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Abstract

A novel statistical procedure for clustering individuals characterized by sparse-
specific profiles is introduced in the context of data summarized in sparse con-
tingency tables. The proposed procedure relies on a single-linkage clustering
based on a new dissimilarity measure designed to give equal influence to
sparsity and specificity of profiles. Theoretical properties of the new dissim-
ilarity are derived by characterizing single-linkage clustering using Minimum
Spanning Trees. Such characterization allows the description of situations
for which the proposed dissimilarity outperforms competing dissimilarities.
Simulation examples are performed to demonstrate the strength of the new
dissimilarity compared to 11 other methods. The analysis of a genomic data
set dedicated to the study of molecular signatures of selection is used to
illustrate the efficiency of the proposed method in a real situation.

Keywords: Dissimilarity, Sparse contingency table, Single-linkage
clustering, Conditional profile.



1. Introduction

Let consider a two-way sparse contingency table that displays the number
of occurrences of k categories for n individuals. This paper aims at detecting
individuals with typical profiles of categories called sparse-specific profiles.
Sparse-specific profiles, formally defined in Definition 2.1, are characterized
by two main features. Firstly, the sparse profiles are those profiles for which
only very few categories have non-zero counts. Secondly, specific profiles are
those profiles presenting specific categories, i.e. categories that are (almost)
never observed in the other individuals.

The detection of sparse-specific profiles is of interest in various applica-
tion domains. For example, in genetics, sparse-specific profiles are expected
to be encountered for breeds (i.e. a homogeneous group of domestic animals)
under selection [1]. In that context, genetic data can be summarized in a two-
way contingency table for which an individual is a breed and a category is a
DNA sequence, also called haplotype, of a given chromosomal region. Exist-
ing methods for detecting signatures of selection rely on strong assumptions
based on population genetic theory that cannot be verified. Therefore, de-
tecting the signatures of selection remains challenging. Alternative statistical
methods that are robust to population genetic models are needed to improve
the detection of selection [2].

The observation of sparse-specific profiles is also expected in other con-
texts such as text-mining or ecology. In text-mining, collected data are usu-
ally stored in a term-document matrix that describes the frequency of terms
that occur in a collection of documents [3]. Observing a sparse-specific pro-
file for a document in a term-document matrix means that the document
has very few different terms that are almost not used in the other docu-
ments. In ecology, collected data can be summarized in a site by a species
matrix where the abundance of different species is measured in various sites
[4]. In that context, a species with a sparse-specific profile is expected to be
observed in only very few sites. Those sites are assumed to host very few
species, thus characterizing a low species richness. Although sparse-specific
profiles are likely to be targeted in many applications, their detection raises
the issue of detecting a non-symmetric relationship between a set of individ-
uals and a set of categories. Furthermore, the non-symmetric relationship
is well-characterized for sparse-specific profiles. The main challenge in the
detection of sparse-specific profiles indeed lies in taking into account sparsity
and specificity simultaneously.
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In order to group individuals in sparse contingency tables, hierarchical
clustering techniques are widely used. As such, the detection of sparse-
specific profiles can be performed through a similar approach. The quality
of the clustering depends on the choice of (1) a dissimilarity measure be-
tween individuals and (2) a linkage criterion for the hierarchical clustering.
As quoted in [5 - p.506], “Specifying an appropriate dissimilarity measure
is far more important in obtaining success with clustering than choice of
clustering algorithm”. For that reason, attention was first focused on the
choice of an appropriate dissimilarity to detect sparse-specific profiles. An
abundant literature has been dedicated to improving the measure of simi-
larity between individuals in sparse contingency tables, either by applying
dimension reduction techniques or by proposing dissimilarity measures [6].
Dimension reduction techniques, such as Latent Semantic Indexing (LSI)
[7] and Non-negative Matrix Factorization (NMF) [8] aim at transforming a
high dimension space of features to a space of fewer dimensions using linear
or non-linear combinations [5]. Applying such techniques can help selecting
the most relevant categories, thus improving the quality of the clustering [9].
For instance, LSI and NMF techniques were successfully used prior to the
clustering of textual data [6]. However, these techniques does not explicitly
account for sparse-specific profiles in the reduction of the dimensionality of
the feature space. As a consequence, power to detect sparse-specific pro-
files for dimension reduction techniques is likely to be limited. On the one
hand, the similarity between individuals can be measured with many differ-
ent functions developed to deal with sparse contingency tables. In the text
domain, the most well known and commonly used similarity function is the
cosine similarity function [10]. In ecology, dedicated dissimilarities are the
Bray-Curtis dissimilarity, the Jaccard dissimilarity, the d2

1 (or Manhattan)
distance, the Hellinger distance or the Gower dissimilarity [11].

However, these methods usually work directly with counts which might
not be appropriate to detect sparse-specific profiles. Indeed, heterogeneity in
the marginal counts of individuals gives different weights to individuals, thus
leading to inappropriate conclusions. A natural way to control weights given
to individuals is to focus on the conditional distribution of the categories,
also known as conditional profiles. The analysis of conditional profiles is
classically performed by using either the χ2 distance or the d2

2 distance (also
known as L2 norm). Nevertheless, capturing sparse-specific profile with the
χ2 distance raises some limitations since χ2 is sensitive to profiles specificities.
On the other hand, it will be shown that d2

2 distance between two profiles is
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more influenced by the sparsity than the specificity.
In this paper, we propose a novel dissimilarity called d2

s adapted to the
detection of sparse-specific profiles. d2

s is based on the comparison of con-
ditional profiles and gives equal influence to sparsity and specificity of pro-
files, compared to other dissimilarities. To identify sparse-specific profiles, we
propose a procedure called SMILE, for Statistical Method to detect sparse-
specIfic profiLEs, which consists in a single-linkage hierarchical clustering [12]
constructed using the d2

s dissimilarity. Selected profiles with the SMILE pro-
cedure correspond to the smallest subset of conditional profiles that coalesce
at the final step of the hierarchical clustering.

In section 2, we formalize the definition of a sparse-specific profile and give
details of the SMILE procedure. Furthermore, by considering the parallel
between Minimum Spanning Trees and Single-Linkage Cluster Analysis [13],
an original characterization of the structure of the individual subset selected
by the SMILE procedure is proposed.

In Section 3, we illustrate the performance of the SMILE procedure in
a simulation study. For that purpose, a simple simulation algorithm gen-
erating contingency tables with respect to sparsity and specificity features
was designed. Power for the SMILE procedure is compared to the power of
11 other clustering methods in simulated scenarios highlighting the highest
power for the dissimilarity measure d2

s.
Section 4 is devoted to the application of the SMILE procedure on a

real dataset dedicated to the detection of molecular signatures of selection
in the domestic dog [14]. Comparing the SMILE procedure to 11 concurrent
methods provides illustrative examples of the benefit of using the SMILE
procedure for detecting sparse-specific profiles in sparse contingency tables.

2. The SMILE procedure

The SMILE procedure aims at detecting sparse-specific profiles. To do so,
the proposed method selects the smallest subset of conditional profiles that
coalesce at the final step of a single-linkage hierarchical clustering constructed
with the d2

s dissimilarity. In this section, the approach driven by the features
characterizing sparse-specific profiles is described.

2.1. Description of sparse-specific profiles

Let first consider a two-way contingency table with n individuals and k
categories. For example, our illustrative example is n = 30 dog breeds for
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which a total of k haplotypes have been observed in a given region. Each
individual is therefore characterized by a vector of counts [ni1, . . . , nik] ∈ N

k,
where nij is the number of times category j is observed for individual i.
Conditional profile for individual i is defined by a k−dimensional vector
xi = [pi

1, . . . , p
i
k]

′ where pi
j = nij/ni. and ni. =

∑k
j=1 nij. In the following, E

is used to denote the set of those n conditional profiles.

Definition 2.1. Sparse-specific profiles are characterized by a set of selected
individuals, called A, and a set of selected categories, called K. Categories in
K are overrepresented for individuals in A and, simultaneously, individuals
in A carry categories almost only in K. A sparse-specific profile is then
defined by the two following features:

[Profile sparsity]: for i ∈ A and j �∈ K, pi
j are expected to be very low,

[Profile specificity]: for i �∈ A and j ∈ K, pi
j are expected to be very low.

2.2. The dissimilarity d2
s

In this section, a novel dissimilarity measure, called d2
s, that is adapted to

the detection of sparse-specific profiles is proposed. d2
s is designed to equally

account for the sparsity and, as well, the specificity of the two profiles. More
precisely, d2

s is defined by:

Definition 2.2. ∀x, y ∈ E:

d2
s(x, y) = ‖x‖2 ‖y‖2 d2

θ(x, y) (1)

where

d2
θ(x, y) = 2(1− cos(x̂y)) = 2

(
1− 〈x, y〉2

‖x‖2 ‖y‖2

)
(2)

is the square of the angular distance between the lines spanned by x and y,
〈, 〉2 is the L2 scalar product and ‖‖2 its corresponding norm.

The sparsity of a given profile x is indeed measured by ‖x‖2 since the
sparser x is, the higher ‖x‖2 is. To illustrate this point, let consider two
individuals i and i′ with profiles xi and xi′ . Let assume that xi and xi′ are
identical except for two categories j1 and j2 such that ni′j1 + ni′j2 = nij1

and nij2 = 0. xi is thus sparser than xi′ and we have easily ‖xi‖2 ≥ ‖xi′‖2.
Finally, if individual i has ni. non null coordinates, that are thus all equal to
one, the norm of the conditional profile, given ni., is minimum and equals to

‖xi‖2 =
√

1
ni.

.
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The specificity between two profiles is measured by the angular distance
dθ. For example, if 〈x, y〉2 = 0, x and y have the greatest angular distance
d2

θ(x, y) = 2. If otherwise, x and y are identical, their angular distance is the
lowest, dθ(x, y) = 0.

Thus, from Equation 1, it can be remarked that d2
s gives the same im-

portance to the sparsity and the specificity since 0 ≤ ‖x‖2 ‖y‖2 ≤ 1, 0 ≤
d2

θ(x, y)/2 ≤ 1 and multiplying the dissimilarities by the same scalar does
not modify the clustering. We can further note that the definition of d2

s in
Equation 1 can be extended to account for different weights given to spar-
sity and specificity. To this aim, in Appendix E, we introduced a family
of weighted dissimilarity measures, d2

α, where α ∈ [0, 1] and 1 − α are the
weights given to sparsity and specificity, respectively. Since d2

s = d2
α= 1

2

, it

is straightforward to prove that d2
s is a member of the family d2

α. The re-
sults shown in section Appendix E demonstrate that α = 1/2 is a reasonable
choice to maximize the power of detecting sparse-specific profiles. Further-
more, the use of the d2

α family in practical situations requires the estimation
of α, which goes beyond the scope of this article. For all those reasons, we
focus on the dissimilarity d2

s in the remainder of the paper.
According to Equation 2, d2

s can further be reformulated as:

∀x, y ∈ E, d2
s(x, y) = 2(‖x‖2 ‖y‖2 − 〈x, y〉2). (3)

It can easily be remarked that d2
s is symmetric since the scalar product is.

Moreover, according to the Cauchy-Schwarz inequality, ∀x, y ∈ E d2
s(x, y) ≥

0, thus proving that d2
s is actually a dissimilarity.

2.3. Single-linkage detection

The SMILE procedure is based on single-linkage detection, where single-
linkage detection corresponds to the selection of the smaller of the two sub-
sets linked at the final step of a single-linkage hierarchical clustering con-
structed with some dissimilarity d. In the single-linkage hierarchical clus-
tering, the linkage criterion between two clusters Ci and Cj is defined by
d(Ci, Cj) = minx∈Ci,y∈Cj

d(x, y) [12]. The clustering is then obtained by iter-
atively merging the pair of clusters that minimizes the single linkage criterion.

The single-linkage method has a tendency to form long and straggly clus-
ters. This phenomenon, often known as “chaining phenomenon”, refers to
the gradual growth of a cluster as one element at a time gets added to it [15].
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Considered as a potential drawback in some practical situations, the chain-
ing effect is an advantage in our situation by allowing the separation of two
highly distinct groups. Another advantage of using the single-linkage crite-
rion is that the dissimilarities between clusters are the original dissimilarities
between individuals: dissimilarities remain unchanged during the clustering,
preserving their good properties, if any, all through the study. Thus, the
single-linkage criterion is adapted to separate individuals with sparse-specific
profiles from the rest of the population.

2.4. Benefit of the d2
s in single-linkage detection

In this section, some properties of d2
s in single-linkage detection thanks

to the study of Minimum Spanning Tree (MST) are investigated. In graph
theory, a spanning tree is a subgraph of a connected undirected graph G with
n vertices that connects all the vertices together with n− 1 edges. If weights
are assigned to each edge of G then each spanning tree can also be weighted
by summing the weights of its edges. A MST is then a spanning tree with
weight less than or equal to the weight of every other spanning tree. In our
context, we can consider that vertices of G are the individuals and that the
weight between two individuals is the value of the dissimilarity between these
two individuals.

In the remainder of this section, an original characterization of the struc-
ture of the individual subset selected by the single-linkage detection is first
proposed in Theorem 2.1 by considering the parallel between single-linkage
clustering trees and MST [13]. Such characterization is valid for any dis-
similarity measure and helps in understanding the roles played by A and
Ā in single-linkage clustering. The link between d2

2 and d2
s is then stated.

Finally, by focusing on the case where A is a singleton, situations for which
our dissimilarity, d2

s, is more powerful than d2
2 are described in Theorem 2.3.

Impact of the structure of the data on single-linkage detection.
The main goal of this section is to find a necessary and sufficient condition,

formulated in Theorem 2.1, for a subset A, with nA individuals, to be selected
at the final step of the single-linkage detection based on a dissimilarity d.
Since the set of weights of the edges which leads to the MST is the set of the
levels of the hierarchical clustering merger using the single-linkage criterion,
the structure of the clusters could be studied by characterizing the MST built
on d.
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Among the procedures developed to construct the MST, the Kruskal al-
gorithm was chosen [16]. In our context, let consider the complete undirected
graph, where the nodes are all individuals in E and edges are weighted ac-
cording to the dissimilarity between the two corresponding connected nodes.
As n individuals belong to E, the complete undirected graph is made by
n(n − 1)/2 edges, or, equivalently, dissimilarities. The Kruskal algorithm
starts by ranking the n(n − 1)/2 dissimilarities in increasing order. At the
first step, it chooses the two smallest dissimilarities. Then, it successively
selects the smallest dissimilarity, for which the corresponding edge does not
create cycle in the current graph. Thus, the way each individual of A is
clustered with the other individuals of E is completely defined by the n− 1
dissimilarities picked up by the Kruskal algorithm. To characterize the clus-
tering of the subset A, we define the quantity dMST (A) as follows:

Definition 2.3. Let A be a subset of nA individuals and let consider the n−1
edges selected by the Kruskal algorithm in the increasing order. dMST (A) is
equal to the length of the (nA−1)th edge obtained by restricting to edges where
at least one node belongs to A.

Let A be the complementary of A. dMST (A) is defined in the same way by
replacing A by A and nA by n− nA in Definition 2.3. Appendix C provides
two illustrations of the calculation of dMST (A) and dMST (A).

Definition 2.4. Let A be a subset of E. A is said to be a Kruskal-connected
component if there exists a step of the Kruskal algorithm for which A is a
connected component of the current graph.

Lemma 2.1. A is a Kruskal-connected component if and only if:

dMST (A) < minx∈A,y∈Ad(x, y) (4)

The proof of Lemma 2.1 is given in Appendix B. Furthermore a graphical
interpretation of inequality (4) is proposed in Appendix C. Theorem 2.1 that
provides a characterization for A to be selected by single-linkage detection
can now be set.

Theorem 2.1. Let A be a subset of E with nA elements and d be a dissimi-
larity. A is linked to its complementary A, at the final step of the hierarchical
clustering based on d and using the single-linkage criterion if and only if A
and A are the two last connected components at the final step of the Kruskal
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algorithm. Considering that nA < n−nA, A is thus selected by single-linkage
detection if and only if:

max(dMST (A), dMST (A)) < minx∈A,y∈Ad(x, y) (5)

Proof of Theorem 2.1 is given in Appendix B. Inequality 5 is also illus-
trated in Appendix C. According to Theorem 2.1, the structures of A and A
both play a major role in the selection of A by single-linkage detection. In
practice, individuals in the targeted subset A are usually homogeneous shar-
ing all similar sparse-specific profiles. However, individuals in A are likely to
be heterogeneous which might prevent single-linkage detection from correctly
selecting A. Thus, to control heterogeneity in A, the choice of an appropriate
dissimilarity is crucial. Theorem 2.1 will also be used, in the next paragraph,
to interpret the influence of Ā on the performances of d2

s compared to the L2

norm. Furthermore, the simulated scenarios proposed in Section 3 are based
on conclusions drawn by Theorem 2.1.

Link between d2
2 and d2

s.
The d2

2 dissimilarity is defined as the square of the L2 norm of the differ-
ence between two conditional profiles. It can be formulated for each pair of
individuals as follows:

∀x, y ∈ E, d2
2(x, y) = ‖x− y‖2

2 .

Thus, according to Equation 3, it can deduced that:

d2
2(x, y) = d2

s(x, y) + (‖x‖2 − ‖y‖2)
2. (6)

It is noteworthy that d2
2(x, y) = d2

s(x, y) if and only if ‖x‖2 = ‖y‖2. Moreover,
compared to d2

s, the d2
2 dissimilarity gives more weight to variation in sparsity

between the 2 compared profiles by adding the term (‖x‖2 − ‖y‖2)
2. Thus,

compared to d2
s, d2

2 is likely to be more sensitive to the heterogeneity, and
especially heterogeneity in sparsity, in a given subset.

In the context of sparse-specific profile detection, such sensitivity to het-
erogeneity can be a drawback for d2

2. Although the targeted subset A is
assumed to be homogeneous, meaning that all individuals in A are supposed
to have very similar conditional profiles, its complementary, A, can display
very diverse patterns. Assuming that profiles in A are highly heterogeneous
with some profiles with high sparsity and other with low sparsity, the d2

2

dissimilarity between two profiles can be high. As a consequence, A might
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fail at being a Kruskal-connected component with the d2
2 thus preventing the

detection of A (see Theorem 2.1). Therefore, the detection of a targeted
subset A with single-linkage detection is less influenced by the structure of
A when using d2

s compared to d2
2.

The nA = 1 case.
The nA = 1 case is of particular interest since it corresponds to the situa-

tion where only one individual has a sparse-specific profile. In the illustrative
example, such a situation is often encountered. Two main results are given
in this section. First, Theorem 2.2 gives sufficient condition in sparsity and
specificity for the sparsest profile to be selected by single-linkage detection
with d2

s or d2
2. The second main result, given in Theorem 2.3, shows the ben-

efit of using d2
s instead of d2

2 when the targeted individual has the sparsest
conditional profile.

It is noteworthy that, when nA = 1, A is a singleton and Inequality (5)
becomes:

dMST (A) < miny∈Ad(x, y) where A = {x} (7)

To be selected by single-linkage detection, x should hence have the furthest
conditional profile according to some dissimilarity d. To understand the role
of profile sparsities in d2

2 and d2
s, let introduce the sparsest and the least

sparse conditional profiles as follows:

Definition 2.5. The sparsest conditional profile, xs, and the least sparse
conditional profile, x0, are defined, for all x ∈ E such that x �= xs and
x �= x0, by:

‖x0‖2 < ‖x‖2 < ‖xs‖2 .

Let also formalize a hierarchy in the specificity of a profile by defining
a totally specific conditional profile (see Definition 2.6) and a nearly totally
specific conditional profile (see Definition 2.7).

Definition 2.6. x ∈ E is said to be totally specific if and only if: ∀y �= x ∈
E, 〈x, y〉2 = 0.

Definition 2.7. x ∈ E is said to be nearly totally specific for the dissimilarity
d if and only if 〈x, x0〉2 = 0 and d(x, x0) = miny �=xd(x, y).

It is noteworthy that Definition 2.7 means that the specificity, as de-
fined in Definition 2.1 is not strong enough for modifying the profile ordering
imposed by the sparsity.
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The hierarchy between totally specific and nearly totally specific is ob-
vious when considering xs, the sparsest conditional profile, as mentioned in
the following lemma.

Lemma 2.2. If xs is totally specific, then xs is nearly totally specific for the
dissimilarity d ∈ {d2

2, d
2
s}.

In the following interest is focused on nearly totally specific profiles for xs

since, according to Lemma 2.2, results are valid for totally specific profiles as
long as they are valid for nearly totally specific profiles. Let now formulate
two lemmas that are preliminary results needed for Theorems 2.2 and 2.3.

Lemma 2.3. If xs is nearly totally specific for d ∈ {d2
s, d

2
2} then we have

∀x �= xs ∈ E:
d(x0, x) < d(x0, xs).

Lemma 2.4. Let consider the kth step of the hierarchical clustering with
dissimilarity d ∈ {d2

s, d
2
2}. At the kth step, individuals in E are clustered

into n − k + 1 Kruskal-connected components. Furthermore, for x ∈ E,
d(x, C�) = miny∈C�

d(x, y) defines, at this step, the dissimilarity between any
individual x ∈ E and any Kruskal-connected component, called C�. Let also
set Cx as the Kruskal-connected components at the kth step that contains
x ∈ E.

If xs is nearly totally specific for d, the closest Kruskal-connected compo-
nent to xs, according to d, is Cx0:

d(xs, Cx0) = d(xs, x0) ≤ d(xs, C�),∀C� �= Cxs .

Theorem 2.2. If xs is nearly totally specific for the dissimilarity d ∈ {d2
s, d

2
2}

then xs is selected by single-linkage detection.

Theorem 2.3. If xs is nearly totally specific for d2
2 then xs is nearly totally

specific for d2
s.

If xs is nearly totally specific for d2
2, then it is selected by single-linkage

detection using d2
2. Theorems 2.2 and 2.3 thus ensure that xs is selected

by single-linkage detection using d2
s. It is noteworthy that the reciprocity of

Theorem 2.3 is false. Conditional profiles selected by d2
s might be missed by

d2
2, thus proving the benefit of using d2

s instead of d2
2. This advantage for d2

s

is further highlighted by the analysis of Region �6 in our illustrative example
shown in Section 4.2.
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3. Simulation study

To evaluate the performance of the SMILE procedure, we compare our
novel dissimilarity d2

s to 11 other measures in single-linkage detection. We
propose an algorithm for the simulation of contingency tables designed to
simulate the structure of the set of selected individuals, A, and its comple-
mentary A. Since the structure of A plays a major role in the detection of
A (see Theorem 2.1), simulated scenarios that focus on the impact of the
structure of A on single-linkage detection are designed. On the one hand, a
simulated scenario, Scenario �1, is considered where specific and non-sparse
profiles are observed in A. On the other hand, the impact of heterogeneity
in sparsity in analyzed for profiles in A thanks to two simulated scenarios,
Scenario �2 and �3.

3.1. Simulation algorithm

In this section, the algorithm used to simulate the different scenarios is
set out in details. Let first assume that individuals are clustered into three
subsets, A, B and C, with respective sizes of nA, nB and nC . It is also
supposed that categories are divided into three groups, K, L1 and L2 with
sizes given by k1, �1 and �2. Conditional profiles for individuals in A are
parameterized by p and p∗, where p is the probability of a category in K
and p∗ the probability of a category in L1 and L2. Regarding individuals in
B (resp. C), conditional probabilities for categories in L1 are given by q1

(resp. q2) and for categories in K and L2 are denoted by q∗1 (resp. q∗2). The
whole set of parameters is summarized in Table 1. To mimic the illustrated
example of this paper, n is considered as fixed and equal to n = 30. The
number of categories is assumed to be equal to k = 200 throughout the
simulation study. However, since k and n gives the dimensionality of the
contingency table, they both may have an impact on the power of detection.
To investigate the roles played by n and k in the comparison of the methods,
other values of n and k have been tested in Appendix D. The results obtained
in Figures D5-D10 show the robustness of our conclusions with respect to n
and k.

Simulation of contingency tables is then performed by simulating counts,
for each individual, according to a multinomial law with parameters m and
the individual probability profile vector, where m corresponds to the number
of observations per individual. In order to mimic the mean value observed
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Table 1: Summary of the conditional profiles for the n simulated individuals. The cardinal
of each set is given in parenthesis such that nA + nB + nC = n = 30 and k1 + �1 + �2 =
k = 200.

K(k1) L1(�1) L2(�2)
A(nA) p p∗ p∗

B(nB) q∗1 q1 q∗1
C(nC) q∗2 q2 q∗2

in the real dataset analyzed in section 4, it is assumed to be constant and
equal to 30 for all individuals across all simulation scenarios.

Such algorithm has been used to simulate data under three main sce-
narios, Scenario �1, �2 and �3. Parameter values for each scenario are sum-
marized in Table 2 and explain in detail in section 3.3 for Scenario �1 and
section 3.4 for Scenarios �2 and �3.

Table 2: Summary of the values of the parameters used in the three simulated scenarios.
nA nB nC k1 �1 �2 p q1 q2

Scenario �1 1 1 28 1 100 99 1 Not Fixed 0
Scenario �2 3 10 17 1 100 99 Not Fixed 0.005 0.005
Scenario �3 3 10 17 1 2 197 Not Fixed 0.45 0.1

3.2. Computational details for the compared dissimilarity measures

This section gives some details regarding the computation of the 11 dis-
similarities that were compared to d2

s. Additional information is given in
Appendix A.

The R package ecodist [17] is used to compute the following dissimilarity
metrics based on counts data: Bray-Curtis, d2

1 (or Manhattan), Jaccard and
Gower. Regarding distances based on conditional profiles, either our own
functions for χ2 and d2

2 distances are proposed or existing R packages such
as vegan package [11] for the Hellinger dissimilarity and lsa package [18] for
the cosine distance are used.

d2
s is further compared to three reduction dimension techniques dedicated

to the analysis of sparse contingency tables. First, HierarchicalSparseCluster
function from package sparcl that implements the method, based on a Lasso-
like penalty, developed in [9] was used. Secondly, the lsa package [18] to
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calculate the latent semantic space, that is based on singular value decom-
position of a sparse contingency table was employed. To choose an appropri-
ate number of singular values for the dimensionality reduction in LSA, the
dimcalc share function as suggested in lsa package was used. Note that
other numbers of singular values did not give better results.

Finally, non-negative matrix factorization with the R package nmf [19]
was done. The quality of the clustering with nmf depends on two main
choices: the choice of an algorithm for the factorization and the choice of
the rank of the factorization. For ease of reading, only results obtained with
the standard NMF, based on Euclidean distance [8] are presented. Other
algorithms, such as standard NMF based on Kullback-Leibler divergence or
Alternating Least Square did not provide better results. Regarding the choice
of the rank, several values were tested and the results obtained with the most
powerful rank are presented.

3.3. Specific and non-sparse profile in A - Scenario �1

The goal of this section is to compare the ability of each method to detect
sparse-specific profiles when specific and non-sparse profiles are observed in
A.

A specific and non-sparse profile displays many categories that are not
observed in other individual profiles. To simulate the presence of one such
profile in A, B is first assumed to be a singleton with a non-sparse profile by
setting nB = 1 and �1 = 100. q2 is further fixed to 0 so that the specificity of
the profile in B is governed by q1. The specificity of the profile in B indeed
increases as q1 becomes closer to 1. Thus, to evaluate the impact of the
specificity q1 is made to vary from 0 to 1. Furthermore, for ease of reading,
A and K are singletons (i.e. nA = 1 and k1 = 1). It is also assumed that
that p = 1 leading to the sparsest possible profile in A. Parameter values are
summarized in Table 2.

Results are displayed in Figure 1, where empirical power was estimated
from 1,000 Monte-Carlo simulations. It can first be remarked that two meth-
ods, Gower and Cosine, have no power in detecting sparse-specific profiles.
Furthermore, when q1 is small, i.e. when the conditional profile in B is not
specific, all other methods show equivalent power to detect A.

However, when q1 is larger, power for Hellinger, χ2, Jaccard, d2
1 and

Bray-Curtis drops to zero, thus demonstrating that these methods are very
sensitive to the presence of at least one specific and non-sparse profile in A.
Although its power does not vanish to zero, the LSA method also shows a
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similar pattern, proving a weakness to distinguish between sparse and non-
sparse profiles. On the contrary, the novel dissimilarity d2

s, as well as d2
2,

NMF and Sparcl keep very high power, regardless of the value of q1 (i.e. the
specificity of the profile in B).

It is noteworthy from Figure 1 that d2
s and d2

2 always display a power of 1.
With these parameter settings, the conditional profile in A has the highest
sparsity and is simultaneously totally specific in the sense of Definition 2.6.
Thus these results confirm that, according to Theorem 2.3, single-linkage
detection with d2

s and d2
2 always detects A as a sparse-specific profile.

Figure 1: Evaluation of power with respect to q1 under Scenario �1.

3.4. Variation in sparsity within A - Scenario �2 and �3

The aim of this section is to illustrate the benefit of using d2
s for se-

lecting sparse-specific profiles with single-linkage detection. According to
Equation 6, d2

2 is likely to be more sensitive than d2
s to high heterogeneity in

sparsity within A. To highlight such property, power is evaluated in two sce-
narios: a first scenario with low variation in sparsity within A (Scenario �2)
and a second scenario displaying high variation in sparsity within A (Scenario
�3).
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For both scenarios, the structure of A is fixed by setting nA = 3 and
k1 = 1. Note that similar conclusions would be obtained with other values
for nA, such as nA = 1. In Scenario �2, by setting q1 = q∗1 = q2 = q∗2 = 1/k,
it is assumed that all individuals in A have the same conditional profile
and without distinction between B and C. As a consequence, variation in
sparsity for 2 individuals within A is expected to be very small compared to
the variation between an individual in A and one in A. In Scenario �3, it
is assumed that the profiles of individuals in B and C differ, meaning that
A is composed of two distinguishable subgroups of individuals. To this end,
the size of each subgroup is set to nB = 10 and nC = 17. Further, let set
�1 = 2, q1 = 0.45 and q2 = 0.1. Therefore, the difference in L2 norm between
individuals in B and individuals in C is likely to be high, thus increasing the
d2

2 dissimilarity between individuals within A. A summary of the values of
the parameters is given in Table 2.

Results displayed in Figure 2 show that d2
s, d2

2 and Sparcl are the three
most powerful methods with approximatively the same power when all in-
dividuals in A share the same conditional profile. NMF, followed by Bray-
Curtis and d2

1, are the three next most powerful methods. The five methods,
Jaccard, χ2, LSA, Hellinger and Gower, lack in power when the sparsity in
A is not very high (i.e. , when p < 0.8). Finally, Cosine distance appears to
have no power for detecting sparse-specific profile.

Results showed in Figure 3 proved that a modification in the structure of
A does not impact the power for the novel dissimilarity d2

s. However, power
is highly reduced for d2

2 and even more for Sparcl, thus demonstrating their
sensitivity to important differences in sparsity between individuals within
A. Regarding the other methods, it can be remarked that Bray-Curtis, d2

1,
Hellinger, LSA, Gower, have a reasonable power, especially when p is low
(see Figure 3). NMF seems to keep roughly the same power regardless of
the structure in A. Finally, Cosine, χ2 and Jaccard distances, show a very
low power. Indeed, because of the sparsity of the simulated tables, few
conditional profiles in A are very likely to be specific and non-sparse, thus
explaining the poor detection power.

Thus, the results demonstrate that the SMILE procedure is adapted to
the detection of sparse-specific profiles. The novel dissimilarity d2

s is indeed
the most powerful in the three simulated scenarios. Furthermore, power for
d2

s is not impacted by the structure in A, which comes from the fact that d2
s

gives equal influence to sparsity and specificity of profiles.
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Figure 2: Empirical power with respect to p, the conditional probability of a category in K
for an individual in A. Empirical power is estimated assuming that there is no distinction
between individuals in A (q1 = q2 = q∗1 = q∗2 = 1/k) as described under Scenario �2.

4. Illustrative example

The real dataset chosen to illustrate the SMILE procedure in this paper
consists of genomic data from the European consortium LUPA [14]. To study
the genetic background of domestic dogs, the LUPA consortium generated
molecular data covering the entire genome [20] consisting of 174,000 SNPs
(Single Nucleotide Polymorphims). Data from a previous study designed to
investigate the genetic background of 30 dog breeds is used [20]. Thus, in
the dataset, the set of individuals consists in n = 30 individuals so that an
individual, at the statistical level, is a dog breed. For each individual (or
breed), the number of observations is the number of dogs from that breed in
the sample, as shown in Supplementary Table F.4.

Attention is focused to six genomic regions, Regions �1, �2,...,�6, defined
as small parts of the genome. For each of the six regions of interest, the set of
categories are defined as the set of observed DNA sequences, also called the
set of haplotypes. The set DNA sequences was obtained using the software
FastPHASE [21]. Each region is then characterized by a two-way contingency
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Figure 3: Empirical power with respect to p, the conditional probability of a category in
K for an individual in A. A is supposed to be divided into two subgroups of individuals
(q1 = 0.45 and q2 = 0.1) as described under Scenario �3.

table where an individual is a breed and a category is a single DNA sequence.
Thus, cell (i, j) gives the number of times the DNA sequence j is observed
in dogs from the breed i. It is noteworthy that the number of categories (or
DNA sequences), called k throughout this paper, is different from one region
to another, as shown in Supplementary Table F.5.

The six regions of interest have been chosen as being previously reported
causative for the following morphological traits: brachicephaly, furnishings,
wrinkled skin, periodic fever syndrome, chondrodysplasia and curly hair.
For each region, genetic studies have shown that the presence or absence of a
particular DNA sequence (or category) is associated with the observation of
the trait. For example, if we consider Region �3 associated with the “wrinkled
skin” trait, the only breed with wrinkled skin is the Shar-Pei (ShP) so that
the set A is a singleton (nA = 1). Furthermore, genetic studies reveal that
the presence of two DNA sequences (or categories) are responsible for the
observation of wrinkled skin while the absence of these two DNA sequences
leads to the observation of a non wrinkled skin [22]. Thus, from the genetic
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study, it can be deduced that k1, that refers to the number of categories of
the sparse-specific profile throughout the paper, is equal to k1 = 2. Similar
information is known for each region according to various genetic studies
dedicated to each trait. Additional biological knowledge, such as the number
of the chromosome from which each region is taken and the gene related
to that region, can also be obtained from genetic studies. Supplementary
Table F.5 provides a summary of what is known for each of the six regions
of interest.

These six genomic regions were considered as test regions to compare
the ability for the novel dissimilarity d2

s and the 11 methods described in
Section 3.2 to detect known signals with single-linkage detection. For each
of the six regions of interest, the true signal, i.e. the breed(s) that is(are)
under selection, is(are) known. Thus, for the novel dissimilarity d2

s and the
11 competitive methods, we first evaluate the set of breeds detected in each
region and then compare it with the known set of breeds that should have
been detected according to biological knowledge. The performance of each
method, given in Table 3, show that the proposed dissimilarity d2

s was the
only method able to correctly detect 5 regions. All other methods also failed
at finding the only missed region by d2

s, (Region �2), thus demonstrating the
strength of d2

s in a real situation.
The following sections aim at drawing a parallel between results obtained

on the real data set analysis and more general results on the SMILE proce-
dure as detailed in Section 2 and results obtained in the simulation study
in Section 3. The low power observed for several dissimilarities is first ex-
plained. Regions with only one selected breed, corresponding to nA = 1 case
detailed in section 2.4 are then focused on. Finally, results are discussed
regarding regions with more than one targeted breed.

4.1. Low power for Jaccard, Bray-Curtis, d2
1, χ2, Hellinger, Gower and Co-

sine

The 7 methods, Jaccard, Bray-Curtis, d2
1, χ2, Hellinger, Gower and Co-

sine, show a very limited power in detecting true signals. These results are
in agreement with the simulation study proposed in section 3. Indeed, the
analysis of a real dataset confirm that Cosine and Gower have almost no
power as displayed in Figure 1. Furthermore, power for Hellinger, χ2, Jac-
card, Bray-Curtis and d2

1, is expected to vanish to zero in the presence of
specific and non-sparse profile in A (see Figure 1).
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Table 3: Summary of the results obtained for d2
s and the 11 compared methods on the six

genomic regions used as test regions to validate the method. A x means a correct detection
of the signal known from biological experiments. The last column gives the total number
of signals correctly found by the corresponding method.

Method Regions Total
�1 �2 �3 �4 �5 �6

d2
s x x x x x 5

d2
2 x x x x 4

Sparcl x x x x 4
NMF x x x 3
LSA x x 2
Jaccard x 1
Bray-Curtis x 1
d2

1 x 1
χ2 x 1
Hellinger x 1
Gower 0
Cosine 0

For example, low power for χ2 can be explained by the presence of several
breeds showing specific profiles with low sparsity. The observed bias for χ2

towards specific and non-sparse individual profiles is clearly illustrated by
results obtained for Region �2. In Region �2, χ2 selected the Beagle (Bgl).
In that region, Bgl conditional profile is totally specific, as all categories ob-
served in Bgl are not observed in any other breed. Furthermore, conditional
profile for Bgl displays a very low number of zeros leading to a non-sparse
profile. Similar arguments can be used for the other regions, thus explaining
low power for χ2, Jaccard, Bray-Curtis, d2

1, and Hellinger, in our real data
example, as shown in the simulated scenario in Section 3.3.

4.2. Genomic regions with one targeted breed

Four regions are characterized by only one breed selected for a phenotypic
trait, i.e. A is a singleton. These 4 regions (Regions �1, �3, �4 and �6), are
representative examples of three types of signal theoretically described in the
paragraph “The nA = 1 case” in section 2.4.

The first type, observed in Region �3, is defined by an ideal sparse-specific
profile. More precisely, the known selected breed, ShP, is both totally specific
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and the sparsest breed. In agreement with Theorem 2.2, d2
2 norm and d2

s

correctly select ShP as a sparse-specific profile. Furthermore, as expected
from the first simulated scenario in Figure 1, Region �3 is also correctly
detected by Sparcl, NMF and LSA. Finally, it can be remarked that this
region is the only region correctly detected by Jaccard, Bray-Curtis, d2

1, χ2

and Hellinger. ShP is indeed the only breed for Region �3 with a totally
specific conditional profile.

The second type of signal, observed in Regions �1 and �4, illustrates a
sparse and nearly totally specific profile for d2

2 and d2
s. In Region �1, the

known selective breed EBD is indeed the sparsest breed. Although EBD
shares categories with other breeds, its closest breed is the least sparse breed
for d2

2 and d2
s. According to Definition 2.7, EBD is nearly totally specific for

d2
2 and d2

s and is correctly selected, as a consequence of Theorem 2.2. Similar
conclusions are obtained for ShP in Region �4. Results obtained for Region
�1 and Region �4 are also illustrative examples of Theorem 2.3 that stipulates
that, if the sparsest conditional profile is nearly totally specific for d2

2 then
it is also nearly totally specific for d2

s. Furthermore, it can be remarked that
Sparcl and NMF correctly detected both regions which is in agreement with
their high power displayed in Figure 2 in the simulation study.

Region �6 displays a third typical situation where the selective signal
illustrates the benefit of using d2

s compared to d2
2 in single-linkage detection.

On the one hand, the validated breed, StP, is the sparsest breed for Region
�6. Moreover, StP profile is not totally specific since one category observed
in StP is present in other breeds. On the other hand, the least sparse breed
TYo is also the closest breed to StP with respect to d2

s, which means that
StP is nearly totally specific for d2

s. Thus, according to Theorem 2.2, single-
linkage detection with d2

s is able to correctly detect StP. However, regarding
d2

2 dissimilarity, since the closest breed to StP is not the least sparse breed,
StP is not nearly totally specific. Consequently, single-linkage detection with
d2

2 norm is not sure to correctly detect StP and actually wrongly selects GoS.
It can further be remarked that A, where A = {StP}, is highly heterogeneous
in sparsity for Region �6. Conditional profile for GoS is indeed highly sparse
compared to other profiles in A. Thus, because of the strong importance of
the variation in sparsity in the d2

2 dissimilarity, GoS is wrongly selected by d2
2,

as illustrated in the second simulated scenario in Section 3.4. Moreover, the
fact that d2

s is the only method able to correctly detect Region �6 is enhanced
by the simulation results obtained in Figure 3.
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4.3. Genomic regions with more than one targeted breed

In our dataset, Dac and TYo are the only two breeds affected by Chon-
drodysplasia, characterized by Region �5. Results in Table 2 show that single-
linkage detection with d2

s, d2
2 and Sparcl correctly selects A ={Dac, TYo}.

Dac and TYo have very similar conditional profiles and are considered as
the two closest breeds for dissimilarities d2

s, d2
2 and Sparcl. Heterogeneity in

conditional profiles and sparsity in A are relatively small, so that A is con-
sidered as a Kruskal-connected component for d2

s, d2
2 and Sparcl. However,

single-linkage detection with the other methods fails at correctly selecting
A. For example, for the χ2 distance, although A is considered as a Kruskal-
connected component after two steps of the Kruskal algorithm, A is not a
Kruskal-connected component. Using the χ2 dissimilarity, EBD is indeed
close enough to Dac and TYo to coalesce with A before all breeds in A
clustered. The results observed for Region �5 are illustrated by the results
obtained in Figure 2 in the simulation study.

Five breeds are concerned by the signal in the Region �2: A ={BoT,
IrW, JRT, StP, TYo}. None of the dissimilarities were able to detect A with
single-linkage detection. The main reason for such common failure is that A
is actually not homogeneous since A can be divided into 3 subsets: {IrW,
StP}, {BoT, TYo} and {JRT}. It is noteworthy that subset {IrW,StP}
is a Kruskal-connected component for all dissimilarities except Jaccard and
Cosine. For χ2, it can be further remarked that one element in A, NFd,
is close to {IrW,StP} simply because NFd has a low sparsity. Proximity
between NFd and {IrW, StP} is not a consequence of similitude in terms of
sparsity and specificity, thus proving that χ2 is not adapted to the detection
of molecular signatures of selection. Regarding d2

2, heterogeneity in sparsity
in A is high enough to exclude one breed, Dob, thus preventing A to be
a Kruskal-connected component. Conversely, by putting less weight on the
variation in sparsity, d2

s is able to detect the subset {IrW,StP}, demonstrating
that d2

s is more adapted than d2
2 to detect molecular signatures of selection.

5. Discussion

In this paper, a statistical approach, called SMILE, for detecting sparse-
specific profiles in contingency tables is proposed. The SMILE procedure
selects the smaller of the two subsets linked at the final step of a single-
linkage clustering based on a novel dissimilarity measure d2

s. Compared to
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other dissimilarity measures, d2
s has been designed to equally account for

sparsity and specificity on the targeted profiles.
It is established that the detection of a subset A by single-linkage de-

tection is conditioned by the structure of A and A. The benefit of using
the novel dissimilarity d2

s in comparison to one classical dissimilarities d2
2 is

shown. The use of d2
s is also compared to 11 other methods in a simulation

study, for which three main scenarios are detailed. Some parameters of the
simulation setup are chosen to mimic a real dataset that aims at character-
izing molecular signatures of selection in the domestic dog. Results obtained
for the six genomic regions of interest are consistent with the simulations and
general results of single-linkage detection. On the one hand, the simulation
study and the analysis of the LUPA dataset demonstrates that Jaccard, Bray-
Curtis, d2

1, χ2, Hellinger, Gower and Cosine dissimilarities are not adapted
to sparse-specific profile detection. χ2, for example, focuses on the specificity
of conditional profiles, thus failing at distinguishing between sparse and non-
sparse profiles. When the studied table is sparse, specific rare categories are
expected to be over-represented. This may fortuitously generate individuals
with specific and non-sparse profiles leading to a lack of power of the χ2

distance when dealing with sparse contingency tables. On the other hand,
d2

s is outperforming d2
2, Sparcl, NMF and LSA by being less sensitive to the

structure of non targeted individuals. d2
s is indeed the only method able to

correctly detect 5 regions. All other methods also fail at finding the only
missed region by d2

s, (Region �2), thus demonstrating the strength of the
novel dissimilarity d2

s in a real situation. The good performances of Sparcl
and d2

2 (that both correctly detect the four Regions �1, �3, �4, �5), are also
in agreement with the simulation study. Region �3 and Regions �1, �4, �5,
indeed correspond to the simulated scenarios �1 and �2 shown in Figure 1
and 2, for which Sparcl and d2

2 have high power. Regarding the furnishing
trait, characterized by genomic Region �2 in Table 2, none of the methods
is able to detect the five selected breeds since more than two clusters have
to be detected. From a biological point of view, furnishing trait is a com-
plex phenotype that might be divided into sub phenotypes according to some
interactions with other traits such as coat length for example [23].

Results obtained on the real dataset give promising new insights in the
detection of selection signatures. First, because of the close proximity be-
tween dogs and humans, identifying the targets of selection as well as the
genetic variants involved in phenotypic variation of the domestic dog can
help the identification of similar variants and novel molecular pathways in
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humans [20]. Moreover, the application of our methodology to other species
might help in improving the control of genetic variability, thus improving,
for example, milk production in agronomy [24].
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Appendix A. Software

Software in the form of R code, together with samples of input data set
and documentation is available at
http://emily.perso.math.cnrs.fr/SMILE/SMILE_CodeR.zip.

Appendix B. Technical Appendices

Proof of Lemma 2.1.
According to Definition 2.3, it can be remarked that if inequality (4)

does not hold, one element of A would at least belong to the first connected
component that contains the whole subset A. Therefore, the set A, alone,
could not be a connected component at any stage of the Kruskal algorithm.
�
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Proof of Theorem 2.1.
If a subset A is selected by the SMILE procedure, it is connected at the fi-

nal step of the hierarchical clustering. Furthermore, by Definition 2.4, A and
A are Kruskal-connected components since they both are connected compo-
nents at the final step of the Kruskal algorithm. According to Lemma 2.1 we
thus have: dMST (A) < minx∈A,y∈Ad(x, y) and dMST (A) < minx∈A,y∈Ad(x, y),
which is equivalent to:

max(dMST (A), dMST (A)) < minx∈A,y∈Ad(x, y).

However, if either A or A is not a Kruskal-connected component, one can
remark that A would not be selected by the SMILE procedure. In that case,
inequality (5) is not satisfied. �

Proof of Lemma 2.2.
Let x ∈ E such that x �= x0 and x �= xs. By Definition 2.6, since xs is

totally specific, 〈x, xs〉2 = 0, leading to:

d2
s(x0, xs) = 2 ‖x0‖2 ‖xs‖2 < 2 ‖xs‖2 ‖x‖2 = d2

s(x, xs)

and
d2

2(x0, xs) = ‖x0‖2
2 + ‖xs‖2

2 < ‖xs‖2
2 + ‖x‖2

2 = d2
2(x, xs)

�

Proof of Lemma 2.3.
Let x ∈ E such that x �= x0 and x �= xs. Since xs is nearly totally

specific for d2
s and d2

2, we have 〈x0, xs〉2 = 0. Furthermore, xs is the sparsest
conditional profile, leading to:

d2
s(x0, x) = 2(‖x0‖2 ‖x‖2 − 〈x0, x〉2) ≤ 2 ‖x0‖2 ‖x‖2

< 2 ‖x0‖2 ‖xs‖2 = d2
s(x0, xs),

and:

d2
2(x0, x) = ‖x0‖2

2 + ‖x‖2
2 − 2 〈x0, x〉2 ≤ ‖x0‖2

2 + ‖x‖2
2

< ‖x0‖2
2 + ‖xs‖2

2 = d2
2(x0, xs).

�
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Proof of Lemma 2.4. Let define the dissimilarity between two Kruskal-
connected components, called C and D by:

d(C, D) = minx∈C,y∈Dd(x, y).

Let also introduce, for any Kruskal-connected component C, its closest Kruskal-
connected component, called C∗, as follows:

d(C, C∗) = minCi �=Cd(C, Ci) (B.1)

Thus, ∀x ∈ E, C∗
x is the closest Kruskal-connected component to its own

Kruskal-connected component Cx. By Definition 2.7, since xs is nearly totally
specific, d(x0, xs) = minx �=xsd(x, xs). Then:

d(xs, C
∗
xs

) = d(xs, x0)

and, given that x0 ∈ Cx0 , C∗
xs

= Cx0 and thus ∀C� �= Cxs :

d(xs, Cx0) = d(xs, x0) ≤ minx �=xsd(x, xs) ≤ d(xs, C�)

�

Proof of Theorem 2.2. Since the case of n = 2 is not of interest, let consider
n > 2. At the first step of the single-linkage algorithm, all individuals are
isolated so that ∀x ∈ E,Cx = {x}. Thus we have Cxs = {xs} and ∃x �∈
Cx0 = {x0}.

Let now consider the kth step of the single-linkage algorithm, where k <
n − 1. Thus, the kth step is not the last step and the number of connected
components is n − k + 1 ≥ 3. Let further assume that xs is not connected
to any other individual, i.e. Cxs = {xs}. First, let x be an individual not
connected to x0: Cx �= Cx0 . Then:

minC� �=Cxd(C�, x) ≤ d(Cx0 , x) = mint∈Cx0
d(t, x) ≤ d(x0, x).

Thus, from Lemmas 2.3 and 2.4 we have:

minC� �=Cxd(C�, x) < d(xs, Cx).

Considering the minimum over all elements in Cx in the above inequality and
using Equation B.1, we have:

d(Cx, C
∗
x) < d(Cx, xs) = d(Cx, Cxs). (B.2)
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Let now consider the Kruskal-connected component containing x0. Since we
consider the kth step of the single-linkage algorithm with k < n − 1, there
exists a Kruskal-connected component C such as C �= Cx0 and C �= Cxs .
Furthermore, according to Lemma 2.3, ∀x ∈ C we have d(x0, x) < d(x0, xs).
Thus by minimizing over all individuals in C and all possible C we obtain
that: minC� �=Cx0

d(x0, C�) < d(x0, xs). Since xs is nearly totally specific and
Cxs = {xs}, we have:

d(Cx0 , C
∗
x0

) ≤ minC� �=Cx0
d(x0, C�) < d(x0, xs) = d(Cx0 , Cxs) (B.3)

Therefore, if k < n − 1, xs can neither be linked to any C� �= Cx0 ,
according to inequality B.2, nor to Cx0 , according to inequality B.3. Thus at
the final step of the single-linkage algorithm, xs is a singleton and is linked
to the other individuals, meaning that xs would be selected by the SMILE
procedure. Furthermore, the level of the last merger is d(x0, xs). �

Proof of Theorem 2.3. Since xs is nearly totally specific for d2
2, 〈xs, x0〉2 = 0.

Furthermore, ∀x �= xs, d2
2(xs, x0) ≤ d2

2(xs, x), thus:

d2
s(xs, x0) = d2

2(xs, x0)− (‖xs‖2 − ‖x0‖2)
2

≤ d2
2(xs, x)− (‖xs‖2 − ‖x‖2)

2 = d2
s(xs, x)

since (‖xs‖2 − ‖x0‖2)
2 ≥ (‖xs‖2 − ‖x‖2)

2. �

Appendix C. Supplementary interpretation

Appendix C.1. Graphical interpretation of inequality (4) in section 2.4 of the
main text

In the first example of Figure C.4, it can be remarked that A and A are
both Kruskal-connected components at the final step of the algorithm and
inequality (1) holds for A and A. However, in the second example, A is not
a Kruskal-connected component since the first individual in A is linked to A
before being linked to any other individual in A. Inequality (1) is therefore
not satisfied as the level of the black dots is smaller than dMST (A).

Appendix C.2. Graphical interpretation of inequality (5) in section 2.4 of the
main text

In the first example of Figure C.4, one can remark that dMST (A) and
dMST (A) are both lower than minx∈A,y∈Ad(x, y). A and A are actually
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Figure C.4: Two examples of hierarchical clustering with n = 7 and nA = 3. The black
dots represent the first level of clustering between an individual in A and an individual
in A, i.e. minx∈A,y∈Ad(x, y). The two examples illustrate the calculation of dMST (A)
and dMST (A). In the first example, subset A is selected by the SMILE procedure and
inequality (2) in the main text is satisfied. In the second example, subset A is not selected
by the SMILE procedure and inequality (2) in the main text does not hold.
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both Kruskal-connected components leading to the selection of A by the
SMILE procedure. However in the second example, we have dMST (A) <
minx∈A,y∈Ad(x, y) but dMST (A) > minx∈A,y∈Ad(x, y). Thus, although A is
a Kruskal-connected component, A is not selected by the SMILE procedure
because of the structure of A. In other words, the structure of A and A both
play major roles in the selection of A by the SMILE procedure.
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Appendix D. Impact of design parameters on the simulation-based
power study

Appendix D.1. Influence of the number of individuals, n.

In this section, we study the impact of the number of individuals in the
result of our simulation-based power study. For this purpose, simulations
under the three scenarios �1, �2 and �3 described in sections 3.3 and 3.4,
have been performed with three different values: n = 15, n = 30 and n = 50.
The results are shown in Figures D.5, D.6 and D.7 for Scenario �1, �2 and
�3, respectively and prove that the impact of n is very limited. Conclusions
regarding the good performances of our proposal d2

s are still valid for any n.
Furthermore, the only methods for which power depends on n are χ2, LSA,
Gower and, to a lesser extent, Hellinger, d2

1 and Bray-Curtis.
In more detail, we can note In Figure D.5 that n has almost no impact on

the power for all methods. Regarding Scenario �2, d2
s, d2

2 and Sparcl remain
the three best methods for all n and their power is not influenced by the
number of individuals. We can further remark that power is increasing with
n for χ2, is decreasing with n for LSA and Gower while being constant with
n for all other methods. The results in Figure D.7 show that d2

s remains the
most powerful method with respect to n. We can also note that power for n
is not impacted by n. We can further remark that power is increasing with
n for χ2, decreasing with n for Hellinger, d2

1, Bray-Curtis, Gower and LSA
and remains constant for the other methods.

n = 15 n = 30 n = 50

Figure D.5: Impact of n in the simulated scenario with specific and non-sparse profile in
Ā as described under Scenario �1.
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n = 15 n = 30 n = 50

Figure D.6: Impact of n in the simulated scenario with variation in sparsity within Ā as
described under Scenario �2.

n = 15 n = 30 n = 50

Figure D.7: Impact of n in the simulated scenario with variation in sparsity within Ā as
described under Scenario �3.
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Appendix D.2. Influence of the number of categories, k.

In this section, we study the impact of the number of individuals in the
result of our simulation-based power study. For that purpose, simulations
under the three scenarios �1, �2 and �3 described in sections 3.3 and 3.4, have
been performed with three different values: k = 40, k = 100 and k = 200.
The results are shown in Figures D.8, D.9 and D.10 for Scenario �1, �2 and
�3, respectively and prove that.

In more detail, we can note in Figure D.8 that k has almost no impact
on the power for all methods except for χ2 for which power slightly increases
with k. The results for Scenario �2 show that k does not influenced the power
for d2

s, d2
2 and Sparcl that remain the most powerful methods for all k. Power

is decreasing with k for χ2, LSA, d2
1, Bray-Curtis and Hellinger, increasing

with Gower while being constant for the other methods. Regarding Scenario
�3, our dissimilarity d2

s keeps the most powerful method for any k. Power for
LSA and χ2 tends to decrease with k while power for Hellinger, Bray-Curtis,
d2

1 and Gower increases with k.

k = 40 k = 100 k = 200

Figure D.8: Impact of k in the simulated scenario with specific and non-sparse profile in
Ā as described under Scenario �1.
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k = 40 k = 100 k = 200

Figure D.9: Impact of k in the simulated scenario with variation in sparsity within Ā as
described under Scenario �2.

k = 40 k = 100 k = 200

Figure D.10: Impact of k in the simulated scenario with variation in sparsity within Ā as
described under Scenario �3.
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Appendix E. d2
α: a family of weighted dissimilarity measures

In this section we focus on the importance of the weights given to sparsity
and specificity in the dissimilarity. To fit with the features of sparse-specific
profiles, our proposed dissimilarity, d2

s, equally weights sparsity and speci-
ficity. Nevertheless, d2

s can be seen as a member of a more general family of
measures, d2

α, defined as follows:

∀x, y ∈ E : d2
α(x, y) =

([
‖x‖2 ‖y‖2

]α[
d2

θ(x, y)
]1−α)2

where

d2
θ(x, y) = 2

(
1− 〈x, y〉2

‖x‖2 ‖y‖2

)
is the square of the angular distance as defined in Equation (2). Since
d2

s(x, y) = d2
α=1/2(x, y), it is straightforward to see that d2

α(x, y) is a gen-

eralization of the definition of d2
s given in Equation (1). Furthermore, the

term
[
‖x‖2 ‖y‖2

]
is a measure of the sparsity while

[
d2

θ(x, y)
]

is a mea-

sure of the specificity. Thus, the measure dα is a weighted geometric mean
of the sparsity and the specificity and our proposal d2

s is the corresponding
geometric means with equal weights to sparsity and specificity.

To evaluate the impact of α, simulations under the three scenarios �1,
�2 and �3 described in sections 3.3 and 3.4, have been performed with α ∈
{0.1, 0.2, 0.3, 0.4, 0.5 (i .e. d2

s), 0.6, 0.7, 0.8, 0.9}. The results, shown in Fig-
ure E.11, confirm that d2

s is the most powerful method in the three simulated
scenario. On one hand, we can remark that choosing a low value for α (for
instance α = 0.1 or 0.2) tends to decrease power in the Scenario �1. On
the other hand, using a high value for α (for instance α ≥ 0.6) leads to a
significant loss of power in Scenario �3. The results of Scenario �2 further
illustrates that α = 0.5 is an appropriate choice for detecting sparse-specific
profiles since the further from 0.5 the value of α, the lower the power.

36



Scenario �1 Scenario �2 Scenario �3

Figure E.11: Impact of α, the weights given sparsity and specificity, on the power under
the three simulated scenarios �1, �2 and �3.

Appendix F. Supplementary tables
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Table F.4: Total samples used in the illustrated dataset from the European consortium
LUPA.

Breed Code Number of dogs
Bernese Mountain Dog BMD 24
Belgian Tervuren BeT 20
Beagle Bgl 24
Border Collie BoC 32
Border Terrier BoT 50
Brittany Spaniel BrS 24
Cocker Spaniel CoS 28
Dachshund Dac 24
Doberman Pinscher Dob 50
English Bulldog EBD 26
English Setter ESt 24
Elkhound Elk 24
Eurasier Eur 24
Finnish Spitz FSp 24
Golden Retriever GRe 50
German Shepherd GSh 28
Greenland Sledge Dog GSl 22
Gordon Setter GoS 24
Greyhound Gry 24
Irish Wolfhound IrW 22
Jack Russell Terrier JRT 24
Labrador Retriever LRe 28
Newfoundland NFd 50
Nova Scotia Duck Tolling Retriever NSD 46
Rottweiler Rtw 24
Schipperke Sci 50
Shar-Pei ShP 22
Standard Poodle StP 24
Yorkshire Terrier TYo 24
Weimaraner Wei 52

38



Table F.5: Summary of the biological knowledge for the six genomic regions used as
test regions to validate our method. The second row, denoted by Chr., refers to the
chromosome carrying the region. nA is the cardinal of the set A and refers to the number
of individual(s) (or breed(s)) under selection. k1 is the cardinal of K and corresponds to
the number of category(ies) (or haplotype(s)) involved in the selection. k corresponds to
the total number of categories (or haplotypes).

Region �1 Region �2 Region �3 Region �4 Region �5 Region �6
Chr. 1 13 13 13 18 27
Related HMGA2 RSPO2 HSA2 HSA2 Fgf4 KRT71
gene
Trait Brachicephaly Furnished Skin Periodic Fever Chondro- Curly

wrinkling Syndrome dysplasia
Breed(s) EBD BoT, IrW, ShP ShP Dac StP
under JRT, StP and TYo
selection and TYo
nA 1 5 1 1 2 1
k1 1 2 2 2 1 1
k 377 367 124 228 44 55
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