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ORIGINAL ARTICLE
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ABSTRACT
Background Orodental diseases include several
clinically and genetically heterogeneous disorders that
can present in isolation or as part of a genetic
syndrome. Due to the vast number of genes implicated
in these disorders, establishing a molecular diagnosis
can be challenging. We aimed to develop a targeted
next-generation sequencing (NGS) assay to diagnose
mutations and potentially identify novel genes mutated
in this group of disorders.
Methods We designed an NGS gene panel that targets
585 known and candidate genes in orodental disease.
We screened a cohort of 101 unrelated patients without
a molecular diagnosis referred to the Reference Centre
for Oro-Dental Manifestations of Rare Diseases,
Strasbourg, France, for a variety of orodental disorders
including isolated and syndromic amelogenesis
imperfecta (AI), isolated and syndromic selective tooth
agenesis (STHAG), isolated and syndromic
dentinogenesis imperfecta, isolated dentin dysplasia,
otodental dysplasia and primary failure of tooth
eruption.
Results We discovered 21 novel pathogenic variants
and identified the causative mutation in 39 unrelated
patients in known genes (overall diagnostic rate: 39%).
Among the largest subcohorts of patients with isolated
AI (50 unrelated patients) and isolated STHAG (21
unrelated patients), we had a definitive diagnosis in 14
(27%) and 15 cases (71%), respectively. Surprisingly,
COL17A1 mutations accounted for the majority of
autosomal-dominant AI cases.
Conclusions We have developed a novel targeted NGS
assay for the efficient molecular diagnosis of a wide

variety of orodental diseases. Furthermore, our panel will
contribute to better understanding the contribution of
these genes to orodental disease.
Trial registration numbers NCT01746121 and
NCT02397824.

INTRODUCTION
Orodental disorders encompass a number and
variety of diseases that affect the teeth and oral
cavity. Broadly, these disorders can be classified into
anomalies of tooth number, shape and size (eg,
hypo/oligo/ano-dontia (collectively selective tooth
agenesis (STHAG)), microdontia, globodontia),
anomalies of tooth structure (eg, amelogenesis
imperfecta (AI), hereditary dentin disorders) and
anomalies of tooth eruption. The prevalence of
these disorders varies from relatively common
(4.2% for hypodontia in the Caucasian popula-
tion)1 to extremely rare (1 in 100 000 for dentin
dysplasia (DD) type 1).2

Orodental disorders can have a genetic, environ-
mental or multifactorial basis.3 4 Although evidence
demonstrates a role for environmental pollutants
such as dioxins and fluoride in developmental
enamel defects,5 6 a number of studies have also
demonstrated a strong genetic aetiology for several
orodental diseases (reviewed in refs. 7–9). Among
the >5000 known genetic syndromes, >900 have
orodental/craniofacial features.10 Even in the case
of isolated orodental diseases, significant genetic
heterogeneity exists, with several of the same genes
being involved in isolated and syndromic forms of
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disease. For instance, mutations in eight genes have been impli-
cated in STHAG (PAX9, MSX1, LTBP3, AXIN2, WNT10A, EDA,
EDARADD and EDAR),11–17 of which several (MSX1, WNT10A,
EDA, EDARADD and EDAR) have also been linked with forms
of ectodermal dysplasia.18–20 Similarly, mutations in a number
of genes have been implicated thus far in AI, of which 10 cause
an exclusively dental phenotype (ENAM, WDR72, KLK4,
AMELX, MMP20, FAM83H, AMBN, ITGB6, SLC24A4 and
c4orf26),21–30 some cause syndromic disease with AI (LTBP3,
FAM20A, CNNM4, ROGDI, STIM1 and FAM20C),31–36 and yet
others account for isolated and syndromic AI (COL17A1,
LAMA3, LAMB3 and DLX3).37–40 Indeed, the pattern of inherit-
ance and penetrance associated with each gene also varies. This
wide range of heterogeneity can render genetic diagnosis
challenging.

Yet, the early molecular diagnosis of orodental disorders is
important as it can improve patient care. For instance, mutations
in AXIN2 that cause STHAG have been shown to predispose
carriers to colorectal cancer.12 Early diagnosis of AXIN2 muta-
tions can hence alert clinicians to counsel patients to have
regular colonoscopies. Similarly, the identification of mutations
in FAM20A in patients presenting with AI can prompt a renal
investigation for the management of nephrocalcinosis.41

Targeted next-generation sequencing (NGS) has proven
extremely beneficial clinically for the molecular diagnosis of a
number of genetically heterogeneous disorders, such as hearing
loss, mitochondrial disease, intellectual disability (ID), neuro-
muscular disorders and Bardet–Biedl syndrome.42–46 Better
coverage, lower cost and relative ease of data interpretation have
made it more commonplace for routine clinical use than whole-
exome sequencing (WES) and whole-genome sequencing
(WGS).47

We have developed the first targeted NGS panel for the
molecular diagnosis of isolated and syndromic orodental disor-
ders. We demonstrate the utility of this panel in the molecular
diagnosis of a variety of orodental disorders. In a cohort of 103
patients (101 unrelated) without a known molecular diagnosis
referred to the Reference Centre for Rare Diseases with
Oro-dental Manifestations, we were able to provide a definitive
molecular diagnosis in 39% of patients in known disease-causing
genes. The identification of mutations in genes underlying syn-
dromic forms of orodental disease highlights the potential bene-
fits of a complete oral investigation in the diagnosis of rare
genetic diseases. The aim of this article is to demonstrate the
utility of this targeted NGS assay for the diagnosis of mutations
in known orodental disease genes. However, the potential for the
discovery of novel genes is addressed in the discussion.

METHODS
Patients
Patients were referred to the Reference Centre for Rare Diseases
with Oro-dental Manifestations (Strasbourg, France) by dentists,
paediatricians and geneticists from 13 hospitals and 32 private
practices in France, Germany and Morocco. The inclusion cri-
terion for the study was the presence of an orodental anomaly,
defined as an anomaly of the mouth, including teeth and sur-
rounding structures such as the periodontium (alveolar bone,
ligament and gingivae), as well as defects of lip and palate for-
mation. Patients with known mutations used for the validation
assay were previously diagnosed either in clinical (Laboratory
for Genetic Diagnosis, Strasbourg University Hospital) or
research laboratories. DNA was obtained from peripheral blood
or saliva samples (Oragene DNA, DNA Genotek, Canada).

Patient phenotype was recorded using D[4]/Phenodent (http://
www.phenodent.org).

Gene selection and targeted capture design
Genes were selected based on their involvement in human dis-
eases with orodental phenotypes, mutation in animal models
presenting orodental disorders,48 49 expression in the develop-
ing mouse tooth50 and known role in tooth development. Two
versions of the gene panel were developed, v1.0 and v2.0. v1.0
was used for patients V1.01–V1.16, whereas v2.0 was used for
patients V2.01–V2.95. Complementary RNA capture probes
were designed against all coding exons and 25 bp of flanking
intronic sequence in order to cover splice junctions of these
genes using the SureDesign portal (https://erray.chem.agilent.
com/suredesign, Agilent, USA).

Library preparation, sequencing and data analysis
Targeted regions were captured using a Custom SureSelectXT2
in-solution target enrichment kit (Agilent) and libraries were
prepared for sequencing (2×100 bp) on the HiSeq2500
(Illumina, USA) following the manufacturer’s instructions. For
v1.0, 16 samples were multiplexed per lane for sequencing,
whereas for v2.0, 32 samples were multiplexed per flow-cell
lane. Read alignment, and variant calling and annotation were
performed using standard methods. Briefly, reads were aligned
to the GRCh37 reference genome using Burrow–Wheeler
aligner (v0.7.5a)51 ensuring tagging of multi-mapped reads, and
duplicates were marked with Picardv1.102 (http://picard.
sourceforge.net). Indel realignment, base quality score recalibra-
tion and variant calling were performed with the GATK Toolkit
v3.1 using hard-filtering parameters.52–54 Variants were anno-
tated using snpEffv.3.4.55 Variant frequencies were compared
with an internal exome database and prioritised using
VARank.56 Variants were prioritised by allele frequency (<1%
in the Single Nucleotide Polymorphism database (dbSNP137),
1000 Genomes database,57 Exome Variant Server (EVS) data-
base58 and our internal database, except for non-syndromic
STHAG, for which we used a cut-off of <4%) and predicted
functional effect (frameshift, invariant splice sites, non-
synonymous and splice affecting mutations). Missense mutations
were evaluated for pathogenicity bioinformatically using Sorting
Intolerant from Tolerant (SIFT), PolyPhen, MutationTaster and
amino acid conservation.59–61 Splice affecting mutations were
evaluated bioinformatically using Human Splice Finder,
MaxEntScan, NNSplice, Gene Splicer, SSF, Rescue ESE and ESE
Finder.62–67 CNVs were detected as previously described.44 45

Variant pathogenicity was interpreted according to the
American College of Medical Genetics guidelines.68 Evidence
used to establish pathogenicity is provided in online supplemen-
tary figures S1–S45.

Mutation validation
All mutations were validated by Sanger sequencing (GATC,
Germany). Segregation analyses were performed whenever
DNA was available for additional family members.
Single-molecule PCR followed by Sanger sequencing was used
to phase biallelic mutations when parental DNA was unavail-
able.69 70 Deletions were validated by qPCR. The region of
interest and an internal control region (RPPH1) were amplified
from 2 ng of genomic DNA from the patient and a control
using the iQ SYBR Green Supermix (170-8880, Biorad, USA)
on a CFX96 Real-Time System (Biorad). Data were analysed
using the Pfaffl method.71
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RESULTS
Validation of v1.0 of the NGS panel
As a proof of principle, we created a primary version (v1.0) of a
custom NGS panel that targets 560 known and candidate genes
(2.36 Mb) in orodental disorders. Of these genes, probes for
175 known and strong candidate genes (0.81 Mb) were
designed to have superior coverage (diagnosis subpanel),
whereas the remaining candidate genes constituted a ‘Discovery
subpanel’ (see online supplementary tables S1 and S2). We vali-
dated v1.0 in a cohort of 16 patients: patients V1.01–V1.08
with isolated and/or syndromic orodental diseases with known
mutations as determined by previous candidate gene Sanger
sequencing, WES, or array CGH (see online supplementary
table S3) and patients V1.09–V1.16 without a known molecular
diagnosis. Patients V1.01–V1.08 were selected to include a
variety of heterozygous, homozygous and hemizygous mutations
(substitutions, indels, a large heterozygous deletion) at eight dif-
ferent loci in order to test the sensitivity of the gene panel to
different types of genetic alterations. Using our computational
pipeline, 10 of 10 mutations, including a large heterozygous
deletion on the X chromosome (see online supplementary
table S3), were detected in a blinded manner by a bioinformati-
cian who was unaware of the molecular alteration but was
aware of the clinical diagnosis for each patient. The bioinforma-
tician was also blinded to the mode of inheritance in order to
simulate a diagnostic scenario where such information is often
unavailable. Samples V1.09–V1.16 were selected to cover a
variety of orodental phenotypes (AI, dentinogenesis imperfecta
(DGI), DD, STHAG) to determine the potential to identify
unknown mutations with our panel. The molecular results from
samples V1.09–V1.16 are presented and discussed in tables 1–3,
together with the results from v2.0 of the gene panel presented
below. Briefly, pathogenic or likely pathogenic mutations were
identified in six of eight samples among samples V1.09–V1.16
(tables 2 and 3).

On average, in this validation cohort, by multiplexing 16
samples per lane of a sequencing flow cell, 2.2 Gb of sequence
was generated per sample, giving a mean coverage of 365×,
with 95.31% nucleotides covered at ≥50× (see online supple-
mentary table S4). The mean coverage of the diagnostic subpa-
nel was 404×, with 98.94% of nucleotides covered at ≥20×,
permitting confident diagnosis of mutations in these genes, for
which we set a minimum coverage threshold of 20× (see online
supplementary table S4). A small percentage of targeted regions
(33.3 kb, 1.4%) had an average coverage <20× across samples
due to high guanine-cytosine (GC) content or pseudogenes with
highly similar sequences (see online supplementary table S5).
The majority of these regions were in the discovery subpanel
(28.1 kb). Under-representation of high GC content and pseu-
dogenic regions is a known issue with probe-based targeting
strategies. However, these gaps can be filled in by Sanger
sequencing for regions considered to be relevant on a
case-by-case basis. On average, we detected ∼2648 variants/
sample, of which ∼87 variants/sample were rare (<1% in
dbSNP137, 1000Genomes, EVS and an in-house database).
Among these rare variants, we identified on average per sample
∼20 missense changes, 0.38 nonsense mutations, 0.25 splice-site
changes and 0.56 frameshift-inducing indels (see online supple-
mentary table S6).

Development of v2.0 of the NGS panel
Having validated v1.0 of our NGS gene panel, we included 25
additional genes to the discovery subpanel to create a second

version of the panel (v2.0) that included 585 genes (2.47 Mb).
These additional genes were included due to their implication
in animal models of orodental disease that was unknown when
designing v1.0 of the panel v2.0 of the panel was used to
sequence 95 patients (V2.01–V2.95). Furthermore, since the
average coverage achieved with v1.0 was more than sufficient
for confident molecular diagnosis, with v2.0, 32 samples were
multiplexed per well of a flow cell lane in order to reduce
sequencing costs while ensuring a minimum average coverage of
100× per sample. Sequencing output with v2.0 is shown in
online supplementary table S7. Briefly, we achieved a mean
coverage of 179× overall, with 97.2% of the targeted region
covered at ≥20×. Furthermore, the diagnostic panel had an
average coverage of 211× with 97% of bases covered at ≥50×.

Screening a cohort of patients with diseases with orodental
involvement
A description of the final cohort of 103 patients (101 unrelated)
without a known mutation sequenced with v1.0 (V1.09–V1.16)
and v2.0 (V2.01–2.95) and the diagnostic yield by disease cat-
egory is shown in table 1. Isolated AI was the most common dis-
order in the cohort (50%), followed by isolated STHAG (20%).
We also included several patients with syndromic forms of AI,
ranging from well-defined syndromes, such as Enamel Renal
Syndrome, to undefined and suspected syndromes, hoping that
a molecular diagnosis may aid difficult clinical diagnosis. The
remaining cases consisted of patients with isolated or syndromic
dentin disorders, syndromic STHAG, suspected otodental dys-
plasia and primary failure of tooth eruption. Since AI and
STHAG can be inherited in an autosomal-dominant (AD),

Table 1 Cohort description and diagnostic yield per disease
category

Disease
Number of
patients

Diagnostic
yield, N (%)

Isolated AI 52 (51*) 14 (27%)
Of which confirmed AI 51 (50*) 15 (29%, 30%*)
Of which suspected AI 1 0 (0%)

Syndromic AI 14 1 (7%)
Enamel renal syndrome 1 1 (100%)
Mucopolysaccharidosis IV A 1 0 (0%)†
Kohlschutter Tonz (suspected) 1 0 (0%)
Osteogenesis imperfecta (suspected) 1 0 (0%)
Spondyloepiphyseal dysplasia 1 0 (0%)†
Undefined syndrome 9 0 (0%)

Isolated STHAG 21 15 (71%)
Syndromic STHAG 4 2 (50%)
Ectodermal dysplasia 3 1 (33%)
Intellectual disability with STHAG 1 1 (100%)

Isolated DGI 5 (4*) 5, 4* (100%)
Syndromic DGI 2 1 (50%)
Goldblatt syndrome (suspected) 1 0 (0%)
Osteogenesis imperfecta 1 1 (100%)

Isolated DD 2 1 (50%)
Otodental syndrome 1 1 (100%)
Primary failure of tooth eruption 2 0 (0%)
Total 103 (101*) 40, 39* (39%)

*Number of unrelated patients.
†Likely pathogenic mutations were identified in GALNS in these patients.
AI, amelogenesis imperfecta; DD, dentin dysplasia; DGI, dentinogenesis imperfecta;
STHAG, selective tooth agenesis.
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Table 2 Pathogenic mutations identified in patients without a known mutation

Patient
ID Sex

Age
(years) Mode Clinical features Gene Transcript c. p. Inheritance Reference Figure

Pathogenic variants
Isolated AI

V1.14 M 25 ? Hypoplastic, hypomineralised WDR72 NM_182758.3 c.[182A>G];[815G>A] p.[H61R];[W272*] Compound
heterozygous

Novel S1

V2.05 M 6 AR N/A CNNM4 NM_020184.3 c.[1495G>A];[1495G>A] p.[V499M];[V499M] Homozygous (C) Novel S2
V2.08 M 12 AR Hypomineralised SLC24A4 NM_153646.3 c.[(1537+1_1538-1)_(*67_?)del];

[(1537+1_1538-1)_(*67_?)del]
p.[0?];[0?] Homozygous (C) 72 S3

V2.09 F 16 AD Hypoplastic COL17A1 NM_000494.3 c.[2407G>T]; [=] p.[G803*];[=] Maternal 73 S4
V2.18 M 13 ? Hypoplastic LAMB3 NM_000228.2 c.[124C>T]; [=] p.[R42*];[=] ? 74 S5
V2.20 F 18 ? Hypomature FAM83H NM_198488.3 c.[1289C>A];[=] p.[S430*];[=] ? 75 S6
V2.26 M 13 AD Hypomineralised FAM83H NM_198488.3 c.[1282C>T];[=] p.[Q428*];[=] Paternal Novel S7
V2.28 M 14 ? Hypoplastic AMELX NM_182680.1 c.[155C>T];[=] p.[P52L];[=] De novo Novel S8
V2.29 M 14 AD N/A ENAM NM_031889.2 c.[123+1G>A];[=] p.[0?];[=] Paternal Novel S9
V2.48 F 20 AD Hypoplastic COL17A1 NM_000494.3 c.[1646G>A];[=] p.[W549*];[=] Maternal Novel S10
V2.53 F 19 ? Hypoplastic AMBN NM_016519.5 c.[532-1G>C];[532-1G>C] p.[0?];[(0?)] Homozygous Novel S11
V2.63 M 10 ? N/A FAM83H NM_198488.3 c.[2029C>T];[=] p.[Q677*];[=] ? 76 S12
V2.79 M 10 ? Hypoplastic, hypomature COL17A1 NM_000494.3 c.[1873C>T];[=] p.[R625*];[=] ? Novel S13
V2.82 F 14 AD Hypoplastic COL17A;

LAMA3
NM_000494.3;
NM_198129.1

COL17A1:c.[1141+1G>A]; LAMA3:c.
[6477_6486del]

COL17A1:p.[0?]; LAMA3:
p.[I2159Mfs*46]

Maternal and ? Novel 2

Syndromic AI
V2.06 F 14 ? Enamel Renal Syndrome FAM20A NM_017565.3 c.[1106_1107del]; [c.1006_1107del] p.[E2316Gfs*10];

[E2316Gfs*10]
Homozygous Novel S14

Isolated STHAG
V1.11 M 21 ? Ag 12, 13, 14, 15, 18, 22, 23, 24, 25, 28, 31, 34,

35, 38, 44, 45, 48
WNT10A NM_025216.2 c.[383G>A];[=] p.[R128Q];[=] Maternal 77 S15

V1.15 F 11 ? Ag 12, 15, 17, 22, 25, 27, 28, 31, 35, 37, 38, 41,
44, 45, 47, 48

WNT10A NM_025216.2 c.[343A>C](;)[682T>A] p.[K115Q](;)[F228I] ? Novel and
78

S16

V2.55 F 15 ? Ag 11, 12, 13, 14, 17, 18, 21, 22, 23, 24, 25, 27,
28, 31, 32, 33, 34, 37, 38, 41, 42, 43, 44, 45, 47,
48

WNT10A NM_025216.2 c.[321C>A];[321C>A] p.[C107*];[C107*] Homozygous 78 S17

V2.65 F 17 ? Ag 12, 13, 15, 17, 18, 22, 23, 25, 27, 28, 31, 32,
35, 37, 38, 41, 42, 45, 48

WNT10A NM_025216.2 c.[682T>A];[682T>A] p.[F228I];[F228I] Homozygous 78 S18

V2.66 M 37 ? Ag 12, 13, 18, 22, 28, 31, 32, 37, 38, 41, 42, 47,
48

WNT10A NM_025216.2 c.[682T>A];[682T>A] p.[F228I];[F228I] Homozygous 78 S19

V2.67 M 11 AD Ag 15, 16, 17, 18, 25, 26, 27, 28, 36, 37, 38, 45,
46, 47, 48

PAX9 NM_006194.3 c.[(?_-115)_(*62_?)del];[=] p.[0?];[=] Paternal 78 S20

V2.69 M 18 ? Ag 13, 14, 18, 22, 23, 24, 28, 31, 41, 45 WNT10A NM_025216.2 c.[637G>A];[=] p.[G213S];[=] ? 79 S21
V2.71 M 11 ? Ag 12, 13, 15, 17, 18, 22, 23, 25, 27, 28, 31, 32,

33, 34, 35, 37, 38, 41, 42, 43, 44, 45, 47, 48
WNT10A NM_025216.2 c.[682T>A];[321C>A] p.[F228I];[C107*] Compound

heterozygous

78 S22

V2.72 M 33 ? Ag 17, 18, 22, 28, 31, 32, 37, 38, 41, 42, 47, 48 WNT10A NM_025216.2 c.[682T>A ](;)[321C>A] p.[F228I](;)[C107*] ? 78 S23
V2.74 M 26 ? Ag 13, 15, 18, 23, 24, 25, 28, 31, 33, 34, 35, 37,

38, 41, 42, 43, 44, 45, 47, 48
WNT10A NM_025216.2 c.[682T>A];[682T>A] p.[F228I];[F228I] Homozygous 78 S24
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Table 2 Continued

Patient
ID Sex

Age
(years) Mode Clinical features Gene Transcript c. p. Inheritance Reference Figure

V2.76 M 15 ? Ag 12, 14, 15, 18, 22, 24, 25, 28, 31, 34, 35, 37,
38, 41, 42, 43, 44, 45, 47, 48

WNT10A NM_025216.2 c.[682T>A];[682T>A] p.[F228I];[F228I] Homozygous 78 S25

V2.78 F 9 ? Ag 12, 14, 22, 31, 32, 35, 41 EDA NM_001399.4 c.[467G>A];[=] p.[R156H];[=] De novo 17 S26
V2.91 F 12 AD Ag 14, 15, 24, 25 35, 36, 45, 46 MSX1 NM_002448.3 c.[249del];[=] p.[E84Rfs*76];[=] Paternal Novel S27
V2.92 M 9 ? Ag 12, 17, 22, 23, 24, 25, 27, 35, 37, 33, 31, 41,

43, 45, 47
WNT10A NM_025216.2 c.[682T>A];[=] p.[F228I];[=] Maternal 78 S28

V2.93 M 28 ? Ag 14, 15, 18, 25, 27, 28, 32, 34, 35, 37, 38, 44,
45, 47, 48

WNT10A NM_025216.2 c.[682T>A];[682T>A] p.[F228I];[F228I] Homozygous 78 S29

Syndromic STHAG
V2.54 F 49 ? ED WNT10A NM_025216.2 c.[682T>A];[c.416C>T] p.[F228I];[p.A139V] Compound

heterozygous

78 and
novel

S30

V2.87 F 3 ? Intellectual disability CTNNB1 NM_001904.3 c.[998dup];[=] p.[Tyr333*];[=] ? Novel S31

Isolated DGI/DD
V1.09 F 10 AD DD* DSPP NM_014208.3 c.[3480del];[=] p.[S1160Rfs*154];[=] ? Novel S32
V1.10 M 9 AD DGI* DSPP NM_014208.3 c.[3480del];[=] p.[S1160Rfs*154];[=] Maternal Novel S32
V2.36 M 45 AD DGI DSPP NM_014208.3 c.[3533_3534insTA];[=] p.[N1179Tfs*136];[=] ? Novel S33
V2.55 F 12 AD DGI DSPP NM_014208.3 c.[52G>T];[=] p.[V18F];[=] Maternal 80 S34
V2.57 F 44 AD DGI DSPP NM_014208.3 c.[3480del];[=] p.[S1160Rfs*154];[=] ? Novel S35
V2.59 F 41 ? DGI DSPP NM_014208.3 c.[3682_3686del];[=] p.[S1228*];[=] ? Novel S36

Syndromic DGI
V2.58 M 47 AD Osteogenesis imperfecta COL1A1 NM_000088.3 c.[3837_3840del];[=] p.[N1279Lfs*51];[=] Paternal Novel S37

Otodental syndrome
V2.03 M 13 AD FGF3 NM_005247.2 c.[(?_-3)_(220+1_221-1)del];[=] p.[0?];[=] Paternal Novel S38

*Related individuals.
AD, autosomal dominant; AI, amelogenesis imperfecta; AR, autosomal recessive; C, consanguineous parents; DD, dentin dysplasia; DGI, dentinogenesis imperfecta; ED, ectodermal dysplasia; ID, intellectual disability; STHAG, selective tooth agenesis.
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autosomal-recessive (AR) or X-linked fashion, the mode of
transmission was unclear for the majority of cases. Sixty-six
cases showed sporadic disease, whereas 35 showed familial
transmission. The mode of inheritance could be confidently
inferred only in 18 cases, 15 as AD due to the presence of other
affected family members, 2 as AR due to the presence of con-
sanguinity between the parents of the index case and 1 as
X-linked. Due to the large number of cases without a known
mode of inheritance of disease, a common situation in diagnos-
tic cohorts, variant filtration was performed for all samples for
all modes of inheritance. Overall, we had a definitive molecular
diagnosis in known genes in 39 cases (39%) and discovered 21
novel pathogenic variants. All pathogenic mutations identified in
this cohort are listed in table 2. Likely pathogenic mutations
and other variants are shown in table 3. The distribution of
pathogenic variants identified with respect to the disease cat-
egory and the number of cases corresponding to each mutated
gene is shown in figure 1.

Isolated AI: COL17A1 mutations are a frequent cause of AI
Of the 50 unrelated cases with confirmed isolated AI, we identi-
fied the causative mutation in 14 cases (27%). Surprisingly, the
most frequently mutated gene in our cohort was COL17A1,
with four independent patients segregating pathogenic muta-
tions in this gene (of which three are novel). In the biallelic
state, mutations in COL17A1, encoding a structural component
of hemidesmosomes, cause junctional, non-Herlitz-type epi-
dermolysis bullosa (EB), a skin blistering disorder with asso-
ciated dental enamel defects.85 However, rare cases of isolated
ADAI in heterozygous carriers have been reported.37 86

Similarly, heterozygous mutations in LAMA3 and LAMB3,
which also encode hemidesmosomal components, can cause
ADAI, whereas biallelic mutations in these genes cause EB.38 39

We found one family segregating a known heterozygous LAMB3
nonsense mutation. These patients showed a similar enamel
phenotype characterised by a hypoplastic form of AI with thin
enamel and a characteristic pitting of the enamel that varied in
severity (figures 2A–H and 3C). Depending on the extent of
pitting, the enamel surface was sometimes rough. Secondary
extrinsic colouration of the pits rendered them more visible.
Interestingly, patient V2.82 had two unlinked mutations, one
maternally inherited novel COL17A1 splice mutation (c.1141
+1G>A) and a novel LAMA3 frameshift-inducing deletion
(p.I2159Mfs*46) that is absent in her mother (figure 2I).
The father of the patient was unavailable for testing but was
described as unaffected at the time of ascertainment. The
c.1141+1G>A mutation is predicted to cause either in-frame
skipping of exon 14 (which encodes a part of the intracellular
domain) or retention of intron 14 that would subsequently
introduce a premature termination codon (PTC) and likely
nonsense-mediated decay (NMD) of the transcript. Patient
V2.82’s enamel phenotype is more severe than that of her
mother, suggesting digenic inheritance in this individual. Patient
V2.82 has hypoplastic AI with clearly visible pitted enamel in
the vestibular, lingual and palatal surfaces of premolars and
molars and a white colouration following Retzius striae visible
in the permanent incisors (figure 2A, B). Her mother’s denti-
tion, in contrast, shows more discrete signs of AI and fewer pits
are visible on the buccal surfaces of premolars (figure 2C, D).
Digenic mutations in LAMB3 and COL17A1 that modify the
severity of the EB phenotype have been previously reported.87

However, this is the first report of seemingly digenic inheritance
in ADAI.
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Figure 1 Distribution of pathogenic
variants identified by disease category.
The genes in which pathogenic
mutations were identified are shown
with respect to the disease in which
they were identified. In parentheses
next to each gene is the number of
independent patients in whom
mutations were identified in the gene.
This figure includes results from
patients V1.09–V1.16 and V2.01–
V2.95. DD dentin dysplasia; DGI,
dentinogenesis imperfecta; STHAG
selective tooth agenesis.

Figure 2 COL17A1 mutations show a characteristic enamel phenotype in autosomal-dominant amelogenesis imperfecta. (A–H) Photos of the
enamel phenotypes of individuals with COL17A1 mutations. (A, B) Patient V2.82. (C, D) Mother of patient V2.82. (E, F) Patient V2.09. (G, H) Patient
V2.48. Arrows mark pits in the enamel that are characteristic of COL17A1 mutations. Extrinsic colouration makes these pits more visible in (B), (E)
and (H). (I) Seemingly digenic inheritance of amelogenesis imperfecta in patient V2.82. Asterisks on the sequence chromatograms mark the mutated
nucleotides.
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We also identified a family with a novel homozygous splice-
site mutation (c.532–1G>C) in AMBN. To date, only a single
family has been reported to carry mutations in this gene.27

Similar to the patients in the initial study, our patient too exhib-
ited hypoplastic AI with very limited enamel as seen in the unre-
stored yellow-tinged premolars and permanent molars.
However, the tooth surfaces did not seem as pitted as described
previously (figure 3F).27 This mutation is predicted to alter
mRNA splicing by inducing either the skipping of exon 7 or the
retention of intron 6. Exon skipping would lead to in-frame
deletion of exon 7, which encodes a domain involved in
heparin and fibronectin interaction that is thought to be import-
ant for the interaction of AMBN with dental epithelial cells.88 89

Intron retention would introduce a PTC that is likely to cause
NMD of the mRNA. Additionally, a cryptic acceptor splice-site
is predicted bioinformatically to be activated in exon 7 that
would cause partial out-of-frame skipping of exon 7 and a sub-
sequent PTC (see online supplementary figure S11). Thus, this
mutation is predicted to cause at least a partial loss of AMBN
function. We also identified novel mutations in WDR72,
AMELX and ENAM, and a known deletion of the last three
exons of SLC24A4 (table 1). Representative images of the
enamel phenotype associated with mutations in each gene are
shown in figure 3. Similar to previous reports, WDR72 and
SLC24A4 mutations caused hypomineralised, hypomature AI
with brownish/yellowish discoloured teeth.22 29 The enamel
showed a lack of contrast with the underlying dentin upon
X-ray imaging (data not shown). The softer enamel seen in the
patient with WDR72 mutations was subject to wear, whereas the
enamel in the patient with the SLC24A4 mutation was opaque.
Patients with AMELX, LAMB3 and ENAM mutations had hypo-
plastic AI with yellow discolouration and smaller teeth due to
thinner enamel.

Interestingly, we identified a novel homozygous missense
mutation (p.V499M) in CNNM4 in patient V2.05 who was
born to first-cousins and was referred for isolated AI. This muta-
tion affects a highly conserved residue in a functional cystathio-
nine beta-synthase domain of the protein and is predicted
bioinformatically by three algorithms (SIFT, PolyPhen and
MutationTaster) to be deleterious (see online supplementary
figure S2). However, mutations in this gene are known to cause
Jalili syndrome, which is characterised by a combination of AI
and cone-rod dystrophy.33 90 A subsequent full-field

electroretinography revealed a marked loss of cone response
and a less severe loss of rod response in the patient, thus con-
firming the Jalili phenotype (see online supplementary figure
S2E, F).

Syndromic AI
We confirmed the molecular diagnosis in one case of Enamel
Renal Syndrome (patient V2.06). This patient was homozygous
for a novel frameshift-inducing deletion in FAM20A
(c.1106_1107del).

In patient V2.15, referred for the management of AI in the
context of suspected spondyloepiphyseal dysplasia (SED), we
identified a known pathogenic missense mutation (p.T312S)
and a likely pathogenic intronic variant (c.121-31) in GALNS
(mutated in mucopolysaccharidosis (MPS) IVA) predicted to
create an intronic splice enhancer (see online supplementary
figure S42). However, the biological effect of this intronic muta-
tion warrants further investigation. No deleterious mutations
were identified in CHST3 or COL2A1 and a differential diagno-
sis of mucolipidosis type III was eliminated due to normal hexo-
saminidase, alpha-L-fucosidase and beta-D-glucuronidase levels
(data not shown). Similar clinical presentation of SED and MPS
IVA has been previously demonstrated;91 therefore, our results
suggest a potential differential diagnosis of MPS IVA in this
patient. In the case of patient V2.49, referred for the manage-
ment of AI linked to MPS IVA,92 93 we identified only a single
de novo known pathogenic mutation in GALNS (p.R386C),
suggesting the presence of a second mutation in intronic or
regulatory regions, or a structural mutation missed by our pipe-
line. The presence of an undetected second mutation is consist-
ent with the virtually absent GALNS activity in the patient’s
leucocytes (1 nmol/h/mg protein) (data not shown). Both these
patients exhibited hypoplastic AI with thin striated and pitted
enamel and subsequently flattened buccal surfaces (see online
supplementary figure S45) consistent with previous reports of
the enamel phenotype seen in MPS IVA,94 further supporting a
diagnosis of MPS IVA in both patients. However, additional
tests are necessary to confirm this diagnosis.

Isolated and syndromic STHAG
We identified the causative mutation in 15/21 (71%) cases of
isolated STHAG. The majority carried mutations in WNT10A
either in a heterozygous, homozygous or compound

Figure 3 The variety of isolated amelogenesis imperfecta phenotypes seen in this cohort. Representative images of the enamel phenotype
associated with mutations in different genes. The mutated gene and patient number are indicated in each panel.
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heterozygous state as has been previously reported.77 79

Fortuitously, we were also able to provide a molecular diagnosis
for a patient presenting with ID who was referred for the man-
agement of hypodontia. The patient (V2.87) had agenesis of
five incisors, two maxillary incisors and three mandibular per-
manent incisors (agenesis 12, 22, 41, 31 and 32) and had no
family history of hypodontia or ID. We identified a novel het-
erozygous nonsense mutation in CTNNB1 (p.Tyr333*), which
encodes beta-catenin, a member of the WNT signalling pathway,
which is essential during multiple stages of tooth develop-
ment.95 Recent reports have established a role for heterozygous
CTNNB1 mutations in ID characterised by mild to severe ID,
autism spectrum disorder childhood hypotonia with progressive
spastic diplegia, microcephaly and significant additional cranio-
facial and brain abnormalities, which is compatible with this
patient’s phenotype (data not shown).96 97 However, the oro-
dental phenotype in this syndrome has not been studied in
detail. Our report suggests that patients with ID due to
CTNNB1 mutations may require a dental examination and man-
agement of hypodontia. Furthermore, this case highlights the
benefit of an interdisciplinary approach to patient care and the
potential utility of a full dental examination in syndromes with
craniofacial involvement.

Dentinogenesis imperfecta and dentin dysplasia
Among the six independent cases of isolated dentin disorders,
we identified the causative mutation in five. All patients carried
mutations in DSPP, the only gene implicated thus far in isolated
DD/DGI.2 The majority of mutations were present in the
repeat-rich exon 5 that is often refractory to Sanger sequencing
and hence until now excluded from routine diagnostic sequen-
cing.98 We achieved an average coverage of 771× and 408×
over exon 5 of DSPP with v1.0 and v2.0, respectively. Hence,
our assay provides an effective means to screen for mutations in
the last exon of DSPP. Our bioinformatic pipeline detected
the majority of mutations; however, one mutation
(c.3682_3686del) was missed due to the difficulty of calling var-
iants in structurally complex regions (personal communication,
MKP, Broad Institute GATK Team), but was detected upon
visual inspection of the reads. We also identified a novel
frameshift-inducing deletion in COL1A1 in a family segregating
AD osteogenesis imperfecta with DGI.

Otodental dysplasia
We identified a heterozygous deletion of the first exon of FGF3
in a family segregating suspected AD otodental dysplasia, which
is characterised by globodontia and hearing loss, sometimes seg-
regating with colobomas, most likely due to the deletion of the
adjacent FADD gene.99 This deletion was validated by qPCR on
genomic DNA, which showed the presence of the deletion in
patient V2.03 as well as in his affected father (see online supple-
mentary figure S38).

DISCUSSION
We have developed a targeted NGS assay for the diagnosis and
discovery of mutations underlying rare genetic disorders with
orodental manifestations. We achieved high sequencing coverage
in the targeted regions, 179× average coverage with 97.2% of
the targeted region covered at ≥20× with V.2.0. In a cohort of
101 unrelated patients with a variety of orodental genetic disor-
ders of unknown genetic aetiology, we were able to detect the
underlying pathogenic mutation in 39 cases (39%) in known
genes.

Targeted NGS gene panels are being widely used for the diag-
nosis of a variety of genetic disorders, including ID, mitochon-
drial disorders and neuromuscular diseases.42–44 However, to
the best of our knowledge, this is the first report of a targeted
NGS gene panel for orodental disorders. Therefore, this diag-
nostic tool responds to a veritable need within the dental genet-
ics community. Furthermore, two concrete examples from our
cohort suggest the utility of this tool to the wider medical genet-
ics community. First, we were able to diagnose a mutation in
CTNNB1 in a patient with ID and tooth agenesis, suggesting
the potential utility of our assay in screening for mutations in
ID cases with orodental involvement. Second, the detection of a
CNNM4 mutation in a patient referred for isolated AI led to an
ophthalmological investigation for cone-rod dystrophy and the
confirmation of Jalili syndrome. These cases highlight how the
oral consultation can be a port of entry for the diagnosis and
management of patients with rare genetic diseases, especially in
light of the involvement of the same genes in syndromic and
isolated forms of orodental disease and the sometimes
non-evident extra-oral signs associated with some diseases.

Our targeted NGS panel targets fewer genes than WES/WGS
and may thus exclude potential disease-causing genes. Yet, it has
several advantages in a clinical setting. First, it provides higher
sequencing coverage in the targeted regions than WES/WGS.
A comparison of the coverage of the same regions achieved with
v2.0 of our gene panel and a commercially available WES kit
demonstrates that the coverage from WES falls short of the
requirements for confident molecular diagnosis, that is, only
89.09% of targets covered at ≥20× with WES vs 97.23% of
targets covered at ≥20× with our panel (see online supplemen-
tary figure S46 and table S8). Second, due to the smaller
number of variants identified by targeted sequencing (∼2600
variants with our panel vs ∼30 000 with WES), variant inter-
pretation is relatively simpler. This is also true for CNVs—we
were able to detect and validate a single exon deletion in FGF3.
Finally, the cost, amount of time for data analysis and interpret-
ation, and data storage requirements are lower with targeted
NGS than with WES/WGS approaches, making it an attractive
alternative for clinical implementation. Alternatively, our assay
could serve as a primary mutation-screening tool to exclude
mutations in known genes before performing WES/WGS.

We expected that the inclusion of candidate genes selected
based on their expression in developing mouse teeth50 and their
implication in animal models of orodental disorders would permit
the identification of novel genes mutated in these disorders. In
order to identify potentially novel genes in patients lacking muta-
tions in known genes, we performed a preliminary analysis focus-
ing on rare loss-of-function variants (nonsense, invariant splice site
and frameshift variants) that were present in the same gene in at
least two independent families with the same phenotype. Such a
strategy was previously used successfully to identify a novel gene,
SETD5, in ID.100 However, this preliminary analysis did not yield
any positive findings. Indeed, this analysis was limited in that it did
not consider missense mutations whose effect is less clear and was
complicated by the lack of information regarding the mode of
inheritance in the majority of cases. Also, in this analysis patients
were regrouped by disease category (all mutation-negative AI
patients, all mutation-negative STHAG patients) without subclassi-
fication based on fine phenotype (eg, hypoplastic vs hypominera-
lised AI and severity of STHAG), which may be important to
include in order to overcome the difficulties posed by genetic het-
erogeneity.101 Furthermore, the rarity of mutations in some genes
may also necessitate much larger cohorts. Indeed, future analyses
of this cohort will try to address these limitations.
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Among the 50 unrelated patients with confirmed isolated AI
in our cohort, we had a molecular diagnosis rate of 27%. This
is slightly lower than the diagnostic rates reported by other
studies that performed candidate gene sequencing in large AI
cohorts. By performing Sanger sequencing of six genes
(FAM83H, ENAM, AMELX, MMP20, KLK4 and WDR72) in 71
families, Wright et al75 identified mutations in 26 families
(37%). By sequencing the same six genes in an independent
cohort of 39 AI kindreds, Chan et al102 identified mutations in
19 kindreds (49%). In the latter study, the diagnostic rate was
shown to be dependent on the mode of transmission:
X-linked>AD>AR>simplex cases. In our study, the majority of
cases were simplex cases (31 cases), which may explain to a
degree our lower diagnostic rate despite the inclusion of a larger
number of known AI genes. Furthermore, the 50 patients
selected for this study belong to a larger AI cohort of 71
patients, a part of which (including patients in this study) had
been previously sequenced by candidate gene Sanger sequencing
and in which mutations were identified in 11 patients103 (online
supplementary table S3 and unpublished data). Therefore, the
overall diagnostic rate in the 71-patient cohort is 35% (25
patients), which is closer to published diagnostic rates. In
further contrast to the above-mentioned studies where FAM83H
was the most frequently mutated gene in ADAI, COL17A1 was
the most frequently mutated gene in ADAI in our cohort, with
8% of our AI cohort carrying deleterious mutations in
COL17A1. Additionally, we demonstrate that the presence of
unlinked mutations in COL17A1 and LAMA3 can modify the
severity of AI, suggesting a digenic mode of AI inheritance asso-
ciated with mutations in the hemidesmosomal components.
Therefore, our findings are novel in demonstrating the fre-
quency of COL17A1 mutations in ADAI. Finally, the large
number of AI patients without mutations in known genes sug-
gests that the genetic and allelic heterogeneity underlying AI is
yet to be fully unravelled.

The diagnostic rate in syndromic AI was low in our cohort
(7%). This is likely because of the inclusion of patients without
a clear clinical diagnosis. These cases likely represent novel phe-
notypes with mutations in novel genes. Thus, WES may be
better suited for such cases. Yet, the identification of a single de
novo pathogenic mutation in GALNS in patient V2.49 can
inform genetic counselling in this family. Similarly, the identifi-
cation of one pathogenic and one potentially pathogenic muta-
tion in GALNS in patient V2.15 permits an evidence-based
investigation of MPS IVA by assaying leucocyte GALNS activ-
ity.104 Therefore, although sequencing did not provide a defini-
tive molecular diagnosis in these cases, the results of this assay
can contribute to orienting clinical investigations/counselling.

Among the 21 cases of isolated STHAG, we identified the
causative mutation in 15 (71%). This diagnostic rate is compar-
able to that reported in the literature. By screening WNT10A,
MSX1, PAX9, IRF6 and AXIN2 by Sanger sequencing in 34
patients with isolated hypodontia, van den Boogaard et al77

were able to identify the underlying mutation in 71% of cases.
Similar to other reports, WNT10A accounted for the majority of
mutations in our cohort (52%) and were also associated with
ectodermal dysplasia (patient V2.54), with F228I, similar to
other reports, being the most commonly mutated allele in our
cohort, consistent with its population frequency (2.4% in
European-Americans) and the prevalence of STHAG in this
population (4.2%).77–79 105 106

In conclusion, we have developed the first targeted NGS gene
panel for the diagnosis and discovery of mutations in genetic
disorders with orodental involvement. This panel can be reliably

used for the molecular diagnosis in known genes of a variety of
genetic disorders and can serve as a primary screening tool
before the application of WES/WGS. Additionally, this panel
also provides the potential for the discovery of novel genes
mutated in orodental disorders.
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