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Abstract 

It is now recognized that lamination enables to increase the redundancy of glass elements. This 

paper aims to quantify the possibilities of delamination between panes as well as the increase of 

redundancy for a horizontally layered glass element thanks to an analytical approach combined 

with a numerical modeling. From an analytical point of view, new procedures have been 

defined, taking into account the shear-lag effect as well as the mean curvature of the various 

adherents. The equilibrium of an infinitesimal element of the laminated structure has enabled to 

evaluate the interfacial stresses responsible for debonding phenomena. Based on this first 

approach and on the values of the interfacial stresses, a FE numerical simulation has been 

calibrated. This calibration is extended in two ways. First, the nonlinear behavior of the material 

is considered. A smeared crack approach is used to take into account the glass mechanical 

behavior. Then, a local debonding model  involving the use of normal and shear springs is 

proposed at the interface between two glass panes. The mechanical behaviors of the springs are 

calibrated by simulating existing tension adhesion tests. Finally, by considering various 

structural cases, this work concludes that the debonding of the interface is a possibility and 

discusses its influence on the redundancy of the considered laminated structure. 
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1. Introduction 

The brittleness of glass has largely contributed to give to this material a filling role (e.g in windows…), 

and has delayed its use as a structural material. However, glass has much more to offer in this regard due 

to its possibility to carry high compressive stresses and to its obvious aesthetical advantages. 

It is now recognized that the strength, the robustness, and then the redundancy of glass elements 

can be considerably increased by laminating several panes to a composite action. As an 

interlayer, sheets of polyvinyl butyral (PVB) or Sentry Glass Plus® (SGP) are often used. Not 

only, does this interlayer enable the composite action to be developed, but also, when the first 

pane is broken, it may act as reinforcement for the remaining structure, leading to no 

catastrophic failure [1-3].  Preceding experimental research [4,5] has demonstrated that the SGP 

interlayer can be well exploited for bonding in laminated or hybrid glass beams. The shear 

strength and stiffness of the SGP interlayer is sufficient to transfer the forces between glasses to 

activate the reinforcement action once the glass is broken. 

Laminated glass exhibits a complicated mechanical behavior because of the combination of a 

very stiff material (glass) and a very soft material (interlayer) [3,6]. A laminated glass pane is 

less stiff than a monolithic glass structure of the same dimensions, which leads to larger 

displacements. Furthermore, this increased structural integrity of a laminated glass element may 

be challenged by risks of debonding and/ or by the breakage of the interlayer. Hence, it is 

important, for a safe and cost-efficient strength design, that the structural behavior in terms of 

displacements and stress distributions is accurately determined since previous design methods, 

such as analytical formulas, do not provide sufficient information to determine accurate stress 

and determine the load-bearing capacity of laminated glass [1,7]. Thus an increasing number of 

analytical or numerical works deals with this challenge [6-12]. The work of Fröling and Persson 

[12] presents one of the most accurate numerical studies and proposes an efficient numerical 

method using specific modified solid shell element. This study presents also a sensitivity 

analysis on the number of degrees of freedom and thus on the mesh fineness.  

However, these previous advanced works do not address the problem from the angle of the 

adhesive layer, and do not focus on the interfacial stresses, which are of prime importance in the 

analysis of the debonding possibilities. 

 

This work investigates this new aspect. First, an accurate analytical prediction of the interfacial 

stresses in the adhesive layer, responsible for debonding, is presented. Such an analytical 

modeling is a fundamental tool for analyzing composite structures in general. Then, and based 

on this first study, a Finite Element (FE) computation with ABAQUS (Version 6.9) is 

performed to investigate the behavior of a laminated glass element. The paper focuses on the 
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necessity to well capture the interfacial stresses and aims to provide information for an efficient 

FE analysis of laminated glass structures. Thus, by means of a local debonding model involving 

the use of normal and shear springs, the appearance of interface debonding in such structures is 

discussed, and its influence on the overall behavior of the glass element is analyzed. 

 

2. THEORETICAL BACKGROUND: ANALYTICAL ASSESSMENT OF 

INTERFACIAL STRESSES RESPONSIBLE FOR DEBONDING FAILURE 

2.1. Objective 

Debonding failure in composite or hybrid structures is a consequence of too high shear and 

transverse normal stresses. Their accurate prediction is thus important for the design. Many 

studies have been conducted, both analytically and numerically, to predict these interfacial 

stresses. From this point of view, these studies have generally been conducted on strengthened 

Reinforced Concrete beams (among others: [13-18]), but some of them can be easily adapted to 

laminated glass structures. 

Based on the solution given by Tsai [16], Tounsi [17] proposed a solution incorporating the 

effects of interfacial shear stresses on the strains in adherends, which were ignored by Smith & 

Teng [13]. The computed interfacial stresses are found to be considerably smaller than those 

obtained by the models neglecting the shear strains of adherends. However, all the studies 

mentioned are based on the assumption that both adherends have the same curvature. Krour et 

al. [18] have developped an improved theory which releases the improper restriction of the 

equal curvatures of adherends. 
Starting from this last improved analytical model, the present study investigates first the interfacial 

stresses in a simple laminated glass element composed of two horizontally layered glass panes (see 

Fig.1).  

 
 
 
 
 
 
 

 
 

 
 

Fig.1. Laminated glass element considered in the present study. 
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2.2 Main assumptions 

The following assumptions are made: 

- Simple beam theory is considered. Thus, the study is restricted to horizontally layered glass 

elements with a width b2 significantly lower than the span (case of bridges for example). This 

assumption transforms a two-dimensional structural problem to only one-dimensional one. 

- Glass is assumed to behave elastically, as well as the interlayer material. However the SGP 

Young modulus has two different values in function of the applied normal stress. This artifact is 

used to represent the hyperelastic behavior. This is one of the main novelties proposed in this 

paper: such a behavior has not been considered previously in the dedicated literature. 

- Stresses in the adhesive layer do not change with the thickness unlike the model proposed by 

Rabinovitch & Frostig [19] where the stresses vary across the adhesive thickness.  

- Contrary to some existing studies, the assumption that both adherends have the same curvature 

is not used in the present investigation. The adhesive curvature is assumed to be the mean of the 

two adherends curvatures. This assumption is simpler than the one made by Rabinovitch & 

Frostig [19] where higher order theory is used to describe the adhesive displacements. 

- The component of shear deformation in the normal strain of the adherends has been included 

in the present theoretical analysis by assuming a parabolic distribution of shear stress across the 

thickness (shear-lag effect). 

This assumption has been used in Tounsi et al [20] where the shear interfacial stress has to be 

continuous across the adherend section causing a lagging effect. The longitudinal displacement 

is assumed non-linear across the section following a cubic variation. This leads to a parabolic 

variation of the shear stress across the section. 

- Since the section is bi-symmetrical, the neutral axis passes through the centroid, and the 

longitudinal normal stress is equal to y
I

xMx
eq

z
N

)()(   with Mz the applied bending moment 

and 
G

aaGaG
aeq E

E n    ttnSttnSIIII  where
2222

2

2

2

121  

where: 

- S1, S2, I1, and I2   are respectively transversal sections and inertia moment of each adherend and 

Ia is the inertia moment of the adhesive 

- Ea, EG, are respectively elastic moduli of adhesive and glass pane. 

- y  is the distances from the neutral axis;  
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2.3 Solutions procedure 

2.3.1 Equilibrium of an infinitesimal element of a laminated glass floor 

Let consider an infinitesimal element of a laminated glass pane. This element is at the 

equilibrium under the effect of forces and stresses presented in figure 2. 

   

 

   

 

 

 

 

 

 

 

 

 

Fig.2. Forces in the infinitesimal element of a laminated glass plate. 

 

The equilibrium of adherends 1 and 2 implies following equations: 
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Consideration of the horizontal equilibrium gives:   
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where 2b  is the width of the bottom plate and y1 and y2 are the distances from the bottom of the 
adherend 1 and the top of the adherend 2  to their respective centroids. 
 

Furthermore, applying relationship between curvature and moment for each adherend lead to: 
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Based on the above-mentioned equilibrium equations, the governing differential equations for 

the deflection of adherends 1 and 2, expressed in terms of the interfacial shear and normal 

stresses, are given as follows: 
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2.3.2 Stress distribution in the adhesive layer 

Since the displacements at the interfaces between the respective adherends and the adhesive 

layer are continuous, the mean strains in the adhesive layer can be expressed as: 

a
y t

xwxw
y
x,ywε )()()( 12                               (8) 
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2
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where: 

- y is the transversal normal strain (with the notations of figure 2) and xy is the shear distortion 

- u(x,y) and w(x,y) are the horizontal and vertical displacements, respectively, in the adhesive 

layer, as shown in figure 2; 

- u1(x) and u2(x) are the longitudinal displacements at the bottom of adherend 1 and at the top of 

adherend 2, respectively;  

- w1(x) and w2(x) are the vertical displacements of adherends 1 and 2, respectively;  

- ta is the thickness of the adhesive layer.  

In many previous works, the equality w(x,y)/ x= 0 is used, because the curvatures of the two 

adherends are assumed to be the same. It is apparent that these solutions do not consider the 

Poisson and transverse displacement effects. In this present study the mean curvature between 

the adherends is considered, leading to: 
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Starting from the linear relationships between stress and strain, interfacial shear and normal 

stresses can be expressed as follows:  
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where Ea et Ga are the elastic moduli of the adhesive.  

 

Regarding equation (12), the transversal normal stress is nothing but the consequence of the 

vertical separation between the adherends. 

 

Then, equations (11) and (12) lead to:       
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Differentiating Equation (13) with respect to x gives the shear stress expression: 
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2.3.3 Governing differential equations of interfacial stresses  

Taking into account all the three components of axial, bending and shear deformations (and thus 

the shear-lag effect), the normal strains at the bottom of adherend 1( 1) and at the top of 

adherend 2 ( 2) are given in [20]: 
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where: 

-Ni(x) and Mi(x) are respectively axial forces and bending moment in each adherend,  

- y1 and y2 are the distances from the top of adherend 1 and the bottom of the adherend 2 to their 

respective centroids;  

- S1, S2, I1, and I2   are respectively transversal sections and inertia moment of each adherend;  

- E1, E2, G1, and G2   are respectively elastic and shear moduli of each adherend; 

- The last terms of both equations
x
x

G
t )(
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1  and
x
x

G
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2

2 represent the component 

of the shear deformation (shear-lag effect). 
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Using equations (1) to (4) and differentiating two times Equations (15) and (16), the third 

derivative of the horizontal displacement is expressed as: 
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Differentiating two times equation (14) with respect to x and using equations (6) and (7), on one 

hand, and (17) and (18), on the other hand, it can be obtained: 
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Otherwise, inserting equations (6) and (7) in the fourth derivative of the interfacial transversal 

normal stress obtained by equation (12), enables to express the following governing differential 

equation for the interfacial transversal normal stress: 
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The two differential equations (19) and (21) are coupled. However at least one of them may be 

rearranged. 

Indeed, equation (20) leads to: 
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Then, the insertion of equation (23) into equation (19) gives: 
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Equation (24) leads to: 
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Substituting Equation (25) into Equation (20) gives: 
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2.3.4 General solutions 

For simplicity, the general solutions presented below are limited to the cases of loads which are 

either concentrated or uniformly distributed over a part or the entire span of the beam, or both. 

For such loads, the second and higher-order derivatives are zero. Then, Equation (26) can be 

rewritten as follows: 
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The general solution to Equation (27) is thus given by:  
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In order to obtain Equation (28), it has been assumed that 0dx/d 55 . Indeed this derivative 

has generally a negligible effect on the final solution [21]. 
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The general solution of Equation (21) may now be obtained. It is given by: 
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For large values of x, it is assumed that the normal and shear stresses approach zero, 

consequently : 

C1= D3 = D4 = 0.  

The general solutions become thus:  
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1.4 Results and discussion  

2.4.1 Application to an existing case 

The dimensions of the laminated glass structure investigated here are given in Table 1. Two 

interlayers are considered in this part of the study: PVB and SGP. The PVB interlayer is 

assumed to be fully elastic whereas SGP has a hyperelastic behavior. As previously explained 

an artifact is used to take into account such a behavior: the Young modulus of this material has 

two different values in function of the applied normal stress. Furthermore, a uniformly 

distributed load of 6 KN/m is considered. 
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Table 1. Geometrical and material data. 

Adherends Length L 
(mm) 

Width b 
(mm) 

Thickness t  
(mm)  E (GPa)  

Glass #1 L=2000 b1=150 tG=9.5 E1=70 0.22 
Adhesive 

(SGP) 
La=2000 ba=150 ta=1.5 Ea=0.165 if σ<20 Mpa; 

Ea=0.01 else 0.5 

Adhesive 
(PVB) 

La=2000 ba=150 ta=1.5 Ea=0.004 0.5 

Glass #2 L=2000 b2=150 tG=9.5 E2=70 0.22 
 

The mechanical characteristics of SGP correspond to those obtained at room temperature and 

for a loading rate of 5 mm/min [22] 

 

The theoretical expressions that have been obtained in this study enable to investigate the effect 

of several parameters, such as the shear-lag effect, the assumptions of the different curvatures 

between adherends, or the adhesive and glass thicknesses on the interfacial stresses. Indeed, 

such results have undeniable constructive interests. 

Moreover, these results, which are obtained with a limited number of assumptions, constitute an 

important database for any modeling attempts (see section 3).  

 

1.4.2 Influence of the shear-lag effect and of the mean curvature of the adherends 

Interfacial shear stresses in function of the distance from the support are presented in figure 3a. 

A comparison with the results of Smith & Teng [13] and Tounsi et al. [20] is also provided 

showing respectively the influence of the shear-lag effect and of the assumption of the different 

curvatures between both adherends. It appears obvious that, in the present case, this last 

assumption increases the debonding risks whereas the shear-lag effect appears to be negligible. 

Indeed, in the Smith & Teng [13] model, the shear-lag effect is neglected unlike the Tounsi et 

al. [20] model. The figure 3 a shows that the two models give exactly the same results, which 

means that the shear-lag effect has no influence on the final result of the shear and normal 

interfacial stresses. 

However, the present model taking into account the difference between the adherend's 

curvatures gives a high level of interfacial shear stress which means that for such thin structural 

elements, the possibility of a difference in the curvatures of the two glass panes should therefore 

be taken into account. 
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On the contrary, interfacial normal stresses (Fig.3 b) are not influenced by these two 

assumptions. Their maximal value is obtained in front of the support and decreases rapidly to be 

equal to about zero at x=70 mm. 
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Fig. 3. Interfacial shear (a) and transversal normal (b) stress with respect to the distance from 

the support. Influence of the shear-lag effect and of the different curvatures between adherends. 

 

In the following studies, only SGP interlayer is considered in aim to show the influence of the 

hyperelastic behavior on the interfacial stresses 

1.4.3 Influence of the adhesive thickness 

The adhesive thickness does not play a significant role on the intensity of the interfacial stresses, 

as revealed by figures 4a and b.  

In function of the adhesive thickness, a small shift can be seen in the evolution of the interfacial 

shear stress. It denotes the decrease of the Young’s modulus of the adhesive layer due to its 

hyperelastic behavior. 

Thus only the existence and the position of the shift in shear stresses is influenced by this 

parameter. 
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Fig.4. Interfacial shear (a) and normal (b) stresses with respect to the distance from the support. 

Influence of the adhesive thickness. 

 

1.4.4 Influence of the glass thickness 

In this part of the study, the influence of the glass thickness on the interfacial stresses is 

investigated. This parameter is obviously of prime importance and for thin glass plates (tG<5 

mm) the risks of debonding are really significant as the normal and shear interfacial stresses 

reach critical values (Fig. 5 a and b), which are around 1-2 MPa ([23-24]).  
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Fig.5. Interfacial shear (a) and normal (b) stresses with respect to the distance from the support. 

Influence of the glass thickness. 
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3 NUMERICAL MODELING OF THE INTERFACE SHEAR TRANSFER AND 

DEBONDING FAILURE  
 
3.1 Determination of the optimal mesh 

3.1.1. Methodology and main hypotheses 

In absence of experimental data, especially concerning interfacial stresses, analytical results can 

be used to develop a FE modeling. The determination of the stresses singularities near to the 

edges or to the corners has been extensively studied in the literature leading to the development 

of fracture mechanics solutions. Indeed, various researchers have studied material mismatch 

parameters and the stress singularities at interface corners/wedges/cracks since the pioneering 

work described by Williams M.L [25-26]. By contrast, the present study is a particular case of 

this vast problem and concerns the determination of the stresses singularities in adhesive layers. 

In adhesively bonded joints, a 2D analysis in plane conditions is often preferred. Despite 3D 

effects such as the lateral deformation, (Adams and Peppiatt [27]) and the anticlastic bending 

Adams and Davies [28] ; Gonçalves et al. [29], various studies have shown that 2D analyses 

give accurate enough results (Adams et al.[30]; Adams and Davies [31]). 

Thus, based on this analytical approach presented in section 2 and on the values of the 

interfacial stresses, a FE numerical simulation, with the FE package Abaqus, has been 

calibrated. A 2D model, such as in the analytical study, has been considered for this analysis. 

That enables to refine the mesh, especially in the adhesive layer in order to capture accurately 

the interfacial stresses. Such equivalent sensitivity analysis to determine the optimal mesh has 

been previously performed in [32-34]. In this previous works devoted to the analysis of 

debonding in RC beams strengthened with composite plate, the variations of interfacial normal 

and shear stresses have been determined as the height of the smallest element has been reduced. 

The same methodology is now applied for the kind of structure (glass floor) studied in this 

paper. Results might be different since the lower plate is now concerned by the boundary 

condition, on the contrary to the case of the strengthening plate. 

In the following simulation, the contact between all parts of the model is supposed to be perfect 

(“tie” contact).  

The PVB interlayer is considered in the following of the study. A pinned-pinned horizontally 

laminated glass structure with a uniformly distributed load of 2kN/m. All the dimensions are 

provided in Table 2. In this part of the study, materials are considered as elastic. Elastic 

parameters are also reminded in Table 2. The interlayer material is assumed to be 

incompressible and consequently its Poisson ratio is taken equal to 0.5. 
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Four-node linear quadrilateral plane stress elements (CPS4R) are used to model the two glass 

panes as well as the interlayer. As in [35] all of the parts of the beam are explicitly modeled. 

Only half of the beam is modeled due the symmetry and a particularly fine mesh is employed 

for the adhesive layer and at the end of the panes to obtain accurate results. The existence of 

points of singularity presents a challenge to the choice of a suitable finite element mesh as the 

stresses at these points increase with the mesh refinement. Figure 6 presents a zoom of the mesh 

(element minimum size: 0.2 mm) at the end of the floor. In the longitudinal direction of the 

structure, a graded mesh has been used starting with an aspect ratio of 1 for the minimum height 

elements.  

 

 

 

 

Fig.6. Optimized mesh. Zoom on the edge. 
 

Fig. 6. Optimized mesh. Zoom on the edge. 
 

 

Table 2. Geometrical and material proprieties for the mesh optimization procedure 

Materials Length (mm) Width (mm) Depth  (mm) E (GPa) 

Glass 1 L=2000 b1=150 tG=9.5 70 0.22 

Adhesive layer La=2000 ba=150 ta=1.5 0.004 0.5 

Glass 2 L=2000 b2=150 tG=9.5 70 0.22 

 
 
The variations of interfacial normal and shear stresses at the interfaces between adhesive and 

upper glass pane and between adhesive and lower glass pane, but also at the mid-adhesive 

section are determined as the height of the smallest element has been reduced from 1.5 to 0.1 

mm. The stresses reported in each of the following figures are those extrapolated by the FE 

analysis at the nodes of the finite elements. 

 
 
3.1.2 Discussions about the sensitivity analysis on the mesh size 
Results are plotted in figures 7 a,b,c (shear stresses) and 8 a,b,c (transversal normal stresses). 

The presentation of these results focuses on the edge area since beyond a distance of 5 mm the 

interfacial stresses obtained with the various meshes tend towards the same values (except for 

normal stresses at the upper adhesive interface). 

 

Adhesive layer 

Glass pane 1 

Glass pane 2  
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Fig.7. Interfacial shear stress with respect to the distance from the support for various minimal 

finite elements sizes (a) at the upper glass-adhesive interface, (b) at the mid-adhesive section, 

(c) at the lower glass-adhesive interface. 
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Fig.8. Interfacial transversal normal stress with respect to the distance from the support for 

various minimal finite elements sizes (a) at the upper glass-adhesive interface, (b) at the mid-

adhesive section, (c) at the lower glass-adhesive interface. 

 

The advantage of simple closed-form solutions, obtained in section 2, is that they lead to 

relatively simple closed-form expressions for interfacial stresses. However, a complex variation 

of the interfacial stresses through the adhesive layer cannot be captured by an analytical way. 

All these misadvantages can be avoided by a rigorous FE analysis. Based on this convergence 

study, a minimum element size of 0.2 mm has been selected. Indeed, the use of even smaller 

elements leads to very small localized differences in shear interfacial stresses. 0.4 mm could 

even be chosen for an accurate prediction of shear stresses at the two glass-adhesive interfaces 

but at the mid-adhesive section a minimum size of 0.2 mm is required. The differences are 

larger for normal interfacial stresses, but the size of 0.2 mm seems to be a good compromise 

between accuracy of the results and the number of degrees of freedom (that is to say the time-

consumption of the computation). 

Using these mesh considerations, the model contains 130458 elements and 134400 nodes.  

The comparison of the values of the interfacial stresses obtained by the FEM with those 

obtained in an analytical way is provided in figures 9 a and b. 
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Fig.9. Comparisons between analytical and Finite Elements Methods for (a) interfacial shear 

stresses and (b) interfacial transversal normal stresses. 

 

The first conclusion that can be drawn from this comparison is that numerical and analytical 

results tend to the same values and are generally close to one another, thus validating the 

preliminary modelling developments. Furthermore, from this analysis, it is clear that, in some 
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cases, closed-form solutions obtained in section 2 can be considered as a good alternative to a 

FE analysis. For example, they only slightly overestimate interfacial shear stresses and can be 

used for a safe design. Furthermore, the closed-form solutions match very well interfacial 

stresses at the mid-adhesive section. However the interfacial normal stresses present a complex 

variation through the adhesive layer and, over a distance of about 1 mm, the analytical results 

are quite underestimated which is problematic since adhesives are less resistant when subjected 

to normal stresses than when they undergo shear stresses.  

Finally, to conclude on this sensitivity analysis, it is worth noting that, to numerically determine 

the load-deflection curve of a 2 panes laminated glass element, the mesh fineness pointed out in 

this section is unnecessary. But with a coarser mesh, debonding risks would be underestimated. 

3.2 Influence of the interface debonding on the load-bearing capacity of a laminated glass 
element 
 
It is now well known that the lamination enables to increase the redundancy and the robustness 

of a single glass plate. A horizontally layered glass plate submitted to a 3 points bending test 

develops a failure mechanism in several steps. Several experimental ([2],[40]) or numerical 

[21]) observations relate this mechanism. When the maximal principal stress reaches the tensile 

strength of the material at the bottom of the lower plate, a crack appears and propagates rapidly 

through the glass pane. The presence of the interlayer and of the second glass pane provides a 

residual resistance and prevents the structure from collapsing, as it would be obtained for a 

single glass pane, and ensuring thus a certain amount of redundancy. The interlayer acts as a 

reinforcement ensuring thus even more the structural safety of the structure. The applied force 

resulting from the imposed displacement continues then to increase. Achieving the tensile 

strength then leads to the final rupture of the structure.  

It appears thus that the interlayer plays a crucial role in this post-cracking behavior and then, as 

a consequence, the structural integrity of a laminated glass element may be challenged by risks 

of debonding of the glass panes. Such a phenomenon may be due not only by the failure of the 

interlayer but also by the loss of adhesion. This new part of the paper investigates this last point. 

3.2.1 Description of a reference experimental procedure to assess the glass/interlayer 
adhesion 
 
To quantify interlayer/glass adhesion, the Tension Adhesion Test, or Through Crack Tensile 

Test, is recommended [41]. In this experimental procedure, a laminated glass pane is firstly 

cracked in its center and along its width on both sides. Then, an in-plane force P or a 

displacement U along the longitudinal axis of the pane is imposed at the ends of the laminated 

element, enabling thus to load the bond between the interlayer and the glass to determine finally 
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its strength (Fig. 10 a and b). This configuration is equivalent to the flexure adhesion test for 

large displacements, i.e a 3 points bending of a laminated glass pane cracked in its center [42]. 

 

 
 Fig.10. Tension adhesion test (a) and occurrence of debonding near the crack tip (b) 

 

In this study, the experimental campaign performed in [24] is considered. A polyvinyl-butyral 

(PVB) interlayer manufactured by Monsanto Company is used with three different levels of 

adhesion, namely low, medium and high adhesion. The previous explained tests are conducted 

at room temperature. The displacement rate at the loading point is controlled and maintained at 

a constant value of 8.47×10-6 m/s. The length and the width of the specimen are respectively 

0.102 m and 5.08 10-2 m; the thickness of a single glass pane is 2.54 10-3 m. The two glass 

panes are identical. The load is recorded and load-displacement curves may be drawn. Near the 

crack tip, high normal and shear stresses in glass and interlayer lead to the debonding of the 

interface as shown schematically in figure 10b. 

 

3.2.2 Local debonding model 
 
In this part of the paper, it is proposed to connect the material points adjacent to the interface by 

two non-linear springs (Fig.11 a). The first one, referred as the shear spring in the following, 

acts in the tangential direction and results in the shearing of the interface, whereas the second 

one (called the normal spring in the following) governs its opening. Such modeling strategy is 

widely used in steel-concrete composite structures where the springs model the metallic 

connectors linking the concrete slab and the steel profile (see for example [42]). 

The normal and shear springs are assumed to follow a cohesive crack model: when the yield 

force of the spring is reached, the force decreases linearly to zero leading to a softening 

Glass Interlayer 

P,u P,u 

(a) 

(b) 
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behavior (Fig.11 b). This choice is microscopically justified by the appearance of micro-cracks 

at the interface which progressively grow up until the coalescence into a single macro-crack and 

consequently the debonding along the interface. Elements SPRING2 in the Abaqus library are 

considered. Normal and shear behaviors are supposed to be uncoupled: pure normal separation 

by itself does not give rise to cohesive forces in the shear directions, and pure shear slip with 

zero normal separation does not give rise to any cohesive forces in the normal direction.  

 
    (a)        (b) 

Fig.11. Normal and shear springs across the interface ad linking two adjacent points, one 

belonging to the glass and the other to the interlayer (a) and Cohesive crack model used for the 

interface debonding (b). 

 

Shear and normal behaviors are assumed to be uncoupled. Fn and Ft stand for the maximal 

forces in normal and shear springs respectively,  and  are the cracking displacements in 

normal and shear springs respectively.  

 

The values of the shear and normal yield forces, as well as those of the cracking opening and 

shearing displacements are the unknowns of the model and need to be identified on the basis of 

the experimental results. Moreover, as shown later, the debond length influences highly the 

whole load-displacement curve of the interface and may vary from an adhesion level to another. 

This parameter is thus another unknown of the model. 

 

3.2.3 Identification of the parameters of the model 

In this part of the paper, the FE general package Abaqus is used too. For symmetry reason, only 

a quarter of the laminated structure is analyzed (Fig.12). The mesh used is similar to the one 

pointed out in section 3.1: four-node linear quadrilateral plane stress elements are considered 

too and their minimum size is equal to 0.2 mm. All the finite elements present an aspect ratio of 

1:1. The mesh is composed of about 8300 nodes and 7600 elements. 
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Fig.12.  Mesh used to simulate the tension adhesion test. On the right, the boundary condition is 

only applied to adhesive. 

 
In the FEM simulation, plane strain elements are considered for both the glass plane and the 

interlayer. Glass and PVB behave elastically. This hypothesis is acceptable if the imposed 

displacement is not too large. It is also implicitly assumed that the failure mechanism is 

localized at the interface between the glass pane and the adhesive and consequently that this last 

one is not sufficiently loaded to enter in its hardening domain. The Young’s modulus and the 

Poisson coefficient of glass are equal to respectively 70 GPa and 0.22. For the adhesive, the 

values identified in the experimental study [24] have been used: E = 4 MPa and ν=0.5. Along 

the debond length, all adjacent nodes are linked by normal and shear springs as explained in the 

previous section. A displacement field is applied at the end of the laminated plate and the 

corresponding reaction force is obtained in order to draw the load-displacement curve. 

It is obvious that an inverse analysis method would be very useful to identify precisely all the 

parameters of the springs mechanical behavior. Such a tool would be the topic of an upcoming 

research and has not been used in this study. The shear behavior of the springs influences 

significantly the load-displacement curve. The debond length has a significant effect on the 

second part of the curve. A too important length would result in the assessment of a horizontal 

asymptote resulting in a perfectly plastic overall behavior. That is why in practice Ft, and the 

debond length are first adjusted until a reasonable fit to the experimental data is obtained. Then 

Fn and  are identified to get the best possible fit.  

The agreement between the finite element simulation and the experimental data is shown in 

figure 13. A reasonably good fit is put into evidence. The various identified parameters are 

provided in Table 3. It is worth noting here that these parameters are only available for the PVB 

interlayer studied in this part of this work. In this table, as it is of prime practical importance, 

the maximal forces in the springs are converted in terms of adhesion strength. This can be done 

by keeping in mind that the springs are associated in series for the shear behavior and in parallel 

for the normal one. 
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Each of the adhesion levels may now be characterized by a fracture toughness. Data provided in 

Table 3 lead to the following values: 159.75, 300.75 and 698.5 N/m for respectively the low, 

medium and high adhesions.  

 
Table 3. Identified constitutive parameters of the debonding model. 
 

Adhesion 
level 

Shear adhesive 
strength (MPa) 

Normal 
adhesive 

strength (MPa) 

Shearing 
cracking 
disp.  

(mm) 

Opening 
cracking 
disp.  

(mm) 

Debond 
length (mm) 

Low 1.23 1.47 0.2 0.05 2.4 
Medium 1.65 1.47 0.32 0.05 2.4 
High 2.45 1.72 0.5 0.1 2 
 

Fig. 13.  Experimental results of Sha et al. 1997 [24] and their comparison with the modeling 

results obtained in the present study. 

 

3.2.4 Applications at the structural scale 
 

The local debonding model is now used to simulate the 3 point bending of the laminated glass 

plate presented in figure 10. A similar mesh, as the one retained in the identification numerical 

procedure, is considered and a minimal element size of 0.2 mm is another time used. Due to 

symmetry reason only a half of the structure is investigated. 

In this subsection, as we investigate the failure mechanism of the laminated structure, it was 

decided to consider the fracture behavior of glass. Glass is thus assumed to be brittle in tension. 

A smeared crack model, Hillerborg-type [36] is used to represent this tensile behavior. A 

Rankine criterion is used to detect crack initiation: this criterion states that “cracking” occurs 

(mod) 
Medium adh. (mod) 
Low adh. (mod) 

High adh. (exp) 
Medium adh. (exp) 
Low adh. (exp) 

High adh. (mod) 
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when the maximum principal stress reaches and exceeds the tensile strength of the material. 

Thus crack detection is based only on mode I facture considerations. A conservative value (20 

MPa) of the tensile strength is considered. ABAQUS then assumes that “cracks” are fixed and 

orthogonal to the direction of the maximum principal stress. The specification of the post-failure 

behavior needs to enter the post-failure stress as a tabular function of the displacement across 

the crack (instead of strain which can introduce mesh sensitivity) or, in an equivalent way, the 

value of the fracture energy I
FG . I

FG  represents the energy required to form a unit area of crack 

surface. This material property can be obtained thanks to the following LEFM formula: 

E
KG IcI

F

2

               (34) 

 where IcK  is the glass toughness (0.75 MPa/m) and E is the Young’s modulus (70 GPa). 

Consequently, mNGI
F /8 for silica-soda-lime glass. 

On the other hand, the compression behavior of glass is assumed to be always linear elastic. 

The interlayer material is assumed to be purely elastic and its Young’s modulus is taken equal to 

4 MPa as in the study of Sha et al. [24]. 

The possibility of debonding before an allowable stress of 20 MPa is reached at the bottom of 

the lower glass pane is first analyzed. A displacement is imposed on the top point of the 

symmetry plane and, to facilitate the convergence of the computation, 4 nodes around the 

opposite are pinned. Two series of normal and shear springs are used on the 2 interfaces 

between glass and adhesive near to the pin and at the symmetry plane. The values identified 

previously for the medium adhesion level are considered. Arc-length method is used. 

Figure 14 presents the deformed mesh numerically determined when the allowable stress at the 

bottom of the plate is reached (displacement magnification factor: 8). Shear and normal 

debondings are put into evidence in the vicinity of the boundary condition. On the contrary, no 

obvious debonding seems to appear under the loading condition. However the comparison of the 

load-displacement curve with the one obtained with no debonding model of the interface reveals 

no difference (not shown here). 
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Fig.14. Occurrence of debonding near the boundary condition. A shearing and opening of the 

interface is put into evidence before the allowable stress is reached. (magnification factor: x8) 

 

The second application concerns the redundancy of the structure once the lower pane is broken. 

To take into account the crack across this pane, the symmetry condition has only been imposed 

to the upper glass pane and to the interlayer. The same mesh and boundary conditions as in the 

previous application have been considered. A cohesive crack model with tension stiffening is 

used for glass, as in [38]. The tensile strength is assumed to be equal to 20 MPa and the fracture 

energy to 8N/m. Arc-length method is used too in this part of the study. The load-displacement 

curves with and without the presence of the springs at the interfaces between glass and PVB are 

drawn in figure 15. No visible redundancy decrease is put into evidence, and the maximal force 

that the structure is able to bear is the same in both cases. It appears thus that the debondings 

near the crack tip and in the vicinity of the pin have no influence on the load bearing capacity. 

These debondings do exist and are illustrated by figure 16 that presents the deformed mesh of 

the laminated element at the peak load. A shear debonding is put into evidence in the vicinity of 

the pin and near the crack tip, whereas a normal debonding appears mainly near the crack tip. 

The reason why the load bearing capacity remains unchanged is probably the tight localization 

of the debonding. If the debond length was higher, for example because of aggressive 

environmental conditions, the maximal load would probably change. 

However it is worth noting here that this conclusion cannot be extrapolated to other loading 

cases. As for an example, such a debonding, together with a crack appearance, can influence the 

critical load of the structure (Ouyang et al. [39]). 

Furthermore, contrary to the maximal force, the force-deflection curve presents some 

differences since the appearance of the debondings decreases slightly the slope of the curve just 

after the initiation of the crack in the upper glass layer. 
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Fig.15. Residual flexural load-displacement curve once the lower glass plane is broken. No 

significant influence of the debonding on the load bearing capacity is put into evidence. 

 

 
Fig.16. Deformed mesh of a horizontally laminated glass element submitted to a 3 point 

bending with an initial vertical crack completely through the lower glass pane          

(displacement magnification factor: 5). 

4 CONCLUSION AND FUTURE WORK 

This paper investigates the behavior of a horizontally laminated glass element. A coupled 

analytical / numerical modeling is thus proposed. 

 A thoroughly theoretical study enables first to determine accurately the interfacial normal and 

shear stresses responsible for debonding risks and to analyze then the effect of some 

parameters/assumptions such as the shear-lag effect, the different curvatures between adherends 

and also the adhesive or the glass thicknesses. The first study enables also to calibrate a FE 

modeling presented in a second part. More particularly, an optimal mesh leading to consistent 

results with the analytical study is identified. The FE model may also obtain the complex 

variation of the interfacial stresses through the thickness, which reveals to be important in order 
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to not underestimate the debonding risks. In a second time, this computation is performed until 

the ultimate limit state of the structure.  

Finally, a methodology to explicitly take into account a possible debonding between the panes is 

proposed. It consists to use normal and shear spring elements between adhesive and both glass 

panes combined with a cohesive crack model.  The experimental work of Sha et al. [24] has 

been used to validate this methodology. 

The main conclusions of this work are summarized below:  

- The differential equations that govern the evolution of the shear and normal stresses in 

the adhesive layer are coupled. The general solution of the shear stresses allows to 

obtain the expression of the normal stresses. Concerning the theoretical assumptions 

that lead to these differential equations and therefore to the expression of the interfacial 

stresses, it appears that taking into account different curvatures between adherends leads 

to an increase by about 10% of the shear stresses whereas normal stresses are not 

influenced by this parameter. The shear-lag effect has no significant influence on the 

results. Concerning the geometrical parameters, it appears that glass thickness plays a 

crucial role on the evolution of both normal and shear stresses, in contrast to the 

adhesive thickness. 

- The FE modeling reveals a failure mechanism of the horizontally layered glass element 

in several steps and an increased redundancy due to the presence of the interlayer and a 

second glass pane. 

- A fracture toughness of the adhesion between glass and interlayer may be determined 

by inverse analysis based on Tension Adhesion Test. The debond length is a parameter 

of the model that may be characterized carefully. A laminated element composed of two 

glass panes may exhibit debonding in classical service conditions. This debonding does 

not reduce significantly the load bearing capacity and modifies only the slope of the 

force-deflection curve. 

 

It is worth noting that this study has been performed in quasi-static conditions for a given load 

or displacement rate. Furthermore, no aggressive environmental conditions, for example change 

of temperature or humidity especially on the behavior of the interlayer and on the fracture 

toughness of the adhesion between glass and interlayer, have been considered. Future work will 

concern the extension of the analytical and numerical models to the consideration of these 

various cases. Concerning the interlayer behavior, temperature would certainly be a major issue 

to investigate.  
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It would also be interested to take into account initial pre-stresses state due to thermal 

tempering/heat strengthening processes such as the one modeled by [44-47] and which may 

modify the failure mechanisms. 
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