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Abstract

A new method for determining the electrical conductivity of ion-exchange membranes was

implemented  with  four  commercial  membranes  (AMX, CMX, MK-40 and MA-41).  It  is

based  on  lateral  resistance  measurements  without  direct  contact  between  electrodes  and

membranes. The cell configuration made it possible to determine the membrane conductivity

over a wide range of electrolyte concentrations (measurements were carried out in the range

10-5 - 5x10-1 M). The structural parameters of the different membranes were inferred from AC

conductivities and the microheterogeneous model. They were found in good agreement with

literature results obtained by normal measurements (i.e. with current lines oriented normally

to the membrane surface), thus confirming the reliability of the proposed method. The main

advantage of our method is the possibility to characterize ion-exchange membranes even at

low salt concentration unlike usual non-contact methods based on normal measurements.
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Counterion diffusion coefficients and transport numbers within the membrane gel phase were

estimated. The inter-gel phase volume fraction of an anion-exchange membrane (AMX) was

also determined for the first time from membrane DC conductivity inferred from streaming

potential  and  streaming  current  measurements.  An  excellent  agreement  was  found  with

structural parameters obtained from AC measurements.

 

Keywords: Ion-exchange  membranes,  Electrical  conductivity,  Lateral  measurements,

Microheterogeneous model, Electrokinetics
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1.  Introduction

Ion-exchange membranes (IEMs) are used in various industrial processes and electrochemical

devices such as electrodialysis or fuel cells, respectively. Electrical conductivity is one of the

most important characteristics of IEMs that defines their practical suitability. For example, in

electrodialysis the electrical potential gradient (driving force) applied through an IEM, and so

the  specific  energy  consumption  required  to  operate  a  given  separation,  depend  on  the

membrane electrical  conductivity.  This  latter  can be determined from electrical  resistance

measurements. It has been reported, however, that the experimental value of the electrical

conductivity may depend on the measuring method [1-7].

The different methods that can be implemented to measure membrane resistance can be split

into different categories according to three main criteria, namely (i) the current lines can be

oriented normally or parallel to the membrane surface, (ii) electrodes can be in contact with

the membrane or not, (iii) direct current (DC) or alternating current (AC) can be used.

Normal measurements performed in both AC and DC modes were reported in the literature. In

AC mode, the most used techniques are (i) the difference method in which the membrane

resistance  is  obtained from the  difference  between the  cell  resistance  measured  with  and

without the membrane [8-24], and (ii) the contact-mercury method [25-33]. The difference

method does not allow characterizing IEMs in too dilute solutions since it becomes highly

inaccurate as the solution resistance increases too much with respect to that of the membrane

(in most reported works measurements were performed with electrolyte concentrations higher

than  ~0.01  M).  On  the  other  hand  the  contact-mercury  method  permits,  in  principle,

characterizing  IEMs  in  solutions  of  any  concentration.  However,  measurement  can  be

impacted by the partial drying (de-swelling) of membrane samples when transferred from the

equilibrating solution to the measuring cell and poorly reproducible results were reported with

this technique [2]. 
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The use of a highly toxic metal (mercury) is another drawback of this method. Measurements

performed in DC mode were also reported from different cell configurations including the

Guillou’s cell [1], a six-compartment cell with a four-electrode arrangement [34-36] or a two-

compartment  cell  with  a  four-electrode  arrangement  [37].  A major  drawback  of  methods

involving  DC  measurements  is  the  formation  of  diffusion  boundary  layers  at

membrane/solution  interfaces,  which impacts  resistance measurements,  particularly at  low

electrolyte concentration [1].

Electrical resistance measurements performed with lateral configuration were also reported in

AC mode [5, 7, 38-43]. Most often, the membrane ends are put in contact with metal foils or

wire electrodes (direct contact configuration). It has been argued that in such a configuration

conduction may be only superficial and then experimental data may not reflect the membrane

bulk conductivity [1]. 

In the present work we propose a new method to determine IEM electric conductivity over a

wide range of electrolyte concentrations. Notably, it enables accurate measurements at low

electrolyte  concentrations  unlike  standard  methods  based  on  normal  measurements.  The

method  is  based  on  lateral  measurements  performed  with  a  measuring  cell  without

electrode/membrane contact. Measurements were carried out with a commercial electrokinetic

analyzer (SurPASS instrument, Anton Paar GmbH) allowing direct resistance measurements

in AC mode as well as indirect DC resistance determination from both streaming current and

streaming potential measurements. Structural parameters of four commercial IEMs (AMX,

CMX, MK-40 and MA-41) were obtained from the microheterogeneous model and further

combined with the Donnan exclusion model in order to assess ion transport numbers through

the membrane gel phase.  
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2. Experimental

2.1. Membranes and chemicals

Four  commercial  IEMs  were  used  in  this  work,  two  cation-exchange  membranes  (CMX

Neosepta®,  Tokuyama  Soda,  Japan;  MK-40,  Shchekinoazot,  Russia),  and  two  anion-

exchange membranes  (AMX  Neosepta®,  Tokuyama Soda,  Japan; MA-41,  Shchekinoazot,

Russia).

AMX  and  CMX  membranes  are  homogeneous  membranes  made  of  functionalized

polystyrene  cross-linked  with  divinylbenzene  and  mixed  with  finely  powdered

poly(vinylchloride) (PVC), which are coated on a PVC cloth used as a reinforcing material.

The membrane fixed-charge comes from the presence of sulfonate groups (
−¿

−SO3
¿ ) in CMX

membrane and from the presence of quaternary ammonium groups  

+¿(C H3)3
−N ¿

¿
 in AMX

membrane. Both charged groups are  grafted directly to the basic polymer structure so that

ionic charges are distributed over the whole membrane material.

On the other hand, MA-41 and MK-40 heterogeneous membranes are composite materials

made  of  ion-exchange  resins  embedded  in  polyethylene.  Ion-exchange  resins  consist  in

functionalized polystyrene (with  
+¿(C H 3)3

−N ¿  groups for MA-41 membrane and  
−¿

−SO3
¿

groups for MK-40 membrane) cross-linked with divinylbenzene. 

The main properties of these IEMs are collected in Table 1.
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Electrolyte solutions were prepared from KCl and NaCl (Fisher Scientific, analytical grade)

and deionized water (resistivity: 18 MΩ cm). They were further used without pH adjustment

(pH was found to be 5.7±0.1 for all solutions).

Table 1. Main properties of AMX, CMX, MA-41 and MK-40 membranes.

AMX CMX MA-41 MK-40
Manufacturer Tokuyama Soda (Japan) Shchekinoazot (Russia)
Type Homogeneous Heterogeneous
Thickness  (mm)a 0.14 0.17 0.3 – 0.5 0.3 – 0.5
Specific  resistance 

(Ω.cm²) in 0.5 M NaCl 

solutiona    

2.4 3.0 ≤ 10.0 ≤ 10.0

Ion exchange capacity 

(mmol equiv/g)

1.30 ± 0.05b 1.65c 1.25d 2.53c

Water content (g 

H2O/g dry membrane)

0.10–0.14b 0.275c 0.29d 0.503c

Membrane density 

(g/cm3)

1.10b 1.19c - 1.13c

a Manufacturer data; Refs. [44-45]; b Ref. [33]; c Ref. [46]; d Ref. [47].
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2.2.  Membrane thickness measurement

Membrane thickness was measured with a Dial Indicator (model 2046S, Mitutoyo, Japan)

equipped with a 10 mm diameter flat contact point. Membrane samples were first soaked in a

highly  concentrated  NaCl  or  KCl  solution  in  order  to  exchange  original  membrane

counterions  with  Na+ or  K+ (CMX  and  MK-40  membranes)  or  Cl- (AMX  and  MA-41

membranes).  Samples were further  equilibrated with the measuring electrolyte  solution at

room temperature  (24 ± 1 °C) for 24 h. Samples were then extracted from the solution and

thickness was measured. For each sample, seven measurements were performed at different

locations and the average value was considered as the membrane thickness (em).

2.3. Electrical resistance measurement

Membrane electrical resistance were measured with a SurPASS electrokinetic analyzer (Anton

Paar GmbH, Austria) after thickness measurements.

The cell we used required two samples of the same membrane materials. Each membrane

sample was cut and adjusted to the sample holder dimensions (length (L): 2 cm and width

(W): 1 cm) and fixed using double-sided adhesive tape. To prevent any leakage between the

membranes  and  the  sample  holders,  the  membranes  were  firmly  pressed  against  sample

holders for 30–60 s.

Measurements  were  conducted  with  an  adjustable-gap  cell inside  which  both  membrane

samples face each other (see schematic of the measuring cell shown in Fig. 1). Thanks to

micrometric screws the distance between the samples (hch)  could be set and varied without

dismounting the cell [48].  The cell was surrounded by two cylindrical Ag/AgCl electrodes

through which the measuring solution could flow (Fig. 1). 
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Since membrane swelling was likely to be modified when fixing the membranes onto the

sample holders, circulating the measuring solution through the flow-cell enabled recovering

equilibrium conditions  prior  to  electrical  resistance  measurement.  The  solution  flow  was

created by a pair of syringe pumps and the resistance was measured in AC mode (
rcell AC

¿

 by means of the conductivity meter incorporated in the SurPASS instrument and a pair of

reversible Ag/AgCl electrodes with surface area of 10 cm2 each. 

Fig.  1. Schematic  representation  of  the  adjustable-gap  cell  used  for  electrical  resistance

measurements (adapted from [48]).

The  SurPASS  electrokinetic  analyzer  also  allows  determining  the  membrane  electrical

resistance from electrokinetic measurements, which is equivalent to measuring the electrical

resistance in DC mode. In this case, the measuring solution is forced through the streaming

channel  formed  by the  two membrane  samples  facing  each other  (see  Fig.  1).  The fluid

therefore drives ions within the mobile diffuse layer towards the low-pressure side. 
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This local ion shifting gives rise to a convective current, defined as the streaming current (Is)

that  can  be  measured  by  the  SurPASS  instrument  (streaming  current  mode).  If  a  high-

impedance voltmeter is put in the external loop, then the accumulation of ions at the channel

end sets  up an  electric  field  which  drives  the  counter-ions  to  move back in  the opposite

direction to the pressure-driven flow. This back-flow of counter-ions generates an electrical

conduction current in the opposite direction to the streaming current (not only between the

membranes but also through the membranes). When a steady state is reached, the conduction

current  and  the  streaming  current  balance  each  other.  The  resulting  electrical  potential

difference  that  can  be  measured  between  the  channel  ends  is  defined  as  the  streaming

potential  Δφs.  The  cell  electrical  resistance  in  DC  mode  

r
(¿¿cellDC )

¿
 can  therefore  be

inferred  from both  streaming  potential  and  streaming  current  measurements  by  applying

Ohm’s law:

rcell DC
=

Δφs

I s
(1)

Both  streaming  potential  and  streaming  current  were  measured  by  applying  pressure

differences  up  to  300  mbar.  The  pair  of  syringe  pumps  used  to  circulate  the  measuring

solution through the cell allowed reversing the flow direction periodically. This helped to limit

electrode polarization during electrokinetic measurements [49].

All  
rcell AC  and 

rcell DC experiments were performed at room temperature (24 ± 1 °C). The

distance between the membrane samples (hch) was set to 100 ± 2 µm (unless specified). 
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This latter was determined from volume flow rate (Qv) measurements performed at various

pressure difference (P) and the Hagen–Poiseuille equation,  which reads as follows for a

channel of rectangular cross-section (with W>>hch)  [50]: 

QV=

2W(hch

2 )
3

3ηL
Δ P

(2)

where  is the solution viscosity.

From the electrical point of view, the measuring cell consists in an electrical circuit with three

parallel  connected branches,  i.e.  membrane /  solution-filled channel  /  membrane (Fig.  2).

Consequently,  it  is  suited  for  characterizing  IEMs in  diluted  electrolyte  solutions  (at  low

concentrations, the channel resistance is much greater than that of the membrane) unlike most

usual cells for which the membrane is surrounded by two (identical) electrolyte solutions thus

forming a series circuit. 

Fig.  2.  (a)  Different  electrical  current  paths  through  the  measuring  cell;  (b)  equivalent

electrical circuit; im is the electrical current flowing through each membrane sample, ich is the

electrical current flowing between membranes, rm is the membrane electrical resistance and rch

solution-filled channel resistance. 
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The cell resistance that is accessible experimentally (rCell) is then related to both the membrane

resistance (rm) and the solution-filled channel resistance (rch) as follows:

1
rCell

=
1

r ch

+
2
rm

(3)

The membrane resistance can therefore be determined from:

rm=
2 rch rCell

rch−rCell

(4)

where the channel resistance rch is given by:

rch=¿   
L

W hch κch

(5) 

with L, W and hch the channel length, width and thickness, respectively, and κch the electrical

conductivity inside the channel. This latter was considered equal to the measuring solution

conductivity  since  the  distance  between  the  membranes  samples  (100  ±  2  µm  unless

specified)  was  always  several  orders  of  magnitude  greater  than  the  Debye  length  in  the

measuring solutions.

The membrane conductivity (κm) can be inferred from the membrane resistance as follows:   

κm=
L

W em rm

(6) 

where em is the wet membrane thickness.
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In addition to the electrical conductivity, IEMs are commonly characterized by their specific

resistance.  The  electrical  resistance  depends  on  the  cell  configuration  (normal  or  lateral

measurements;  see  Fig.  3),  unlike  the  membrane  conductivity.  Although  the  apparent

membrane thickness  was L when lateral  measurements were performed (see Fig.  3),   the

specific resistance (Rm) should be computed by considering the actual membrane thickness,

i.e. em: 

Rm=
em

κm
(7)

Fig. 3. Effective membrane thickness for the different cell configurations. a) actual thickness

em in the case of normal measurements, b) apparent thickness L (corresponding actually to the

sample length) in the case of lateral measurements (this configuration was used in the present

work).

As  mentioned  above,  electrical  resistance  measurements  were  performed  in  lateral

configuration by means of an adjustable-gap cell. 
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It was then possible to perform a series of measurements by varying the distance hch between

the two membrane samples facing each other in the measuring cell. From Eqs. (3) and (5) it

follows that the reciprocal of the cell resistance is expected to vary linearly with hch:

 
1

rCell

=
W κ ch

L
hch+

2
rm

(8)

Performing  measurements  for  various  hch therefore  allows  determining  the  membrane

resistance by plotting 1/rCell as a function of hch and extrapolating 1/rCell for hch = 0.
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3. Results and discussion

3.1 Validation of lateral measurements

We first demonstrated the reliability of our measurements performed in lateral configuration

by comparing the specific resistances of four IEMs reported in the literature with our own

measurements. These latter were performed in AC mode with a 0.5 M NaCl solution, which is

a standard solution used by IEM membrane manufacturers to characterize their membranes.

Specific  resistances  obtained  from  our  new  lateral  method  were  compared  with  both

manufacturer's data and some literature results. All data are collected in Table 2. A very good

agreement was obtained between our measurements and manufacturer’s data. Moreover, our

results lie in the range of experimental data reported in the literature with different methods

based on normal  measurements  (membrane and measuring  solutions  in  series).  This  is  a

strong indication that current lines did flow through the whole membrane matrix during our

lateral measurements without contact between membranes and electrodes, and not only along

the membrane surfaces. As mentioned above, measurements were carried out with a quite

concentrate electrolyte solution (0.5 M NaCl). It should be stressed that lateral measurements

are expected to be even more accurate when performed with more dilute solutions because of

the parallel association of the membrane samples and the measuring solution (Fig. 2).
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Table 2. Specific resistance of AMX, CMX, MK-40 and MA-41 membranes in 0.5 M NaCl. 

Membrane Rm (Ω.cm²) 
This work 
(AC mode)

Rm (Ω.cm²)
Manufacturer 
data

Rm 
(Ω.cm²)
Literature 
data

Measurement method Reference

AMX 2.73 ± 0.29 2.4

2.50 DC method, six-
compartment cell with
a four-electrode 
arrangement

[35]

2.65±0.04 DC method, two-
compartment cell with
a four-electrode 
arrangement

[37]

3.19
2.6
3.47
3.65±0.01

Difference method 
with a clip-type cell

[51]
[52] 
[53]  
[54] 

CMX 3.04 ± 0.28 3.0

3.45 DC method, six-
compartment cell with
a four-electrode 
arrangement

[35]

3.43±0.16 DC method, two-
compartment cell with
a four-electrode 
arrangement

[37]

2.21
3.054
2.98

Difference method 
with a clip-type cell

[2] 
[16] 
[55] 

MK-40 6.17 ± 0.51 < 10

6.53
7.0
4.69

Difference method 
with a clip-type cell

[2] 
[56] 
[57]

7.5 Mercury-contact 
method

[56] 

MA-41
8.24 ± 0.95 < 10 7.99

Difference method 
with a clip-type cell

[58]
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3.2 Membrane electrical conductivity

Membrane electrical conductivity was determined in KCl solutions of various concentrations

ranging from 10-5 to 0.5 M. Fig. 4 shows the variation of the membrane conductivity with KCl

concentration. Overall, the trend of the different curves is similar to that described in literature

[1-2,  8-9,  59-66]  with  a  sharp  increase  in  the  membrane  conductivity  observed  at  low

concentrations for all IEMs followed by a less pronounced rise for salt concentrations higher

than ca 0.01 M (note that most data reported in the literature were obtained for concentrations

higher  than  0.01  M  while  our  method  enables  accurate  measurements  at  much  lower

concentrations). 

-12 -10 -8 -6 -4 -2 0

-6

-4

-2

0

2

4

 AMX
 MA-41
 CMX
 MK-40
 KCl

ln  c

ln
 

m
,A

C

Fig. 4. Logarithm of membrane conductivity vs. logarithm of electrolyte concentration (KCl

solutions). 

Additional  measurements were performed by varying the distance between the membrane

samples in the lateral measurement cell. Fig. 5 gives an illustration of results obtained with

the AMX membrane in a 0.5 M KCl solution. 
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As expected from Eq. (8) the reciprocal of the cell resistance was found to vary linearly with

the distance between the membrane samples.  The membrane resistance was then inferred

from the y-axis intercept without having to determine the solution conductivity explicitly. The

AMX  membrane  resistance  obtained  from this  extrapolation  method  was  found  in  good

agreement  with  the  value  obtained  from single-gap  measurements  (distance  between  the

membrane samples: 100 ± 2 µm) and Eq. (4) as shown in Table 3 (the deviation between the

two different methods was about 5%). 

0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011

0.25

0.30

0.35

0.40

0.45

1
/r

c
e

ll
, 

A
C
, 

k


-1

h
c h

, c m

y =  2 9 .8 4 3 1 x  +  0 .1 0 3 9     R
2

 =  0 .9 9 9 7

Fig.  5. Reciprocal  of  the  cell  resistance  vs.  gap  between  membrane samples  (hch)  in  the

lateral-measurement cell (AMX membrane in 0.5 M KCl). 

Table  3. AMX  membrane  resistance  measured  in  0.5  M  KCl  by  both  single-gap  and

extrapolation methods.

Method Membrane resistance

rm (kΩ)

Membrane specific

resistance

Rm (Ω.cm2)
Single-gap measurement 20.12 2.58

Extrapolation method 19.25 2.46
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According to Eq. (8) the solution conductivity inside the channel (κch) can be determined from

the slope of the line shown in Fig. 5. It is worth mentioning that the deviation between κ ch

determined from Fig. 5 and the experimental solution conductivity (measured outside the cell)

was  less  than  0.3%  (κch =  59.68  mS.cm-1  from  Fig.  5  and  59.84  mS.cm-1 from  direct

measurement),  which  gives  further  evidence  for  the  reliability  of  our  measurements

performed in lateral configuration. 

3.3 Membrane structure and transport properties

The previous  sections  aimed at  validating our new method for IEM characterization.  The

microheterogeneous model developed by Zabolotsky and Nikonenko [67] was further applied

in the present work in order to analyze IEM structure. Hydration of ions and hydrophilic parts

of the polymer matrix results in swelling of IEMs, which leads to a substantial reconstruction

of their structure [68]. According to the microheterogeneous model,  a hydrated IEM can be

considered  as  a  combination  of  two  distinct microphases:  the  gel  phase  that  contains  a

relatively  uniform  distribution  of  ionic  groups  and  counter-ions  compensating  the  fixed

charge density,  and the inter-gel  phase filled with the electroneutral  solution [67,69].  The

conductivity in the gel phase (1) is due to counterions compensating the membrane fixed-

charge  whereas  the  conductivity  of  the  interstitial  solution  filling  the  inter-gel  phase  (2)

results  from  both  coions  and  counterions  from  the  measuring  solution.  In  the

microheterogeneous model the inter-gel phase conductivity is assumed to be the same as that

of the measuring solution, i.e. 2 = ch. 

IEM structure is characterized by the gel and inter-gel phase volume fractions referred to as f1

and f2, respectively (f1 +f2 =1). IEMs are usually classified according to the value of f2, namely

homogeneous membranes are characterized by 0 < f2 < 0.15, heterogeneous membranes are

characterized by 0.15 < f2 < 0.25 while membranes are considered as porous if 0.3 < f2 < 0.45

[46,69].
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Within the scope of the microheterogeneous model the membrane AC conductivity (m,AC) can

be expressed as follows [67]:

κm, AC=(f 1 κ1
α
+ f 2 κ2

α
)
1/α

(9)

where α is a structural parameter reflecting the relative arrangement of the gel and inter-gel

phases  ( −1≤α ≤+1  with  α=−1 for  a  series  phase connection  while  α=+1 for  a

parallel phase connection).

The isoconductance concentration (ciso) is defined as the electrolyte concentration for which

the  membrane  conductivity,  the  gel  phase  conductivity  and  the  measuring  solution

conductivity  are  equal  (κm  =  κ1  =  κch =  κiso).  Isoconductance  concentrations  (ciso)  and

conductivities at the isoconductance point (iso) obtained in the present work for the various

IEMs are given in Table 4. The isoconductance concentration was found around 0.05 mol.L-1

for the different membranes.

Table  4. IEM  parameters  determined  in  the  present  work  from  AC  resistance  lateral

measurements. 

Membrane AMX MA-41 CMX MK-40
Isoconductance concentration, ciso (mol.L-1) 0.028 0.030 0.065 0.042
Conductivity at isoconductance point, κiso (mS.cm-1) 3.72 3.99 8.79 5.64
Volume fraction of inter-gel phase, f2 0.11 0.24 0.10 0.25
Structural parameter, α 0.20 0.15 -0.21 0.16
Counterion  diffusion  coefficient  in  the  gel  phase,

D́count ×10
7

(cm2.s-1)

5.20 4.77 9.97 4.33

Counterion  diffusion  coefficient  in  the  gel  phase,
t́ count

0.989 0.986 0.992 0.991
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Near  the  isoconductance  point  Eq.  (9)  shows that  κm depends  only slightly  on  α.  When

|α|≪ 1 , which corresponds to a quite random arrangement of gel and inter-gel phases, Eq.

(9) can be approximately rewritten as follows [67]: 

κm, AC=κ1
f 1κ2

f 2
(10)

and then, 

ln κm, AC=f 1 ln (κ1)+ f 2 ln⁡(κ2) (11)

Zabolotsky and Nikonenko showed that Eq. (11), which predicts a linear variation of ln m,AC

vs. ln 2, is a satisfying approximation in the concentration range ~0.1 ciso < ciso < ~10 ciso up

to |α|=0.2 . 

Fig. 6 shows the experimental  ln  m,AC vs. ln  ch  dependence for AMX, CMX, MK-40 and

MA-41 IEMs. Measurements  were  performed  in  KCl  solutions  of  various  concentrations

ranging from 10-5 to 5x10-1 M. Results are in good agreement with the microheterogeneous

model since a linear variation of  ln  m,AC as a function of ln  ch (as mentioned above, this

model assumes 2 = ch) was obtained with all IEMs for ~0.5 ciso < ciso < ~10 ciso (Fig.6b). 

The volume fraction of the inter-gel phase (f2) of the different IEMs was determined from Eq.

(11) and the slope of lines obtained in the concentration range ~0.5 ciso < ciso < ~10 ciso (Fig.

6b). Results are collected in Table 4. For both AMX and CMX membranes f2 were found to be

less than  0.15, which corresponds to homogeneous membranes. On the other hand,  f2 was

found to be 0.24 and 0.25 for the heterogeneous MA-41 and MK-40 membranes, respectively.

Our results are in good agreement with f2 values reported in the literature for these membranes

(Table 5), which gives additional evidence for the reliability of our lateral measurements of

electrical membrane resistance.

20



-6 -4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

 AMX
 MA-41
 CMX
 MK-40

ln  c h

ln
 

m
,A

C

(a )

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.8

1.2

1.6

2.0

2.4

 AMX
 MA-41
 CMX
 MK-40

ln
 

m
,A

C
 

ln  
c h

y  =  1 .9 1  +  0 .1 0 x

y  =  1 .3 2  +  0 .2 5 x

y  =  1 .0 7  +  0 .2 4 x

y  =  1 .1 7 +  0 .1 1 x

(b )

Fig. 6. a) Logarithm of membrane conductivity vs. logarithm of KCl solution conductivity. b)

Linear variations obtained for ~0.5 ciso < ciso < ~10 ciso.
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Table 5. IEM parameters inferred from normal measurements (literature results).

Membran
e

f2 α D́count ×10
7

(cm2.s-1)

Electrolyte Reference

AMX 0.24
0.06  
0.099 
0.10 ±0.02 
0.10 ±0.01 
0.06
0.11

0.35
5.1

4.1

4.5

Cl− form 
NaCl
NaCl
NaCl
NaCl
NaCl
NaCl

[8]
[27]
[33]
[47]
[51]
[54]
[69]

CMX 0.06 
0.11 ± 0.02 
0.11 ± 0.01
0.06 
0.04 

11.61 NaCl
NaCl
NaCl
NaCl
HCl

[46]
[47]
[51]
[60]
[60]

MA-41 0.18 
0.22 ±0.02 
0.20 ± 0.03
0.17 
0.18  
0.22 
0.23 
0.10 

0.31

0.24

0.31 

0.50

4.7

NaCl
NaCl
NaCl
NaCl 
NaCl
NaCl
NaCl
LiCl

[27]
[47]
[67]
[69]
[70]
[71]
[72]
[73]

MK-40 0.18  
0.19 ±0.02 
0.18  
0.20  
0.23 
0.19 0.33

7.35 NaCl
NaCl
NaCl
HCl
NaCl
LiCl

[46]
[47]
[60]
[60]
[69]
[73]

Knowing  f2 and κiso, the structural parameter α was further determined for each membrane by

fitting experimental data shown in Fig. 6a with Eq. (9).  We obtained 0.15≤∨α∨≤0.21  for

all membranes (see Table 4), which indicates a rather random connection between gel and

inter-gel phases whatever the kind of IEMs (homogeneous or heterogeneous). It should be

stressed that data obtained for highly diluted solutions (c ≤ 10-4 mol.L-1) were disregarded in

the fitting procedure since they were found to yield irrelevant α values. The reason might be

that the assumption made in the microheterogeneous model that the inter-gel phase is filled

with an electroneutral solution having the same conductivity as the external solution is no

longer valid at very low ionic strengths. 
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Indeed,  electrical  double  layers  expand  as  the  electrolyte  concentration  decreases.  At

sufficiently  low concentration  they may overlap  inside  the  inter-gel  phase  cavities  which

would then no longer be filled with an electroneutral solution but would contain an excess of

counterions (and so 2 would be greater than ch) [74]. 

Fig. 7 shows the concentration dependence of  ln κm/κ ch  for the different IEMs. At low

concentrations the membrane conductivity was found higher than that of the external solution

because  ion  concentration  inside  the  membrane  was  much  higher  than  the  external  bulk

concentration. Moreover, we observed in the low concentration range that the variation of

κm/κ ch  with the electrolyte concentration was more pronounced for MA-41 and MK-40

heterogeneous membranes than for AMX and CMX homogeneous membranes (Fig. 7b).
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Fig. 7. a) Logarithm of membrane conductivity to solution conductivity ratio vs. logarithm of

KCl solution concentration b) Enlargement for very low concentrations (10-5 – 5x10-3 M). 

As discussed above, the conductivity at the isoconductance point (iso) is an essential quantity

to  get  information  on  IEM  structural  properties.  It  can  also  be  used  to  determine  the

counterion diffusion coefficient ( D́count ) in the gel phase [8, 67]:

D́count=
RT κiso

F2Q (12)

where R is the ideal gas constant, T the temperature, F the Faraday’s constant and Q is the

ion-exchange  capacity  of  the  gel  phase,  which  can  be  obtained  from the  membrane ion-

exchange capacity (Qm) and the volume fraction of the gel phase (f1): 

Q=
Qm

f 1 (13)
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The counterion diffusion coefficient in the gel phase of the different IEMs was found to lie in

the range 4x10-7 – 10-6 cm2.s-1 (see Table 4), i.e. 20 to 50 times smaller than in the bulk phase,

which results from the strong attractive interaction between counterions and the fixed-charges

in the IEM gel phase. These values lie in the range of experimental results obtained from

normal measurements (Table 5).

The gel phase conductivity, which can be obtained from Eq. (10), can be expressed as:

κ1=
F2

RT
( D́co Ć co zco

2
+ D́ count Ć count zcount

2 ) (14) 

where Ć❑  and D́  denote ion concentrations and diffusion coefficients in the gel phase,

respectively, z is the ion charge number, and subscripts “co” and “count” stand for coions and

counterions, respectively. 

The electroneutrality condition in the gel phase reads as follows:

zco
❑ Ćco+zcount

❑ Ć count+ωQ=0 (15)

with  = +1 for an anion-exchange membrane and -1 for a cation-exchange membrane.

The interfacial Donnan equilibrium is given by,

K i=
Ći

Ci

=K zi

(16) 

where Ki is the Donnan partitioning coefficient for ion i, Ci its bulk concentration, and K is the

Donnan equilibrium constant.
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For mono-monovalent electrolytes Eqs. (15) and (16) lead to:

Ć co=
−ωQ
2

+√C❑
2
+(

ωQ
2

)
2

(17)

Ć count=
ωQ
2

+√C❑
2 +(

ωQ
2

)
2

(18)

where C is the external electrolyte concentration.

The counterion transport number in the gel phase ( t́ count ) can be determined around the

isoconductance point from the following equation with the help of Eqs. (12), (14), (17) and

(18):  

t́ count=
| zcount

❑ | D́count Ć count

| zcount
❑ | D́count Ćcount+| zco

❑| D́co Ć co
(19)

The transport numbers of counterions in the gel phase were found around 0.99 for all IEMs

(Table 4).
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As  mentioned  in  section  2.3  the  SurPASS  instrument  also  allows  determining  the  cell

electrical  resistance  from  electrokinetic  measurements  (hereafter  referred  to  as  the  DC

method),  namely  streaming  current  and  streaming  potential  measurements,  which  is

equivalent to the DC resistance 

r
(¿¿cellDC )

¿
. Fig. 8 shows the AMX membrane conductivity

determined from both AC and DC methods for KCl solutions of various concentrations. To

the best of our knowledge it is the first time that streaming potential and streaming current

measurements are combined to determine the electrical conductivity of IEMs. Both methods

led to close values with κm, AC  only slightly higher than κm, DC . 

The  transport  number  of  counterions  (Cl−)  inside  the  gel  phase  of  AMX membrane  was

estimated to be 0.989 (Table 4). When t́ count→1   and |α|≪ 1  the DC conductivity and

the AC conductivity can be linked by the following approximate equation [67]:

κm, DC=κm, AC tcount
f 2

(20)

where tcount is the transport number of counterions in the external solution, i.e. nearly 0.5 for

Cl− in KCl solutions.

According to Eq. (20) the difference between the logarithm κm, AC and that of κm, DC  is

then  approximately equal  to  -0.69f2.  From results  shown in  Fig.  8  we obtained  f2 =  0.11

(average value), which is identical to the value determined from AC measurements (Table 4).
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Fig.8. Logarithm of the AMX membrane conductivity determined from DC and AC methods

vs. logarithm of the KCl solution conductivity. 

4. Conclusion

The electrical conductivity of four commercial IEMs (AMX, CMX, MK-40 and MA-41) was

determined by a new method based on lateral resistance measurements without direct contact

between  electrodes  and  membranes.  It  was  first  demonstrated  that  the  cell  configuration

permitted probing the entire membrane volume and that conduction did not occur only along

the membrane surface. Moreover, the parallel arrangement of the membrane samples and the

electrolyte  solution  inside  the  measuring  cell  made  it  possible  to  determine  membrane

conductivity even at very low electrolyte concentration unlike usual non-contact cells. The

microheterogeneous model  was used to estimate the structural  parameters of the different

IEMs from electrical resistance measurements performed in AC mode. Transport parameters

(counterion diffusion coefficients and transport numbers) within the gel phase of IEMs were

further  determined  from  the  membrane  AC  conductivity  and  the  combination  of  the

microheterogeneous model with the Donnan-exclusion approach. 
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Finally, the membrane DC conductivity was determined for the first time from both streaming

potential and streaming current measurements. The inter-gel phase volume fraction of AMX

membrane inferred from these electrokinetic measurements was found in excellent agreement

with AC measurements.
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