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Abstract

The evaluation of the time-varying vagal and sympathetic contributions
to heart rate remains a challenging task because the observability of the
baroreflex is generally limited and the time-varying properties are difficult to
take into account, especially in non-stationnary conditions. The objective is
to propose a model-based approach to estimate the autonomic modulation
during a pharmacological challenge.

A recursive parameter identification method is proposed and applied to a
mathematical model of the baroreflex, in order to estimate the time-varying
vagal and sympathetic contributions to heart rate modulation during auto-
nomic maneuvers. The model-based method was evaluated with data from
five newborn lambs, which were acquired during injection of vasodilator and
vasoconstrictor drugs, on normal conditions and under beta-blockers, so as
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to quantify the effect of the pharmacological sympathetic blockade on the
estimated parameters.

After parameter identification, results show a close match between exper-
imental and simulated signals for the five lambs, as the mean relative root
mean squared error is equal to 0.0026 (+/-0.003). The error, between simu-
lated and experimental signals, is significantly reduced compared to a batch
identification of parameters. The model-based estimation of vagal and sym-
pathetic contributions were consistent with physiological knowledge and, as
expected, it was possible to observe an alteration of the sympathetic response
under beta-blockers. The simulated vagal modulation illustrates a response
similar to traditional heart rate variability markers during the pharmacolog-
ical maneuver. The model-based method, proposed in the paper, highlights
the advantages of using a recursive identification method for the estimation
of vagal and sympathetic modulation.

Keywords: keywords : Model-based method, Autonomic nervous system,
Parameter identification, Physiological modelling.

1. Introduction

During the first days of life, newborns may be exposed to various life
threatening events, such as intracranial hypertension, neonatal septic shock
or streptococcus b infection. These events induce physiological challenges
that trigger protective autonomic autoresuscitation reflexes and the evolu-
tion of the newborn state directly depends on the responses of both vagal
and sympathetic nervous activities. Monitoring the status of infants in the
Neonatal Intensive Care Unit (NICU) provides data of physiological variables
(arterial pressure, heart rate,...). Although the prognosis of the newborn will
depend on the maturity of his or her autonomic nervous system, informa-
tion about autonomic adaptation is difficult to access. As a consequence,
robust tools are required to evaluate time-varying evolutions of vagal and
sympathetic responses during newborn monitoring in NICU. In fact, evalu-
ating sympathetic and parasympathetic tones will give precious information
for the diagnosis and the choice of the most appropriate treatment.

Informations about the autonomic status are usually provided by Heart
Rate Variability (HRV) analysis, based time or frequency domaine indicators.
In particular, the high-frequency (HF) components of the power spectrum of
the HRV signal have been widely used as an indicator of the parasympathetic
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modulation and the low-frequency components (LF), are considered as a mix
of sympathetic and parasympathetic modulations. Time-frequency analyses
of heart rate (HR) series have also been applied to estimate these frequency-
domain markers in non-stationary conditions [1]. Another approach is based
on the application of blind source separation methods. Vetter et al [2] have
proposed a method based on independent component analysis (ICA) for the
estimation of the sympathetic, parasympathetic and respiratory activities as
three different, synchronous time-varying sources. Previous work of our team
extended this approach to an asynchronous processing of the observables [3].

However, it is difficult to interpret the results of most of these methods in
physiological terms, since no a priori knowledge about the underlying phys-
iology is integrated into the analysis. For instance, it is difficult to separate
the sympathetic and parasympathetic contributions to the LF marker or the
mechanical respiratory effect from the parasympathetic modulation of the
HF marker [4]. As a consequence, complimentary approaches are needed
in order to improve of the evaluation of sympathetic and parasympathetic
modulation and the interpretation of clinical data.

Yet another approach consists in the integration of physiological knowl-
edge into the analysis, by means of physiological models, integrating not only
the effect of ANS on HR, but also other physiological parameters. Several
models of the baroreflex, based on adult data, have been already proposed.
Those based on autoregressive representations are particularly adapted to
study interactions between RR interval, arterial pressure and respiration
[5, 6, 7]. Other models include an explicit representation of vagal and sym-
pathetic nervous systems [8, 9]. Transfer functions are largely used to repre-
sent the components of the baroreflex loop [10, 11, 12]. Most of them take
into account the non-linear behavior of the autonomic modulation [13, 14].
Some models have been employed to reproduce non-stationnary clinical tests,
such as the orthostatic stress [15, 16, 17] and Valsalva maneuvers [11, 18].
However, most of these models rely on population-based parameters (not
patient-specific parameters) or neglect their time-varying nature.

In this work, we propose an original approach, based on a model of the
baroreflex function, introducing: i) a phase of subject-specific model param-
eter identification and ii) a phase of estimation of the time-varying sym-
pathetic and parasympathetic modulations, through the use of a recursive
evolutionary algorithm. The proposed approach was evaluated with cardio-
respiratory data acquired from five newborn lambs, during non-stationary
conditions, provoked by the injection of a vasodilator and a vasoconstrictor
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drug, in normal conditions and during sympathetic blockade. Results from
the proposed approach were compared to traditional autonomic markers, ex-
tracted from time-frequency HRV analysis.

2. Methods

2.1. Data and experimental protocol

Experiments were performed on lambs aged 4-5 days. All lambs were
full-term at birth and housed with their mother. The protocol was approved
by the Committee for Animal Care and Experimentation of the University
of Sherbrooke, Canada. Surgery was performed two days before the experi-
ment under general anesthesia following the procedure detailed by Duvareille
et al. [19] for catheter implanting. Systemic arterial pressure (AP) was ob-
tained from the brachial catheter using a pressure transducer (Trantec model
60-800, American Edwards Laboratories, Santa Anna, CA, USA) and pres-
sure monitor (model 78342A Hewlett Packard, Waltham, MA, USA). Res-
piratory thoraco-abdominal movements were monitored with a respiratory
inductance plethysmography (RIP) system (Respitrace; NIMS Inc., Miami,
FL, USA). Two electrocardiogram (ECG) channels were acquired using a cou-
ple of ECG100 modules (Biopac Systems, Inc. Santa Barbara, CA, USA).
All signals (ECG, AP and respiration) were sampled at 1000 Hz and recorded
on a PC, using the MP100A data acquisition system and Acknowledge 3.7.3
software (Biopac Systems Inc. Santa Barbara, CA, USA).

Lambs were non-sedated and, throughout the recordings, were comfort-
ably positioned in a sling with loose restraints and monitored with the above-
mentioned recording system. Ambient temperature was 22◦C. An observer
was always present in the laboratory to note all events. The sequence of
experimentations started with a 3 min recording in basal conditions, while
during behaviorally-defined quiet sleep, followed by a continuous perfusion
of nitroprusside sodium (12μg.kg−1.min−1) for 360 seconds.

In the standardization process, we aim to maintain the state of alertness
(quiet sleep), which is quiet frequent but with short duration in full-term
lamb. The 3-min duration is a good compromise between sufficient duration
for the analysis and the preservation of quiet sleep. Subsequently, after a
30 min period of recovery, a bolus injection of nitroprusside (20μg.kg−1) was
administrated and was followed, after 120 seconds, by a bolus injection of
phenylephrine (4μg.kg−1) ( fig. 1). The same sequence of experimentations
was repeated another day, starting 5 minutes after the intravenous bolus
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Figure 1: Example of signals acquired with and without beta-blockers on two days. Ar-
terial pressure (mmHg) and RR (ms) obtained during the perfusion of nitroprusside and
after the bolus of phenylephrine.

administration of metoprolol (1 mg.kg−1) repeated each 30 mins. The meto-
prolol blocks the action of the sympathetic nervous system. The days, with
and without beta-blockers, were randomized in order to minimize the resid-
ual effect of metoprolol. At the end of the experimentation, the beta-blockers
administration is combined to an injection of atropine (200 μg.kg−1) in order
to obtain the intrinsic heart rate.

2.2. Baroreflex Model

The baroreflex model is represented in fig. 2. It includes the baroreceptors
and afferent pathways, the cardiovascular control centers and the efferent
pathways (including the vagal and sympathetic branches). The structure is
based on our previous baroreflex model, which was tested on one lamb signal
in [20] and was applied to the analysis of orthostatic stress in [17].

The baroreceptor (B) input is AP and its dynamical properties are repre-
sented by a first-order filter, whose gain and time constant are denoted KB

and TB, respectively. The derivative terme, attributed to baroreceptor dy-
namics, was neglected in this work in order to limit the number of parameters
for the identification step. The cardiovascular control centers are represented
by sigmoidal functions and two delays (DV and DS are respectively the sym-

6



Figure 2: Block diagram of baroreflex control of AP. Baroreceptors are represented by
a first-order filter (KB and TB). Vagal and sympathetic pathways are both modelled
by normalization functions (NV and NS), delays (DV and DS) and first-order filters
characterized by gains (KV and KS) and time constants (TV and TS). Time-varying
variables MV (t) and MS(t) modulates each nervous pathway. Intrinsic heart rate (HR0),
contributions from sympathetic (S) and vagal (V) branches are summed to obtained HR.

pathetic and parasympathetic delays). The efferent pathways are composed
of two first-order filters characterized by a gain (KV and KS for the vagal and
the sympathetic gains respectively) and a time constant (TV and TS). This
description is similar to other model representations [10, 8, 9]. This kind of
formalism allows for the representation of the global neurotransmitter dy-
namics for a particular efferent pathway and the description of the different
time responses of the sympathetic and the parasympathetic branches. Nor-
malization and saturation effects are represented by sigmoidal input-output
relationship [11]:

Nx = ax +
bx

eλx(Fb−Mx,0) + 1
(1)

where the generic index x ∈ (v,s) stands for the vagal and sympathetic
pathways,FB is the baroreceptor output, and the parameters ax, bx, λx and
Mx,0 are used to adjust the sigmoidal shape.

The main originality of the model is to propose specific variables to de-
scribe the short-term modulation of both nervous pathways. The vagal and
sympathetic activities are modulated by two time-varying variables MV (t)
and MS(t) which represent the influence of different brain structures on va-
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gal and sympathetic pathways. It is important to understand that these two
time-varying variables MV (t) and MS(t) aggregate all the influences, which
are not due to AP variations. It notably includes the impact of the closed-
loop structure of the baroreflex [21], the chemoreflex or central influences.
This representation allows us to differentiate the part of the vagal and sym-
pathetic nerve traffic that could be attributed to AP variation from other
influences.

The vagal activity is modulated by MV (t) and by the lung volume varia-
tions, assessed by the sum signal of the uncalibrated respiratory inductance
plethysmography (RIP) rescaled in a specific range (0, 1). The influence of
respiration on HR is modeled in a simple manner [9] by a vagal inhibition
during inspiration. The inhibition of vagal activation is implemented as a
multiplication by 1-Krespi.RIP. In this model, two major elements differenti-
ate the sympathetic and vagal activities : 1) the direction of the sigmoidal
input-output relationship 2) the differences between vagal and sympathetic
time constants (TV and TS) and delays (DV and DS). The differentiation
between vagal and sympathetic modulations is also attributed to the identi-
fication algorithm presented in the next section.

The sinus node response to vagal and sympathetic modulation could be
represented by a three-dimensional response surface[22]. However, in order
to reduce the number of parameters for the identification step, the continuous
output signal of the heart rate regulation model (HR) is obtained by adding
the contributions from the sympathetic (S) and vagal (V) branches and a
basal (intrinsic) heart rate (HR0):

HR = HR0 + S − V (2)

The proposed model includes several parameters that should be identified
in order to be adapted to the neonatal period and to be able to reproduce
signals acquired from a specific lamb. The identification method is presented
in the following section.

2.3. Identification method

2.3.1. General framework of the parameters identification.

The identification process was performed using the experimental AP and
RIP as inputs to the baroreflex model. The simulated RR interval signal,
which is calculated as the inverse of HR, is compared to the experimental
RR using the error functions described in this section.
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Figure 3: Two steps of the identification process. The constant parameters (TB , KV ,
TV , DV , KS , TS , DS) are firstly identified by minimizing the error function εb using
evolutionary algorithms. Then, (MV , MS) are identified recursively by minimizing the
error function εr.

One of the main difficulties here is to take into account the different dy-
namics associated with each parameter. Parameters TB, KV , TV , DV , KS,
TS, DS, which show slower dynamics with respect to beat-to-beat autonomic
modulations, were assumed to be constant during the time of the autonomic
maneuvers. On the other hand, modulations of vagal and sympathetic activ-
ities (MV (t) and MS(t)) are assumed to present rapid dynamics, which may
significantly change during the autonomic maneuver, justifying the time-
varying representation proposed in this work. In order to take into account
the differences between each kind of variables, the identification procedure
was composed of two steps ( fig. 3):

• Step 1: Batch identification of constant parameters (TB, KV , TV , DV ,
KS, TS, DS) on the complete RR signal, which total duration is referred
as Ttot;

• Step 2: Recursive identification of time-varying variables (MV , MS).

These two steps are associated with errors functions, which are minimized
using evolutionary algorithms (EA), as in our previous works [17, 23, 20].
EA are stochastic search methods, inspired by the theories of evolution and
natural selection, which can be employed to find an optimal configuration
for a given system [24].

2.3.2. Batch identification of constant parameters

Concerning the first step ( fig. 4), uniform distribution bounded by feasi-
bility intervals was defined to create the initial population of the EA for each
parameter: (0.01, 1) for TB (s), (0.01, 1.5) for TV (s), (0.1, 0.5) for DV (s),
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Figure 4: General diagram of the batch identification step. The constant parameters (TB ,
KV , TV , DV , KS , TS , DS) are first identified by minimizing the error function εb. The
experimental signals, AP and RIP, are the input of the baroreflex model, which produces
a simulated RR. The error function, between simulated RRsim and experimental RRexp,
is minimized using EA.

(0.6, 360) for KV (bpm), (5, 20) for TS (s), (2, 6) for DS (s), (0.6, 360) for
KS (bpm). These intervals were defined by taking into consideration previ-
ously published parameter values [10, 11, 9] and are large enough to assure
an accurate research of parameters values. During the batch identification,
an error function εb was defined on the whole duration of the experimental
signal:

εb =
Ttot∑
te=0

| RRsim(te)−RRexp(te) | (3)

where te corresponds to the time elapsed since the beginning of nitro-
prusside injection and Ttot is the length of the experimental signal equal to
200 seconds. The constant parameters, determined from the first step of
the identification, are used in the baroreflex model in order to perform the
recursive identification of the time-varying variables (MV , MS).

2.3.3. Recursive identification of time-varying variables

The second step ( fig. 5) is based on a recursive parameter identification
procedure. At each step i of the algorithm, parameters are identified on
a given time interval (TI), which duration is largely inferior to the total
duration of the experiments (Ttot) such as: TI << Ttot. The following error
function is thus minimized:
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Figure 5: Diagram illustrating the recursive identification algorithm. At the step i, the
error function εr(i) is calculated on the identification interval TI and minimized using
EA. At the step i+1, the identification interval is shifted of TL which is the overlap time
between each interval, and εr(i+1) is also minimized using EA. TI and TL are respectively
equal to the sympathetic and vagal time constant (TS and TV ).The longest interval TI is
used to identify the low frequency component of the signal whereas the shortest interval
TL capture the high frequency compound.

εr(i) =

(i+1)TL∑
te=iTL

| RRsim(te)−RRexp(te) | +
iTL+TI∑
te=iTL

| RRsim(te)−RRexp(te) |, i ∈ [0, ..., N ]

(4)
where te corresponds to the time elapsed since the onset of the identifica-

tion period, TL is the overlap time between each interval and N is the number
of identification intervals, which is equal to the integer part of Ttot/TL. The
overlap time duration TL was chosen equal to the vagal time constant (TV ) to
capture rapid events due to the vagal response. The identification interval TI
is equal to the sympathetic time constant (TS) in order to take into account
slow variations.

This error function is minimized on each interval i using EA. Concerning
the first interval, a set of random initial solutions was used to create the
initial population. For the following intervals, the initial population was
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set equal to the population obtained from interval i-1 considering that the
parameter variation between intervals is limited. Although this approach of
attribution of initial populations limits the parameters changes, a mutation
operator with probability pm = 0.2 helps the process to explore the entire
search space and prevent from convergence to a local minimum.

2.4. Estimation of the vagal modulation from time-frequency domain methods

Although, HRV analysis is a subject of controversy [4], the most com-
mon autonomic markers are extracted from frequency domain methods [25].
Two major components of the HRV spectrum have been considered: Low
Frequency (LF: 0.02-0.25 Hz), and High Frequency (HF: 0.25-2 Hz). These
frequency bands have been adapted to the newborn lamb, as proposed in our
previous work [26].

The HF component of the RR series is widely believed to reflect car-
diac efferent parasympathetic modulation [25]. The interpretation of the LF
component is more complex because it includes both sympathetic and vagal
influences [27, 28, 29]. Usually spectral approaches require the signals to
be stationary, which is inappropriate for studying non-stationary processes
induced by pharmacological stimulations. To overcome these limitations, a
time-frequency analysis is used to evaluate spectral characteristics. In this
paper, a smoothed pseudo-Wigner-Ville distribution (SPWVD) was used be-
cause it has proved its usefulness for the analysis of cardiovascular signals
[1]:

Cx(t, f) = Wx(t, f)⊗ φx(t, f) (5)

where Cx is a Cohen’s class of quadratic time-frequency distributions, ⊗
represents the convolution on t and f, φx is a Cohen kernel function, which
parameters were defined from [30, 1] andWx is the Wigner-Ville distribution:

Wx(t, f) =

∫ ∞

−∞
x(t+ τ/2)x∗(t− τ/2)e−2πτf dτ (6)

where ∗ corresponds to the complex conjugation. The high frequency power
of RR (HF) was computed in the 0.25 to 2 Hz band in order to reconstruct
the evolution of HF component with respect to time.

EHF (t) =

∫
HF

Cx(t, f) df (7)
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Figure 6: Wigner-Ville time-frequency representations obtained from the RR signals of
lamb 1, without sympathetic blockade. Four periods of 40 seconds were defined: NPb
(Nitroprusside beginning) for [0s,40s], NPm (Nitroprusside middle) for [40s,80s], NPe (Ni-
troprusside end) for [80s,120s] and PE (Phenylephrine) for [120s,160s].

Four periods of 40 seconds were defined in order to capture the variations
of HF during the pharmacological stimulation ( fig. 6): NPb (Nitroprus-
side beginning) for [0s, 40s], NPm (Nitroprusside middle) for (40s,80s), NPe
(Nitroprusside end) for (80s,120s) and PE (Phenylephrine) for (120s,160s)
( fig. 6). Four normalized vagal indices were defined for each period P ∈
(NPb, NPm, NPe, PE) for the HRV indices EHF and the model-based vagal
contribution V:

HFnP =

∫
P
EHF (t) dt∫

Ttot
EHF (t) dt

, V nP =

∫
P
V (t) dt∫

Ttot
V (t) dt

(8)

HFnP and V nP corresponds respectively to the energy of EHF and V,
on each period P, normalized with respect to total energy of EHF on the four
periods Ptot = (0,160) (s). The definition of theses two indices will allow an
accurate comparison between HRV and model-based analysis results.

3. Results and Discussion

3.1. Batch identification of constant parameters

The model used in this work was implemented using the M2SL simula-
tion library [31]. Results obtained concerning the identification of constant
parameters (step 1 of fig. 3) are exposed in table 1. Delays and time con-
stants differ from adult humans concerning both the vagal and sympathetic
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Table 1: Identified values for constant parameters obtained after the batch identification.

TB (s) KV (bpm) TV (s) DV (s) KS (bpm) TS (s) DS (s)

0.50 76.68 0.680 0.31 98.4 11.8 4.0
(± 0.05) (± 25.2) (± 0.18) (± 0.23) (± 19.8) (± 1.42) (± 0.20)

systems [10, 8, 9]. Other than the inter-species variability, these differences
can be explained by the maturity of the autonomic nervous system, because
parameters evolve rapidly during the first days of life. Identification results
are in agreement with spectral analysis performed on neonates signals [32].

The results obtained with the batch identification on two representative
lambs are shown in fig. 7. The beginning of the RR series corresponds to
the nitroprusside injection, and the phenylephrine bolus is injected after 120
seconds. The decrease of AP and RR interval, which can be observed in the
first part of the signal, is the consequence of the vasodilation induced by ni-
troprusside. Then, the RR slowly increases in response to AP augmentation,
due to autonomic regulation of hemodynamic variables. Finally, the injection
of phenylephrine (at t = 120 seconds) induces a vasoconstriction. In both
cases, the vagal contribution (V) decreases during nitroprusside injection
while sympathetic contribution (S) increases. The phenylephrine induces a
rise of vagal and a diminution the sympathetic modulations. This estima-
tion of the vagal and sympathetic contribution is physiologically relevant.
However, the batch identification failed to reproduce the whole morphology
of the RR response. Theses simulations illustrate the need of more accurate
methods in order to estimate the RR responses to pharmacological stimula-
tion.

3.2. Recursive identification of time-varying parameters

Parameter values in Table 1 were used and kept constant during the
recursive identification ofMV andMS. Results obtained with recursive iden-
tification are depicted on fig. 8 for the two representative lambs with and
without beta-blockers.

Fig. 8 (E,F,G,H) shows the comparison between simulated (black lines)
and experimental (red lines) RR intervals after recursive identification. These
curves illustrate a satisfactory fit of the model to real data. In order to quan-
tify the difference between experimental and simulated signals, the relative
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Figure 7: Results obtained with the batch identification. Observed (grey lines) and batch
simulated (black lines) RR intervals (ms) acquired from two representative lambs, without
sympathetic blockade. Vagal (V) and sympathetic (S) contributions are expressed in bpm
as they are added to HR0 to obtain current HR

.

Root Mean Square Error (rRMSE) was computed as

rRMSE =

√√√√ 1

n

n∑
i=1

(
RRsim(i)−RRexp(i)

RRexp(i)
)2 (9)

where n is the number of samples. Indeed, the rRMSE is respectively equal to
0.0030 (+/-0.0038) and 0.0020 (+/-0.0032) for the five lambs under normal
conditions and under beta-blockers. The comparison of the errors obtained
with the batch and recursive identifications is presented in Table 2. The mean
rRMSE, which is equal to 0.0156 and 0.0026 respectively for the batch and
recursive identification, illustrates the ability of the recursive identification
to provide a more satisfying fit to experimental data.

The mean effects metoprolol were quantified on the baseline period be-
fore injection of nitroprusside. Without beta-blockers, the mean AP, HR
and inspirations period (Ti) are respectively equal to 359.9 (+/- 75.1) msec,
74.0 (+/-11,7) mmHg and 0,57 (+/-0,58) sec. Under beta-blockers, AP,
HR and Ti are respectively equal to 365.0 (+/-61,0) msec, 365.07 (+/-10,7)
mmHg and 0.37 (+/-0,3) sec. These results reflect some variability between
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Figure 8: Results obtained for two representative lambs without sympathetic blockade and
with beta-blockers. Subcharts (A, B, C, D) present the AP in mmHg. Simulated (red line)
and experimental (black line) RR interval (ms) are represented on subchart (D, E, F, G).
Contributions of the vagal (V, bpm) and sympathetic (S, bpm) activities are illustrated
in (I, J, K, L). Contributions of the vagal and sympathetic modulation (respectively MV

and MS , n.u.) determined by the recursive identification are shown in (M, N, O, P). The
vertical dotted lines (120s) correspond to the injection of phenylephrine. On each diagram,
the abscissa is the time expressed in seconds.

Table 2: Comparison between the relative root mean squared error (rRMSE) calculated
for each lamb after batch and recursive identification.

rRMSE Lamb 1 Lamb 2 Lamb 3 Lamb 4 Lamb 5 Mean value

Batch 0.0397 0.0133 0.0031 0.0157 0.0063 0.0156
Identification

Recursive 0.0023 0.0024 0.0002 0.0077 0.0004 0.0026
Identification
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sheep responses to metoprolol. Although the experimental conditions were
standardized (drug doses, state of alertness,...), the experiments (with and
without beta-blockers) lasted for 2 days and the uncontrolled variations of
environnemental conditions could explain the observed variability.

The estimated contributions of vagal and sympathetic pathways, which
both describe the tonic and reflex feature of autonomic modulation, are
shown in fig. 8 (I, K) with no sympathetic blockade. During the first 100
seconds, these signals are characterized by a decrease of vagal modulation
and an increase of sympathetic modulation. Then, the parasympathetic con-
tribution begins to rise and the sympathetic contribution falls because AP
stabilizes. After the injection of phenylephrine occurring at 120 seconds, the
vagal modulation suddenly rises and, then, is maintained while sympathetic
activities slowly decrease after the injection.

The curves, shown in fig. 8 (J, L), depicts the contributions of vagal and
sympathetic pathways with beta-blockers. Although the injection of nitro-
prusside is performed at the beginning (t = 0s), vagal and sympathetic con-
tributions are relatively stable until the injection of phenylephrine. After 120
seconds, parasympathetic modulation shows a little increase and then stabi-
lizes. The sympathetic activities remain stable because beta-blockers block
the action of the sympathetic nervous system. Model-based estimations of
the dynamics of vagal and sympathetic activities illustrate different behav-
iors in the absence of a sympathetic blockade drug and with beta-blockers.
In the first case, the baroreflex modulation allows for the stabilization of AP,
while this stabilization is not observed while using beta-blockers. The resid-
ual sympathetic contribution to HR after beta-blockade could be explained
by the intrinsic sympathomimetic activity of metoprolol. These results show
how the proposed approach may be used to estimate the individual dynamic
responses of the sympathetic and parasympathetic systems during autonomic
maneuvers.

fig. 8 (M,N,O,P) also illustrates the evolution of the identified variables
MV (t) and MS(t). These two time-varying variables reflect the part of the
neural activity that is not explicitly represented within the model as func-
tions of AP or respiration: central modulation, impact of the closed-loop
structure of the baroreflex or the influence of drug administration. Under
beta-blockers, a diminution of the sympathetic modulation (S) is associated
with significant variations of MS after the phenylephrine administration. In
fact, the variations ofMS balance the neural activity coming from the barore-
ceptors that directly depends on the arterial pressure. The interpretation of
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MV (t) and MS(t) are quite uneasy because they aggregate several physi-
ological phenomena. However, their influences on vagal and sympathetic
pathways are essential to reproduce the response of HR in response to arte-
rial pressure variations. In the following part of the article, we will focus on
the vagal and sympathetic contributions (V and S).

3.3. Comparison with classical HRV indexes

The estimations of the sympathetic and vagal pathways, presented in
fig. 8 (I,J,K,L), seem to be consistent with physiological knowledge. However,
the proposed approach should be compared to other well recognized methods.
Frequential methods are known as references for the HRV analysis. Because
of the non-stationnarity of the signals under study, it was necessary to use
time-frequency methods, as explained in section 2.4. As the HF component of
the RR series is associated with cardiac efferent parasympathetic modulation,
the evolution of HF component is compared to the model-based estimation
of vagal modulation.

The boxplot, exposed in fig. 9, illustrates that indices obtained with HRV
and model-based analysis have the same evolution during the pharmacologi-
cal stimulation. This comparison highlights the consistency of the estimation
of the vagal pathway using the modeling approach. However, it is important
to understand that our goal is not to reach a maximal similarity. Our hy-
pothesis is that the model-based approach provides a better estimation of
the vagal modulation, since it takes into account both the high-frequency
and the low-frequency components of the parasympathetic modulation.

4. Conclusion

In this paper, a model-based approach was used to estimate the vagal and
sympathetic contributions to HR modulation during pharmacological stim-
ulations. The main originality is to propose a recursive identification of the
parasympathetic and sympathetic modulations. This strategy of identifica-
tion improves the ability of the baroreflex model to reproduce experimental
signals, providing time-varying estimations of the individual dynamics of
the vagal and sympathetic activities that were consistent with physiological
knowledge and traditional HRV markers. The advantage of the proposed
model-based approach is to bring information on the evolution of sympa-
thovagal balance in non-stationary conditions and to include physiological
knowledge on the data processing.
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Figure 9: Boxplot of indices obtained from classical HRV analysis (HFn) and with the
model-based approach (Vn) for the five lambs. Four periods of 40 seconds were defined
in order to capture the variations of HF during the pharmacological stimulation: NPb
(Nitroprusside beginning) for (0s,40s), NPm (Nitroprusside middle) for (40s,80s), NPe
(Nitroprusside end) for (80s,120s) and PE (Phenylephrine) for (120s,160s).

The proposed model-based approach could be used to analyze time-varying
vagal and sympathetic modulations during various non-stationary conditions
associated with pediatric period. Future works will focus on the analysis of
the autonomic response to laryngeal chemoreflexes (LCR). Our previous re-
sults [33], based on classical HRV analysis, highlights a joint increase of
sympathetic and parasympathetic tones after laryngeal stimulation in term
lambs during quiet sleep. Although the interactions in sympathetic and vagal
HR controls is not directly represented in the model, the recursive identifi-
cation algorithm could estimate sympathovagal coactivation during LCR by
the mean of time-varying variables MV and MS. The baroreflex model could
also be improved by including: i) a better representation of the cardiorespi-
ratory interactions, based on our previous studies on ventilation [20], ii) the
introduction of an accurate model of circulation, which is associated with an
increased number of parameters that will require the use of sensitivity meth-
ods before the identification [34, 23]. The results presented in this paper are
encouraging for the use of this model-based approach in computer-aided di-
agnosis, and for testing different therapeutic scenarios with a patient-specific
model, especially in a pediatric context.
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