., ULap(x) = − 1
2 |x|, we introduce the auxiliary functions

G(x) =
1√
2π σ

e−
x2

2σ2 , G1(x) = ρ̂(0)G(x) − (̂xρ)(0)G′(x), x ∈ R, (2.18)
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Algorithm 1 Evaluation of the Poisson potential in 2D

Compute ρ̂(k) and (̂xρ)(0).

Evaluate u1(x) = ρ̂(0)u1,1(x)− (̂xρ)(0) · u1,2(x) via (2.12) and (2.13).
Evaluate u2(x) through (2.16) via the NUFFT [29].
Compute u(x) = u1(x) + u2(x).

and function u1(x) which satisfies the 1D Poisson equation with the far-field condition

−u′′1(x) = G1(x), x ∈ R, lim
x→±∞

[
u1(x) +

1

2

(
ρ̂(0)|x| ∓ (̂xρ)(0)

)]
= 0. (2.19)

Solving the above problem via the convolution, we have

u1(x) = (ULap ∗G1)(x) = ρ̂(0)u1,1(x)− (̂xρ)(0)u1,2(x), x ∈ R, (2.20)

where

u1,1(x) = (ULap ∗G)(x) = − σ√
2π
e−

x2

2σ2 − 1

2
xErf

(
x√
2σ

)
, (2.21)

u1,2(x) = u′1,1(x) = −1

2
Erf

(
x√
2σ

)
, x ∈ R. (2.22)

Here, Erf(x) = 2√
π

∫ x
0 e

−t2dt for x ∈ R is the error function. Combining (2.1) and (2.19), we solve the

remaining function u2(x) = u(x)− u1(x) via the Fourier integral:

u2(x) = (ULap ∗ (ρ−G1)) (x) =
1

2π

∫

R

ρ̂(k)− Ĝ1(k)

k2
ei kxdk (2.23)

=
1

2π

∫

R

W (k)ei kxdk ≈ 1

2π

∫ P

−P
W (k)ei kxdk, x ∈ Ω ⊂ R, (2.24)

where

W (k) =





ρ̂(k)− Ĝ1(k)

k2
=

ρ̂(k)−
(
ρ̂(0)+k(ρ̂)′(0)

)
e−

1
2
k2σ2

k2 , k 6= 0,

− 1
2 (̂x

2ρ)(0) + σ2

2 ρ̂(0), k = 0,

k ∈ R. (2.25)

Note that the integrand W (k) is smooth at the origin k = 0 in the Fourier space, therefore u2(x) can be
computed by the regular FFT method. The choice of the parameter σ is similar as the one in the 2D case.

We remark that the 1D Poisson potential has also been dealt with successfully in [41] by plugging the
Fourier spectral approximation of the density obtained on a finite interval, e.g., [−L,L], into the convolution
(1.2) formula. The method proposed there is an alternative good choice.

2.3. Confined Coulomb interactions

When U(x) in (2.1) is taken as the confined Coulomb kernel UεCon(x) (1.12), there is no equivalent PDE
formulation for the nonlocal potential u(x).

When d = 2, noticing that

ÛεCon(k) ≈





1
|k| , |k| → 0,
√
2√

πε|k|2 , |k| → ∞,
k ∈ R2, (2.26)
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we can immediately adapt the NUFFT-based solver [29] as follows:

u(x) =
1

(2π)2

∫

R2

eik·x ÛεCon(k) ρ̂(k) dk ≈ 1

(2π)2

∫

|k|≤P
eik·x ÛεCon(k) ρ̂(k) dk

=
1

(2π)2

∫ P

0

∫ 2π

0

eik·x W1(k) ρ̂(k) d|k|dθ, x ∈ Ω ⊂ R2, (2.27)

where

W1(k) = |k| ÛεCon(k) =
2

π

∫ ∞

0

|k|e− ε2s2

2

|k|2 + s2
ds =





2
π

∫∞
0

e−ε2|k|2s2/2

1+s2 ds, k 6= 0,

1, k = 0,

k ∈ R2. (2.28)

The integral in (2.28) can be evaluated very accurately via the standard quadrature, such as the Gauss–
Kronrod quadrature.

Similarly, when d = 1 we have

ÛεCon(k) ≈





1
2 [ln 2− γe − 2 ln(ε|k|)] , |k| → 0,

1
ε2|k|2 , |k| → ∞,

k ∈ R. (2.29)

Thus

u(x) =
1

2π

∫

R

ei kx ÛεCon(k) ρ̂(k) dk = − 1

2π

∫

R

ei kxk
[
∂k

(
ÛεCon(k) ρ̂(k)

)
+ ix ÛεCon(k) ρ̂(k)

]
dk

= − 1

2π

∫

R

ei kx
[
k ∂kÛ

ε
Con(k) ρ̂(k)− ik ÛεCon(k) (̂xρ)(k) + ixk ÛεCon(k) ρ̂(k)

]
dk

=
1

2π

∫

R

ei kx
[
W2(k) ρ̂(k) + iW3(k) (̂xρ)(k)

]
dk − i x

2π

∫

R

ei kxW3(k) ρ̂(k) dk

≈ 1

2π

∫ P

−P
ei kx

[
W2(k)ρ̂(k) + iW3(k)(̂xρ)(k)

]
dk − i x

2π

∫ P

−P
ei kxW3(k)ρ̂(k) dk, x ∈ [−L,L]. (2.30)

Here

W2(k) = −k ∂kÛεCon(k) =

∫ ∞

0

k2e−ε
2s/2

(k2 + s)2
ds =





∫∞
0

e−ε2k2s/2

(1+s)2 ds, k 6= 0,

1, k = 0,

k ∈ R, (2.31)

W3(k) = k ÛεCon(k) =

∫ ∞

0

k e−ε
2s/2

2(k2 + s)
ds =





∫∞
0

k e−ε2k2s/2

2(1+s) ds, k 6= 0,

0, k = 0,

k ∈ R. (2.32)

The integrals in (2.31)-(2.32) can be discretized very accurately via the standard quadrature, and the
integrals in (2.30) can be evaluated via the regular FFT.

Remark 2.1. If ρ(x) in (2.1) is spherically/radially symmetric in 3D/2D, i.e., ρ(x) = ρ(|x|) = ρ(r) with
r = |x|, and the interaction kernel U(x) in (2.1) is taken as the Green’s function of the Laplace operator
in 3D/2D, then the nonlocal interaction u(x) in (2.1) is also spherically/radially symmetric in 3D/2D, i.e.,
u(x) = u(|x|) = u(r). Additionally, it satisfies the following second-order ODE

− 1

rd−1
∂r

(
rd−1∂ru(r)

)
= ρ(r), 0 < r <∞, d = 3, 2, (2.33)

∂ru(0) = 0, u(r) →
{

0, d = 3,

−C0 ln r, d = 2,
r → ∞, (2.34)
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where C0 =
∫∞
0 ρ(r)r dr. Moreover, if ρ(r) has a compact support or decays exponentially fast when r → ∞,

the above problem can be further re-formulated or approximated by [28, 35]

− 1

rd−1
∂r

(
rd−1∂ru(r)

)
= ρ(r), 0 < r < L, d = 3, 2, (2.35)

∂ru(0) = 0, ∂ru(L) =





−u(L)
L , d = 3,

u(L)
L lnL , d = 2,

(2.36)

where L > 0 is large enough such that supp(ρ) ⊂ [0, L] or the truncation error in ρ outside [0, L] can be neg-
ligible. This two-point boundary value problem can be solved by the finite difference (FDM) or finite element
(FEM) or spectral method. Comparing to computing the original convolution or solving the corresponding
Poisson equation in 3D/2D, the memory and/or computational cost are significantly reduced.

2.4. Numerical comparisons

In order to demonstrate the efficiency and accuracy of the NUFFT for the evaluation of the nonlocal
interaction (2.1) and compare it with other existing numerical methods, we adopt the error function

eh :=
‖u− uh‖l∞

‖u‖l∞
=

maxx∈Ωh
|u(x)− uh(x)|

maxx∈Ωh
|u(x)| , (2.37)

where Ωh represents the partition of the bounded computational domain Ω in 3D/2D with mesh size h,
where we usually take hx = hy = hz in 3D or hx = hy in 2D and denote by h unless stated otherwise,
and uh(x) is the numerical solution obtained by a numerical method on the domain Ωh. We will compare
the method via the NUFFT (referred as NUFFT) presented in this section with those existing numerical
methods such as the method via the FFT (referred as FFT) [11] and via the DST (referred as DST) [17, 41]
as well as the finite difference method via (2.35)-(2.36) (referred as FDM) [35] if it is possible.

Example 2.1: 3D Coulomb interaction. Here d = 3 and U(x) = UCou(x), we take ρ(x) := e−(x2+y2+γ2z2)/δ2

with δ > 0 and γ ≥ 1. The 3D Coulomb interaction can be computed analytically as

u(x) =





δ3
√
π

4 |x| Erf
(

|x|
δ

)
, γ = 1,

δ2

4γ

∫∞
0

e
−

x2+y2

δ2(t+1) e
− z2

δ2(t+γ−2)

(t+1)
√
t+γ−2

dt, γ 6= 1,

x ∈ R3. (2.38)

The 3D Coulomb interaction u(x) is computed numerically via the NUFFT, DST and FFT methods on
a bounded computational domain Ω = [−L,L]2× [−L/γ, L/γ] with mesh size h. Table 1 shows the errors eh
via the NUFFT, DST and FFT methods with γ = 1, δ = 1.1 for different mesh size h and L. Figure 2 depicts
the error of the Coulomb interaction along the x-axis, which is defined as δh(x) := |u(x, 0, 0)− uh(x, 0, 0)|,
obtained via the NUFFT and DST methods with γ = 1, δ = 1.1 for different mesh size h and L. In addition,
Table 2 shows the errors eh via the NUFFT, DST and FFT methods with δ = 2 and L = 8, h = 1/4 for
different γ. Here h denote hx = hy and we choose hz = h/γ.

From Tables 1–2 and Figure 2, we can observe clearly that : (i) The errors are saturated in the DST and
FFT methods as mesh size h tends smaller and the saturated accuracies decrease linearly with respect to the
box size L; (ii) The NUFFT method is spectrally accurate and it essentially does not depend on the domain,
which implies that a very large bounded computational domain is not necessary in practical computations
when the NUFFT method is used; (iii) The NUFFT is capable of dealing with anisotropic densities, which
is quite useful in numerical simulation of BEC with strong confinement, while the errors by the DST and
FFT methods increase dramatically with strongly anisotropic densities (cf. Tab. 2).
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Table 1: Errors for the evaluation of the 3D Coulomb interaction by different methods for different h and L.

NUFFT h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

L = 4 4.191E-01 2.696E-03 6.634E-07 4.599E-07 3.688E-07
L = 8 4.111E-01 2.817E-03 1.667E-08 2.367E-14 2.404E-14
L = 16 4.127E-01 2.848E-03 1.732E-08 1.420E-14 1.334E-14

DST h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

L = 4 2.437E-01 2.437E-01 2.437E-01 2.437E-01 2.437E-01
L = 8 2.754E-01 1.219E-01 1.219E-01 1.219E-01 1.219E-01
L = 16 3.433E-01 6.093E-02 6.093E-02 6.093E-02 6.093E-02
L = 32 3.780E-01 3.046E-02 3.046E-02 3.046E-02 3.046E-02
L = 64 3.956E-01 1.523E-02 1.523E-02 1.523E-02 1.523E-02

FFT h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

L = 4 3.032E-01 3.363E-01 3.385E-01 3.385E-01 3.385E-01
L = 8 1.744E-01 1.712E-01 1.720E-01 1.720E-01 1.720E-01
L = 16 2.958E-01 8.666E-02 8.632E-02 8.632E-02 8.632E-02
L = 32 3.550E-01 4.372E-02 4.320E-02 4.320E-02 4.320E-02
L = 64 3.843E-01 2.214E-02 2.161E-02 2.161E-02 2.161E-02

Table 2: Errors for the evaluation of the 3D Coulomb interaction by different methods with δ = 2 and L = 8, h = 1/4 for
different γ.

γ = 1 γ = 2 γ = 4 γ = 8

NUFFT 2.164E-14 2.134E-14 2.044E-14 2.005E-14
DST 0.146 0.441 1.559 3.782
FFT 0.208 0.310 1.327 3.349
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)
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h=1/4
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δ h(x
)

 

 

L=8
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L=32

Figure 2: Errors of δh(x) = |u(x, 0, 0)−uh(x, 0, 0)| for the evaluation of the Coulomb interaction in 3D via the NUFFT method
with L = 8 for different mesh size h (left) and via the DST method with mesh size h = 1/4 for different L (right).

Example 2.2: 2D Coulomb interaction. Here d = 2 and U(x) = UCou(x), we take ρ(x) := e−(x2+γ2y2)/δ2
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with δ > 0 and γ ≥ 1 . The 2D Coulomb interaction can be obtained analytically as

u(x) =





√
π δ
2 I0

(
|x|2
2δ2

)
e−

|x|2

2δ2 , γ = 1,

δ
γ
√
π

∫∞
0

e
− x2

δ2(t2+1) e
−

y2

δ2(t2+γ−2)
√
t2+1

√
t2+γ−2

dt, γ 6= 1,

x ∈ R2, (2.39)

where I0 is the modified Bessel function of order zero [1]. To numerically compute the integral in (2.39), we
first split it into two integrals and reformulate the one with infinite interval into some equivalent integral
with finite interval by a simple change of variable. We then apply the Gauss–Kronrod quadrature to each
with fine accuracy control so as to achieve accurate reference solutions.

The 2D Coulomb interaction u(x) is computed numerically via the NUFFT, DST and FFT methods on
a bounded computational domain Ω = [−L,L] × [−L/γ, L/γ] with mesh size h. Table 3 shows the errors
eh via the NUFFT, DST and FFT methods with δ =

√
1.2 and γ = 1 under different mesh size h and L.

In addition, Table 4 shows the errors eh via the NUFFT, DST and FFT methods with δ = 2, L = 12 and
h = 1/8 for different γ.Here h denote hx and we choose hy = h/γ.

Table 3: Errors for the evaluation of the 2D Coulomb interaction by different methods for different h and L.

NUFFT h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8
L = 4 1.837 5.540E-02 4.289E-07 3.383E-07 2.937E-07
L = 8 4.457E-01 2.373E-03 2.714E-08 3.202E-15 3.431E-15
L = 16 2.084E-01 2.385E-03 2.761E-08 2.745E-15 2.859E-15

DST h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8
L = 4 1.577E-01 1.577E-01 1.577E-01 1.577E-01 1.577E-01
L = 8 1.348E-01 7.762E-02 7.762E-02 7.762E-02 7.762E-02
L = 16 1.711E-01 3.867E-02 3.867E-02 3.867E-02 3.867E-02
L = 32 1.897E-01 1.932E-02 1.932E-02 1.932E-02 1.932E-02
L = 64 1.991E-01 9.658E-03 9.658E-03 9.658E-03 9.658E-03

FFT h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8
L = 4 2.855E-01 2.961E-01 2.980E-01 2.980E-01 2.980E-01
L = 8 1.553E-01 1.503E-01 1.502E-01 1.502E-01 1.502E-01
L = 16 1.157E-01 7.596E-02 7.528E-02 7.528E-02 7.528E-02
L = 32 1.624E-01 3.843E-02 3.766E-02 3.766E-02 3.766E-02
L = 64 1.856E-01 1.961E-02 1.883E-02 1.883E-02 1.883E-02

Table 4: Errors for the evaluation of the 2D Coulomb interaction by different methods with L = 12, h = 1/8 for different γ.

γ = 1 γ = 2 γ = 4 γ = 8

NUFFT 4.230E-14 3.102E-15 3.504E-15 4.381E-15
DST 0.373 0.386 0.412 0.446
FFT 0.426 0.425 0.405 0.344

From Tables 3-4, we can conclude that: (i) The errors obtained by the DST and FFT methods reach
a saturation accuracy on any fixed domain and we can observe a first order convergence in the saturated
accuracy with respect to the domain size L. (ii) The NUFFT method is spectrally accurate and it essentially
does not depend on the domain which makes it perfect for computing the whole space potential. (iii) The
NUFFT is capable of dealing with anisotropic densities, while the results obtained by the DST and FFT
methods are far from the exact solutions when the bounded computational domain is not large enough.
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Example 2.3: 2D Poisson potential. Here d = 2 and U(x) = ULap(x), we take ρ(x) := e−|x|2/δ2 =

e−r
2/δ2 with r = |x| and δ > 0. The 2D Poisson potential can be obtained analytically as

u(x) = −δ
2

4

[
E1

( |x|2
δ2

)
+ 2 ln(|x|)

]
, x ∈ R2. (2.40)

In this case, we choose δ =
√
1.3. The 2D Poisson potential u(x) is computed numerically via the

NUFFT method on a bounded computational domain Ω = [−L,L]2 with mesh size h and the FDM through
the formulation (2.35)-(2.36) on the interval [0, L] with mesh size h.

Table 5 shows the errors of the 2D Poisson potential obtained by the NUFFT solver on a square domain
and the errors by the FDM solver as well as its convergence rate with respect to the mesh size h. In addition,
to demonstrate the efficiency of the NUFFT method, Table 6 displays the computational time (CPU time
in seconds) of the NUFFT solver with L = 16 and h = 1/4, where the time is measured when the algorithm
is implemented in Fortran, the code is compiled by ifort 13.1.2 using the option -g, and executed on 32-bit
Ubuntu Linux on a 2.90GHz Intel(R) Core(TM) i7-3520M CPU with 6MB cache.

Table 5: Errors for the evaluation of the 2D Poisson potential by different methods for different h and L.

NUFFT h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

L = 4 5.821E-01 1.133E-02 3.011E-06 1.994E-06 1.650E-06
L = 8 1.685E-01 6.820E-04 1.754E-09 4.936E-14 4.857E-14
L = 16 1.684E-01 5.333E-04 1.391E-09 4.577E-14 4.561E-14

FDM h = 1/4 h = 1/8 h = 1/16 h = 1/32 h = 1/64

L = 4 4.646E-03 1.155E-03 2.910E-04 7.602E-05 2.246E-05
rate - 2.0081 1.9889 1.9365 1.7590
L = 8 4.101E-03 1.019E-03 2.542E-04 6.353E-05 1.588E-05
rate - 2.0093 2.0024 2.0006 2.0002
L = 16 4.052E-03 1.007E-03 2.512E-04 6.278E-05 1.569E-05
rate - 2.0092 2.0023 2.0006 2.0001

Table 6: CPU time (in seconds) of the NUFFT solver for the evaluation of the 2D Poisson potential. Here TFFT and TNUFFT

are the time for the evaluation of I1 and I2 in (2.3) via the FFT and NUFFT methods, respectively.

TFFT TNUFFT TTotal
h = 1 0.01 0.05 0.06
h = 1/2 0.02 0.08 0.10
h = 1/4 0.12 0.20 0.32
h= 1/8 0.60 0.78 1.38

From Tables 5–6, we can see clearly that: (i) The NUFFT solver is spectrally accurate while the FDM
solver is only second order accurate, and the NUFFT solver is much more accurate than the FDM solver.
(ii) The errors obtained by both methods do not essentially depend on the domain size; (iii) The complexity
of the NUFFT solver scales like O(N lnN) as expected, which is the same as those presented in [29].

3. Computing the ground state

In this section, we present an efficient and accurate numerical method for computing the ground state of
(1.13) by combining NUFFT-based nonlocal interaction potential solver and the normalized gradient flow
that is discretised by backward Euler Fourier pseudospectral method, and compare it with those existing
numerical methods.
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3.1. A numerical method via the NUFFT

We choose τ > 0 as the time step and denote tn = nτ for n = 0, 1, 2, . . . . Different efficient and accurate
numerical methods have been proposed in the literature for computing the ground state [6, 7, 8, 21, 41]. One
of the most simple and popular methods is through the following gradient flow with discretized normalization
(GFDN):

∂tφ(x, t) =

[
1

2
∆− V (x)− β ϕ(x, t)

]
φ(x, t), x ∈ Rd, tn ≤ t < tn+1, (3.1)

ϕ(x, t) =
(
U ∗ |φ|2

)
(x, t), x ∈ Rd, tn ≤ t < tn+1, (3.2)

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(x, t−n+1)‖
, x ∈ Rd, n = 0, 1, 2, . . . (3.3)

with the initial data

φ(x, 0) = φ0(x), x ∈ Rd, with ‖φ0‖2 :=

∫

Rd

|φ0(x)|2 dx = 1. (3.4)

Let φn(x) and ϕn(x) be the numerical approximation of φ(x, tn) and ϕ(x, tn), respectively, for n ≥ 0. The
above GFDN is usually discretized in time via the backward Euler method [6, 7, 8, 21, 41]

φ(1)(x)− φn(x)

τ
=

[
1

2
∆− V (x)− β ϕn(x)

]
φ(1)(x), x ∈ Rd, (3.5)

ϕn(x) =
(
U ∗ |φn|2

)
(x), x ∈ Rd, (3.6)

φn+1(x) =
φ(1)(x)

‖φ(1)(x)‖ , x ∈ Rd, n = 0, 1, 2, . . . . (3.7)

Then an efficient and accurate numerical method can be designed by: (i) truncating the above problem
on a bounded computational domain Ω with periodic BC on ∂Ω; (ii) discretizing in space via the Fourier
pseudospectral method; and (iii) evaluating the nonlocal interaction ϕn(x) in (3.6) by the algorithm via the
NUFFT discussed in the previous section. When φ0(x) is chosen as a positive function, the ground state
can be obtained as φg(x) = limn→∞ φn(x) for x ∈ Ω. The details are omitted here for brevity and this

method is referred as the GF-NUFFT method. We remark here that |̂φn|2(0) = 1 for n ≥ 0.
For comparison, for the Coulomb interaction in 3D/2D, when the NUFFT solver is replaced by the

standard FFT, we refer the method asGF-FFT. In addition, when (3.6) is reformulated as its equivalent PDE
formulation (1.7)-(1.8) on Ω with homogeneous Dirichlet BC on ∂Ω and solved via the sine pseudospectral
method [6, 9, 41], we refer it as GF-DST.

3.2. Numerical comparisons

In order to compare the GF-NUFFT method with GF-FFT and GF-DST methods for computing the
ground state, we denote ϕg(x) = (U ∗ |φg |2)(x) and introduce the errors

ehφg
:=

maxx∈Ωh |φg(x)− φhg (x)|
maxx∈Ωh |φg(x)|

, ehϕg
:=

maxx∈Ωh |ϕg(x) − ϕhg (x)|
maxx∈Ωh |ϕg(x)|

,

where φhg and ϕhg are obtained numerically by a numerical method with mesh size h. Additionally, we split
the energy functional into three parts

E(φ) = Ekin(φ) + Epot(φ) + Eint(φ),

where the kinetic energy Ekin(φ), the potential energy Epot(φ) and the interaction energy Eint(φ) are defined
as

Ekin(φ) =
1

2

∫

Rd

|∇φ(x)|2dx, Epot(φ) =

∫

Rd

V (x)|φ(x)|2dx, Eint(φ) =
β

2

∫

Rd

ϕ(x)|φ(x)|2dx,
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respectively. Moreover, the chemical potential can be reformulated as µ(φ) = E(φ) +Eint(φ). Furthermore,
if the external potential V (x) in (1.1) was taken as the harmonic potential [4, 9, 35], the energies of the
ground state satisfy the following virial identity

0 = I := 2Ekin(φg)− 2Epot(φg) +

{
Eint(φg), U = UCou in 3D/2D,

β
4π , U = ULap in 2D.

We denote Ih as an approximation of I when φg is replace by φ
h
g in the above equality. In our computations,

the ground state φhg is reached numerically when maxx∈Ωh
|φn+1(x)−φn(x)|

τ ≤ ε0 with ε0 a prescribed accuracy,
e.g., ε0 = 10−10. The initial data φ0(x) is chosen as a Gaussian and the time step is taken as τ = 10−2.
In the comparisons, the “exact” solution φg(x) was obtained numerically via the GF-NUFFT method on a
large enough domain Ω = [−8, 8]d with small enough mesh size h = 2d−6 and time step τ = 10−2.

Example 3.1: The NLSE with the Coulomb interaction in 3D. We take d = 3 and U(x) = UCou(x)
in (1.1)-(1.2). The ground state is computed numerically on a bounded domain Ω = [−8, 8]3. Table 7
shows the errors ehφg

and ehϕg
with V (x) = 1

2 (x
2 + y2 + z2) in (1.1) for different numerical methods, β and

mesh size h. In addition, Table 8 lists the energy Eg := E(φhg ), chemical potential µg := µ(φhg ), kinetic

energy Egkin := Ekin(φ
h
g ), potential energy E

g
pot := Epot(φ

h
g ), interaction energy Egint := Eint(φ

h
g ) and I

h with

h = 1/8 and V (x) = 1
2 (x

2 + y2 + 4z2) in (1.1) for different β.

Table 7: Errors of the ground state for the NLSE with the 3D Coulomb interaction for different methods and mesh size h.

GF-NUFFT h = 2 h = 1 h = 1/2 h = 1/4

ehφg

β = −5 5.362E-02 1.954E-04 2.201E-07 4.643E-11
β = 5 1.512E-01 4.712E-04 4.026E-08 1.141E-10

ehϕg

β = −5 2.532E-01 3.769E-03 8.153E-07 7.035E-11
β = 5 2.682E-01 7.061E-04 1.225E-07 8.048E-11

GF-DST h = 2 h = 1 h = 1/2 h = 1/4

ehφg

β = −5 2.319E-01 9.439E-03 1.637E-06 6.309E-07
β = 5 1.659E-01 9.469E-04 8.306E-07 8.531E-07

ehϕg

β = −5 7.297E-02 9.551E-02 9.945E-02 1.027E-01
β = 5 7.809E-02 1.016E-01 1.057E-01 1.091E-01

Table 8: Different energies of the ground state and Ih for the NLSE with the 3D Coulomb interaction for different β.

β Eg µg Egkin Egpot Egint Ih

−10 1.6370 1.2630 1.0990 9.1197E-01 -3.7401E-01 -3.39E-10
−5 1.8212 1.6397 1.0467 9.5594E-01 -1.8147E-01 -3.63E-10
−1 1.9646 1.9292 1.0089 9.9118E-01 -3.5462E-02 -3.87E-10
1 2.0351 2.0702 9.9128E-01 1.0088 3.5064E-02 -3.86E-10
5 2.1739 2.3454 9.5831E-01 1.0441 1.7151E-01 -4.30E-10
10 2.3431 2.6772 9.2101E-01 1.0880 3.3408E-01 -1.16E-10

Example 3.2: The NLSE with the Coulomb interaction in 2D. We take d = 2 and U(x) = UCou(x)
in (1.1)-(1.2). The ground state is computed numerically on a bounded domain Ω = [−L,L]2 with differ-
ent mesh size h. Table 9 shows the errors ehφg

and ehϕg
with V (x) = 1

2 (x
2 + 4y2) for different numerical

methods, β and mesh size h on [−L,L]2. In addition, Table 10 lists the energy Eg := E(φhg ), chemical po-

tential µg := µ(φhg ), kinetic energy Egkin := Ekin(φ
h
g ), potential energy E

g
pot := Epot(φ

h
g ), interaction energy
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Egint := Eint(φ
h
g ) and I

h with h = 1/8 and V (x) = 1
2 (x

2 + 4y2) on [−8, 8]2 for different β.

Table 9: Errors of the ground state for the NLSE with 2D Coulomb interaction on [−L,L]2 with mesh size h.

GF-NUFFT (L = 8) h = 1 h = 1/2 h = 1/4 h = 1/8

ehφg

β = −5 4.620E-02 1.058E-03 5.570E-08 3.968E-15
β = 5 7.034E-03 2.365E-05 2.632E-10 2.074E-15

ehϕg

β = −5 1.025E-01 1.402E-03 8.244E-08 4.445E-15
β = 5 1.263E-02 3.239E-05 3.161E-10 1.703E-15

GF-DST (L = 8) h = 1 h = 1/2 h = 1/4 h = 1/8

ehφg

β = −5 4.823E-02 1.112E-03 3.139E-05 3.133E-05
β = 5 8.183E-03 7.245E-05 5.317E-05 5.381E-05

ehϕg

β = −5 6.613E-02 5.159E-02 5.159E-02 5.159E-02
β = 5 6.840E-02 6.840E-02 6.840E-02 6.840E-02

GF-DST (h = 1/8) L = 8 L = 16 L = 32 L = 64

ehφg

β = −5 3.133E-05 3.848E-06 4.789E-07 5.980E-08
β = 5 5.381E-05 6.212E-06 7.606E-07 9.445E-08

ehϕg

β = −5 5.159E-02 2.572E-02 1.072E-02 5.248E-03
β = 5 6.840E-02 3.398E-02 1.415E-02 6.928E-03

Table 10: Different energies of the ground state and Ih for the NLSE with the 2D Coulomb interaction for different β.

β Eg µg Egkin Egpot Egint Ih

−10 0.1367 -1.4536 1.2611 4.6592E-01 -1.5903 1.89E-10
−5 0.8698 0.1933 9.4226E-01 6.0401E-01 -6.7651E-01 2.37E-10
−1 1.3808 1.2600 7.8098E-01 7.2058E-01 -1.2080E-01 2.60E-10
1 1.6163 1.7311 7.2201E-01 7.7942E-01 1.1483E-01 -2.61E-10
5 2.0551 2.5801 6.3379E-01 8.9629E-01 5.2501E-01 -2.65E-10
10 2.5557 3.5132 5.5977E-01 1.0385 9.5748E-01 -2.69E-10

Example 3.3: The NLSE with the Poisson potential in 2D. We take d = 2 and U(x) = ULap(x) in (1.1)-
(1.2). The ground state is computed numerically on a bounded domain Ω = [−8, 8]2 with different mesh size
h. Table 11 shows the errors ehφg

and ehϕg
with V (x) = 1

2 (x
2 +4y2) in (1.1) for different numerical methods,

β and mesh size h. In addition, Table 12 lists the energy Eg := E(φhg ), chemical potential µg := µ(φhg ),

kinetic energy Egkin := Ekin(φ
h
g ), potential energy E

g
pot := Epot(φ

h
g ), interaction energy Egint := Eint(φ

h
g ) and

Ih with h = 1/8 and V (x) = 1
2 (x

2 + 4y2) in (1.1) for different β.

From Tables 7-12 and additional numerical results not shown here for brevity, we can see that: (i) The
GF-NUFFT method is spectrally accurate in space, while the GF-DST method has a saturation accuracy for
a fixed domain; (ii) The saturation error of the GF-DST depends inversely on the domain size L, and it can
only reach satisfactory accuracy for some large L; (iii) High accuracy, i.e., 9-digit accurate, is achieved by
GF-NUFFT as quite expected in the energies, which, in another way, manifest the high-accuracy advantage
of our NUFFT solver.
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Table 11: Errors of the ground state for the NLSE with the 2D Poisson potential with mesh size h.

GF-NUFFT h = 1 h = 1/2 h = 1/4 h = 1/8

ehφg

β = −5 2.465E-02 1.024E-04 4.699E-10 2.878E-15
β = 5 1.191E-02 1.593E-05 9.793E-12 2.726E-15

ehϕg

β = −5 3.737E-02 7.634E-05 2.896E-10 6.347E-14
β = 5 1.033E-02 3.282E-06 2.682E-12 6.247E-14

Table 12: Different energies of the ground state and Ih for the NLSE with the 2D Poisson potential for different β.

β Eg µg Egkin Egpot Egint Ih

−10 1.3533 1.1432 9.8061E-01 5.8272E-01 -2.1008E-01 2.44E-10
−5 1.4429 1.3691 8.5784E-01 6.5889E-01 -7.3819E-02 2.54E-10
−1 1.4913 1.4819 7.7024E-01 7.3045E-01 -9.3826E-03 2.59E-10
1 1.5073 1.5139 7.3046E-01 7.7025E-01 6.5762E-03 -2.62E-10
5 1.5221 1.5260 6.5959E-01 8.5854E-01 3.9516E-03 -2.70E-10
10 1.5076 1.4420 5.8770E-01 9.8559E-01 -6.5660E-02 -2.81E-10

4. For computing the dynamics

In this section, we present an efficient and accurate numerical method for computing the dynamics
of the NLSE with the nonlocal interaction potential (1.1)-(1.2) and the initial data (1.3) by combining the
NUFFT solver for the nonlocal interaction potential evaluation and the time-splitting Fourier pseudospectral
discretization, and compare it with those existing numerical methods.

4.1. A numerical method via the NUFFT

From time t = tn to t = tn+1, the NLSE (1.1) will be solved in two splitting steps. One solves first

i ∂tψ(x, t) = −1

2
∆ψ(x, t), x ∈ Rd, tn ≤ t ≤ tn+1, (4.1)

for the time step of length τ , followed by solving

i ∂tψ(x, t) = [V (x) + β ϕ(x, t)]ψ(x, t), ϕ(x, t) =
(
U ∗ |ψ|2

)
(x, t), x ∈ Rd, tn ≤ t ≤ tn+1, (4.2)

for the same time step. For t ∈ [tn, tn+1], Eq. (4.2) leaves |ψ| invariant in t [5, 9], i.e., |ψ(x, t)| = |ψ(x, tn)|,
and thus ϕ is time invariant, i.e., ϕ(x, t) = ϕ(x, tn) := ϕn(x), therefore it becomes

i ∂tψ(x, t) = [V (x) + β ϕn(x)]ψ(x, t), ϕn(x) =
(
U ∗ |ψn|2

)
(x), x ∈ Rd, tn ≤ t ≤ tn+1, (4.3)

where ψn(x) := ψ(x, tn), which immediately implies that

ψ(x, t) = e−i[V (x)+β ϕn(x)](t−tn)ψ(x, tn), x ∈ Rd, tn ≤ t ≤ tn+1. (4.4)

Then an efficient and accurate numerical method can be designed by: (i) adopting a second-order Strang
splitting [38] or a fourth-order time splitting method [40] to decouple the nonlinearity; (ii) truncating the
problem on a bounded computational domain Ω, and imposing the periodic BC on ∂Ω for the subproblem
(4.1); (iii) discretizing (4.1) in space by the Fourier spectral method and integrating in time exactly; (iv)
evaluating the nonlocal interaction ϕn(x) in (4.4) by the algorithm via the NUFFT that discussed in previous
sections, and integrating in time exactly for (4.4). The details are omitted here for brevity and this method
is referred as the TS-NUFFT method.
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For comparison, for the nonlocal interaction in 3D/2D, when the NUFFT in the above method is replaced
by the standard FFT, we refer the method as TS-FFT. In addition, when the nonlocal interaction ϕn(x) in
(4.4) is reformulated as its equivalent PDE formulation (1.7)-(1.8) on Ω with homogeneous Dirichlet BC on
∂Ω and then discretized by the sine pseudospectral method with an evaluation of (4.1) via the sine spectral
method and integrated in time exactly [6, 41], we refer it as TS-DST.

4.2. Numerical comparisons

Again, in order to compare the TS-NUFFT method with the GF-DST method for computing the dy-
namics, we denote ρ(x, t) = |ψ(x, t)|2 and ϕ(x, t) = (U ∗ |ψ|2)(x, t) and introduce the errors

ehψ(t) :=
maxx∈Ωh |ψ(x, t)− ψnh(x)|

maxx∈Ωh |ψ(x, t)| , ehϕ(t) :=
maxx∈Ωh |ϕ(x, t)− ϕnh(x)|

maxx∈Ωh |ϕ(x, t)| ,

ehρ(t) :=
maxx∈Ωh |ρ(x, t)− ρnh(x)|

maxx∈Ωh |ρ(x, t)| , t = tn, n ≥ 0,

where ψnh(x), ϕ
n
h(x) and ρnh(x) are obtained numerically by a numerical method as the approximations of

ψ(x, t), ϕ(x, t) and ρ(x, t) at t = tn, respectively with a given mesh size h and a very small time step τ > 0.
The external potential in (1.1) and the initial data in (1.3) are chosen as

V (x) =
|x|2
2
, ψ(x, 0) = ψ0(x) = e−

|x|2

2 , x ∈ Rd with d = 3 or 2. (4.5)

In the comparisons, the “exact” solution ψ(x, t) (and thus ϕ(x, t) and ρ(x, t)) was obtained numerically via
the TS-NUFFT method on a large enough domain Ω with very small enough mesh size h and time step τ .
In our computations, we use the fourth-order time-splitting method for time integration [40].

Example 4.1: The NLSE with the 3D Coulomb interaction. Here d = 3 and U(x) = UCou(x) in (1.1)-
(1.2). The problem is solved numerically on a bounded computational domain Ω = [−8, 8]3 with time step
τ = 10−3 and different mesh size h. Table 13 list the errors of the wave-function, the density and the 3D
Coulomb interaction at t = 1/8 obtained by the TS-NUFFT and TS-DST methods for different mesh size h
and interaction constant β.

Table 13: Errors of the wave-function and the nonlocal interaction at t = 1/8 for the NLSE with the 3D Coulomb interaction.

TS-NUFFT h = 1 h = 1/2 h = 1/4 h = 1/8

ehψ(1/8)
β = −5 5.461E-03 1.011E-05 9.297E-12 1.492E-13
β = 5 3.997E-03 7.879E-06 6.959E-12 1.348E-13

ehϕ(1/8)
β = −5 7.890E-03 4.466E-06 4.745E-12 6.992E-14
β = 5 6.563E-03 2.828E-06 1.081E-12 6.872E-14

TS-DST h = 1 h = 1/2 h = 1/4 h = 1/8

ehψ(1/8)
β = −5 2.561E-02 3.024E-02 3.025E-02 3.025E-02
β = 5 2.753E-02 3.024E-02 3.025E-02 3.025E-02

ehρ(1/8)
β = −5 5.567E-03 1.444E-05 2.397E-07 2.441E-07
β = 5 5.590E-03 1.416E-05 2.560E-07 2.568E-07

ehϕ(1/8)
β = −5 1.099E-01 1.099E-01 1.099E-01 1.099E-01
β = 5 1.117E-01 1.117E-01 1.117E-01 1.117E-01

Example 4.2: The NLSE with the 2D Coulomb interaction. Here d = 2 and U(x) = UCou(x) in
(1.1)-(1.2). The problem is solved numerically on a bounded computational domain Ω = [−16, 16]2 with
time step τ = 10−4 and different mesh size h. Table 14 shows the errors of the wave-function and the 2D
Coulomb interaction at t = 0.5 obtained by the TS-NUFFT and TS-DST methods for different mesh size h
and interaction constant β.
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Table 14: Errors of the wave-function and the nonlocal interaction at t = 0.5 for the NLSE with the 2D Coulomb interaction.

TS-NUFFT (L = 16) h = 1 h = 1/2 h = 1/4 h = 1/8

ehψ(0.5)
β = −5 1.582E-01 7.468E-03 4.746E-06 2.954E-12
β = 5 5.118E-02 7.756E-04 2.476E-10 1.268E-12

ehϕ(0.5)
β = −5 2.219E-02 4.242E-03 4.169E-06 3.756E-12
β = 5 3.235E-02 2.451E-04 3.117E-11 7.586E-13

TS-DST (L = 16) h = 1 h = 1/2 h = 1/4 h = 1/8

ehψ(0.5)
β = −5 1.175E-01 5.576E-02 6.311E-02 6.312E-02
β = 5 6.477E-02 6.308E-02 6.313E-02 6.313E-02

ehϕ(0.5)
β = −5 4.286E-02 2.449E-02 2.449E-02 2.449E-02
β = 5 6.854E-02 4.412E-02 4.455E-02 4.478E-02

TS-DST (h = 1/8) L = 8 L = 16 L = 32 L = 64

ehψ(0.5)
β = −5 1.263E-01 6.312E-02 3.156E-02 1.578E-02
β = 5 1.264E-01 6.313E-02 3.156E-02 1.578E-02

ehϕ(0.5)
β = −5 4.907E-02 2.449E-02 1.021E-02 4.999E-03
β = 5 9.038E-02 4.500E-02 1.875E-02 9.181E-03

Example 4.3: The NLSE with the 2D Poisson potential. Here d = 2 and U(x) = ULap(x) in (1.1)-(1.2).
Again, the problem is solved numerically on a bounded computational domain Ω = [−16, 16]2 with time step
τ = 10−4 and different mesh size h. Table 14 shows the errors of the wave-function and the 2D Coulomb
interaction at t = 0.5 obtained by the TS-NUFFT method for different mesh size h and interaction constant
β. We remark here that the TS-DST method is not applicable for this case [35, 41], therefore here we only
present the results for the TS-NUFFT method.

Table 15: Errors of the wave-function and the Poisson potential at t = 0.5 for the NLSE with the 2D Poisson potential.

TS-NUFFT h = 1 h = 1/2 h = 1/4 h = 1/8

ehψ(0.5)
β = −5 5.833E-02 2.599E-04 3.211E-09 7.524E-13
β = 5 2.658E-02 9.083E-05 3.395E-12 1.124E-12

ehϕ(0.5)
β = −5 1.329E-02 8.840E-05 1.072E-09 3.974E-13
β = 5 4.645E-03 2.805E-06 8.322E-13 5.821E-13

From Tables 13–15 and additional numerical results not shown here for brevity, we can draw the following
conclusions: (i) The TS-DST, if applicable, can not resolve the wave-function or the potential very accurately,
while the TS-NUFFT achieves the spectral accuracy; (ii) The saturated accuracy by TS-DST decreases as
the computation domain increases; (iii) As long as for the physical observables, e.g., the density ρ, are
concerned, the TS-DST method can still capture reasonable accuracy (cf. Tab. 13).

4.3. Applications

To further demonstrate the efficiency and accuracy of the numerical method via the NUFFT, we simulate
the long-time dynamics of the 2D NLSE with the Coulomb interaction, i.e., d = 2 and U(x) = UCou(x) and
β = 5 in (1.1)-(1.2), and a honeycomb external potential [9, 20] defined as

V (x) = 10 [cos(b1 · x) + cos(b2 · x) + cos((b1+b2) · x)] , x = (x, y)T ∈ R2, (4.6)

with b1 = π
4 (
√
3, 1)T and b2 = π

4 (−
√
3, 1)T . This example can be formally used to describe the dynamics

of the electrons in a graphene. The initial data in (1.3) is taken as ψ0(x, y) = e−(x2+y2)/2 for x ∈ R2 and
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the problem is solved numerically on Ω = [−32, 32]2 by using the TS-NUFFT with mesh size h = 1
16 and

time step τ = 10−4. Figure 3 shows the contour plots of the density ρ(x, y, t) at different times.

5. Conclusion

An efficient and accurate numerical method via the NUFFT was proposed for the fast evaluation of dif-
ferent nonlocal interactions including the Coulomb interactions in 3D/2D and the interaction kernel taken as
either the Green’s function of the Laplace operator in 3D/2D/1D or nonlocal interaction kernels in 2D/1D
obtained from the 3D Schrödinger-Poisson system under strongly external confining potentials via dimension
reduction. The method was compared extensively with those existing numerical methods and was demon-
strated that it can achieve much more accurate numerical results, especially on a smaller computational
domain and/or with anisotropic interaction density. Efficient and accurate numerical methods were then
presented for computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlo-
cal interactions by combining the normalized gradient flow with the backward Euler Fourier pseudospectral
discretization and time-splitting Fourier pseudospectral method, respectively, together with the fast and
accurate NUFFT method for evaluating the nonlocal interactions. Extensive numerical comparisons were
carried out between the proposed numerical methods and other existing methods for studying ground state
and dynamics of the NLSE with different nonlocal interactions. Numerical results showed that the meth-
ods via the NUFFT perform much better than those existing methods in terms of accuracy and efficiency,
especially when the computational domain is chosen smaller and/or the solution is anisotropic.
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