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ABSTRACT 52 

Tubulinopathies are increasingly emerging major causes underlying complex cerebral 53 

malformations, particularly in case of microlissencephaly often associated with hypoplastic or 54 

absent corticospinal tracts. Fetal akinesia deformation sequence (FADS) refers to a clinically 55 

and genetically heterogeneous group of disorders with congenital malformations related to 56 

impaired fetal movement.57 

We report on an early foetal case with FADS and microlissencephaly due to TUBB2B58 

mutation. Neuropathological examination disclosed virtually absent cortical lamination, foci 59 

of neuronal overmigration into the leptomeningeal spaces, corpus callosum agenesis, 60 

cerebellar and brainstem hypoplasia and extremely severe hypoplasia of the spinal cord with 61 

no anterior and posterior horns and almost no motoneurons. 62 

At the cellular level, the p.Cys239Phe TUBB2B mutant leads to tubulin heterodimerization 63 

impairment, decreased ability to incorporate into the cytoskeleton, microtubule dynamics 64 

alteration, with an accelerated rate of depolymerization. 65 

To our knowledge, this is the first case of microlissencephaly to be reported presenting with a 66 

so severe and early form of FADS, highlighting the importance of tubulin mutation screening 67 

in the context of FADS with microlissencephaly. 68 

69 

70 

71 
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INTRODUCTION 75 

Normal fetal development is dependent on adequate fetal movement, starting at 8 weeks of 76 

gestation (WG). Limitation of movements results in fetal akinesia deformation sequence 77 

(FADS; OMIM 208150). FADS was first reported as a syndrome by Pena and Shokeir in 78 

1974 and further delineated as a symptom by Hall in 1981 [1,2]. Its incidence varies among 79 

different countries and has been estimated at 1:3000 to 1:5000 by Fahy and Hall [3]. The 80 

clinical presentation is highly variable, ranging from the most severe form called lethal 81 

multiple pterygium syndrome characterized by multiple joint contractures and pterygia, lung 82 

hypoplasia, short umbilical cord, craniofacial changes consisting of hypertelorism, 83 

micrognathism, cleft palate, short neck, low-set ears, along with intrauterine growth 84 

retardation and abnormal amniotic fluid volume mainly observed from the first trimester of 85 

the pregnancy [4]. Less severe phenotypes may present either as distal arthrogryposis or as 86 

fetal hypomotility which usually occurs during the third trimester [5].  87 

Non-genetic factors may cause FADS, such as environmental limitation of fetal movements, 88 

maternal infection, drugs and immune mechanisms (maternal autoimmune myasthenia). The 89 

FADS phenotype is observed in a number of known genetic syndromes. Non syndromic or 90 

isolated FADS is genetically heterogeneous and encompass multiple neurogenic processes 91 

affecting the central or the peripheral nervous system, the neuromuscular junction and the 92 

skeletal muscle [6-8]. Until recently, the neurogenic form characterized by spinal cord 93 

motoneuron paucity, either isolated or associated with pontocerebellar hypoplasia was 94 

considered as the most frequent cause [9-11]. Conversely, brain malformations are very 95 

infrequently observed in association with FADS, and mainly described in lissencephalies type 96 

I and II as deformations of the extremities [12,13]. To our knowledge, FADS has never been 97 

reported in association with tubulin related cortical malformations. Here, we report on the 98 

most severe presentation of tubulinopathy in a fetus harboring a de novo missense mutation in 99 
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the -tubulin gene TUBB2B gene (MIM 615101), along with neuropathology and molecular 100 

data focusing on the consequences of the mutation, that could explain at least partly the 101 

severity of the lesions and early fetal presentation.102 

PATIENT AND METHODS103 

Case history 104 

A 32-year-old woman, gravida 4, para 3, underwent routine ultrasonography (US) at 12 WG, 105 

which revealed severe fetal akinesia. Control ultrasound examination performed at 14 WG 106 

confirmed total lack of movements, retrognathia and dilatation of the third and fourth cerebral 107 

ventricles (supplementary figure 1). A medical termination of the pregnancy was achieved at 108 

15 WG, in accordance with French law. A complete autopsy was performed with informed 109 

written consent from both parents. Brain lesions identified at autopsy suggested a possible 110 

Walker Warburg syndrome (WWS) despite absent eye lesions, so that a first-line screening of 111 

WWS genes was performed, but was negative. Indeed, known environmental causes of FADS 112 

were excluded, as well as syndromic causes. Chromosomal analysis performed on trophoblast 113 

biopsy revealed a normal male karyotype, 46, XY. The parents were non consanguinous and 114 

there was no relevant personal or family history. Three children born to a previous marriage 115 

were in good health.  116 

After having obtained written informed consent from the parents, DNAs were purified from 117 

fetal lung tissues, and from peripheral blood cells in both parents by using a standard 118 

phenol/chloroform method. Mutation analysis was performed by PCR amplification and 119 

direct SANGER sequencing of all coding exons and splice sites of the TUBB2B gene revealed 120 

a de novo missense mutation in exon 4, c.716G>T determining a p.Cys239Phe substitution 121 

(previously reported in [14]). No other variant was identified after sequencing of the other 122 

genes involved in cortical malformations.  123 

Neuropathological evaluation 124 
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Tissues including the brain, eyes and spinal cord were fixed in a 10% formalin-zinc buffer 125 

solution. Seven-micrometer sections obtained from paraffin-embedded tissues were stained 126 

using Haematoxylin-Eosin. Adjacent brain and spinal cord sections were assessed for routine 127 

immunohistochemistry, using antibodies directed against vimentin (diluted 1:100; Dakopatts, 128 

Trappes, France), calretinin (1:200; Zymed Clinisciences, Montrouge, France), and MAP2 129 

(diluted 1:50, Sigma, St Louis, MO). Immunohistochemical procedures included a microwave 130 

pre-treatment protocol to aid antigen retrieval (pretreatment CC1 kit, Ventana Medical 131 

Systems Inc, Tucson AZ). Incubations were performed for 32 minutes at room temperature 132 

using the Ventana Benchmark XT system. After incubation, slides were processed by the 133 

Ultraview Universal DAB detection kit (Ventana). All immunolabellings were compared with 134 

an age matched control case examined after a spontaneous abortion for premature rupture of 135 

the membranes, and whose brain was histologically normal. 136 

Functional analyses 137 

Protein modeling 138 

A model of human -tubulin was built by homology modeling using available structures 139 

(Research Collaboratory for Structural Bioinformatics PDB code 1TUB) from Nogales et al. 140 

[15]. The images in Figure 4C were rendered using PyMOL software 141 

(http://www.pymol.org).142 

Cloning and in vitro translation  143 

TUBB2B sequence was generated by PCR using a template from the human brain cDNA 144 

library (Clontech, Mountain View, CA). The PCR product was cloned into the pcDNA 3.1-145 

V5-His vector (Invitrogen, Carlsbad, CA) and checked by DNA sequencing. These products 146 

were cloned both into the cDNA3.1-V5-his-TOPO-TA cloning vector (Invitrogen) and pET 147 

vector. An in-frame tag encoding the FLAG epitope (DYKDDDDK) was incorporated by 148 

PCR along with the C-terminus of the TUBB2B wild-type sequence allowing for the 149 
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distinction of the transgene from other highly homologous endogenously expressed -tubulin 150 

polypeptides. The p.Cys239Phe mutation was introduced by site-directed mutagenesis using a 151 

QuikChange II kit (Stratagene, La Jolla, CA) and verified by DNA sequencing. 152 

Transcription/translation reactions were performed at 30°C for 90 min in 25 μl of rabbit 153 

reticulocyte lysate (TNT; Promega, Madison, WI) containing 35S-methionine (specific 154 

activity, 1000 Ci/μmol; 10 μCi/μl). For the generation of labelled -tubulin heterodimers, 155 

transcription/translation reactions were chased for a further 2 h at 30°C by the addition of 156 

0.375 mg/ml of native bovine brain tubulin. Aliquots (2 μl) were withdrawn from the 157 

reaction, diluted into 10 μl of gel-loading buffer (gel running buffer supplemented with 10% 158 

glycerol and 0.1% bromophenol blue) and stored on ice prior to resolution on a non-159 

denaturing gel. Labeled reaction products were detected by autoradiography after resolution 160 

on either SDS–PAGE or on native polyacrylamide gels as described [16,17].  161 

Cell cultures, transfections and immunofluorescence162 

Primary cultures of fibroblasts were derived from fibroblastic cells extracted from amniotic 163 

liquid. COS7 and Hela cells were transfected by construct with p.Cys239Phe TUBB2B 164 

mutation using the Fugene 6 transfection reagent (Roche Applied Science, Indianapolis, IN) 165 

and grown on glass cover slips in Dulbecco's modified Eagle's medium containing 10% fetal 166 

calf serum and antibiotics. The cells were fixed with ice-cold methanol, 24–48h after growth. 167 

In the depolymerization experiments used to determine the behavioural stability of 168 

microtubules after 24 h of culture, fibroblasts were incubated for various brief intervals from 169 

0 to 30 min on ice and fixed thereafter. Repolymerization experiments were performed by 170 

successively exposing cells at 4°C during 30mn and fixed after being incubated from 0 to 15 171 

min at 37°C. Cells were then labelled with a polyclonal anti-FLAG antibody (1/500), or a 172 

monoclonal anti- -tubulin antibody (1/1000) (Sigma-Aldrich Inc., St Louis, MO). At each 173 

experimental point, two parameters were quantified using ImageJ software: (i) the total area 174 
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of the cell and (ii) the area of the microtubules network of each cell, evaluated by 175 

quantifying the alpha-tubulin staining into the cytoskeleton and excluding the staining 176 

background corresponding to unincorporated alpha tubulin into the cellular cytoplasm. The 177 

ratio Microtubules Area/Total cell Area was used to evaluate the state of the microtubule 178 

network of the patient and control cells at each time point of 179 

depolymerisation/repolymerization experiments. 180 

181 

182 

RESULTS 183 

General autopsy findings 184 

The fetus weighed 47g (50thcentile). External examination disclosed cranio-facial 185 

dysmorphism with microretrognathia and  cleft palate due to akinesia (supplementary figure 186 

2), global amyotrophy and microcephaly (Figure 1A). No internal visceral malformation was 187 

found, except for the lungs which were hypoplastic, and the renal pelvis which was dilated. 188 

Neuropathological studies 189 

Macroscopically, the brain appeared to be small, weighting 2.15g (5th centile, normal weight 190 

= 10g according to Guilhard-Costa and Larroche [18]). Occipito-frontal length was 21mm and 191 

transverse diameter of the cerebellum was 0.17 mm (25th centile). The brain surface was 192 

smooth, covered by thickened leptomeninges adherent to the brain (Figure 1B). Olfactory 193 

tracts were absent and the meninges seemed fused (Figure 1C). On brainstem sections, the 194 

fourth ventricle was dilated and the cerebellum seemed hypoplastic and dysplastic, 195 

resembling the cerebellar dysplasia observed in Walker Warburg syndrome (Figure 1D). 196 

Macroscopic examination of serial coronal sections confirmed the dilatation of the third and 197 

lateral ventricles, the latter being filled with congestive choroid plexuses. 198 
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Histological examination of the eyes revealed no retinal dysplasia. The spinal cord displayed 199 

major lesions consisting of severe hypoplasia and immaturity (Figure 2A). Ascending and 200 

descending tracts were missing. Anterior and posterior horns were hardly discernible, with 201 

almost no motoneurons in the anterior horns, even using MAP2 antibodies (data not shown) 202 

(Figure 2B). The cerebral mantle was particularly thin, and cortical lamination was absent, 203 

rather forming an extremely disorganized two-layered cortex extending from the inferior limit 204 

of the marginal zone to the periventricular zone with no recognizable intermediate zone 205 

(Figure 2C). Layer I was irregular in width and contained isolated or small foci of immature 206 

neurons, as well as misplaced Cajal-Retzius cells immunolabeled by calretinin antibody lying 207 

under the pial basal membrane (Figure 2D). Underneath, a single band of neurons with a 208 

vague nodular or columnar organization was found, extending to the periventricular areas 209 

(Figure 2E). The cerebral mantle was covered by fibrous meninges containing multiple 210 

dysplastic tortuous vessels with dispersed overmigrating immature neurons (Figure 2F). 211 

Vimentin immunohistochemistry showed an irregular and fragmented glia limitans (Figure 212 

3A and B), with small gaps through which neurons overmigrated into the leptomeningeal 213 

spaces (Figure 3C, D). Vimentin immunohistochemistry also revealed severe abnormalities of 214 

the radial glia, which virtually absent in the cortical plate and entirely disorganized in the 215 

subventricular zone (Figure 3E and F).  216 

Functional analyses 217 

Consequences of the mutation on secondary and tertiary TUBB2B structures 218 

The p.Cys239 residue is located in the intermediary domain (amino acid 205–381) of the 219 

TUBB2B protein and is highly conserved during evolution among TUBB2B homologues 220 

from other species (Figure 4A). Tridimensional modeling analysis of TUBB2B using PYmol 221 

software displayed an inside localization of the variant in an helix closed to the Taxol fixation 222 
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site, apparently affecting neither the GDP binding pocket nor the /  interacting region 223 

(Figure 4B). 224 

Alteration of /  heterodimerization process and microtubules incorporation by TUBB2B 225 

variant 226 

To further investigate functional consequences of the mutation, the -tubulin mutant was 227 

expressed in rabbit reticulocyte lysate and its ability to assemble into /  heterodimers in the 228 

presence of bovine brain tubulin was evaluated. The p.Cys239Phe mutant was translated as 229 

efficiently as the wild-type control (Figure 5A). However, analysis of the same reaction 230 

products under native conditions revealed a range of heterodimer formation that was 231 

significantly decreased both quantitatively and qualitatively in the case of p.Cys239Phe 232 

mutant compared to the wild-type control (Figure 5B) revealing an impairment of tubulin 233 

heterodimerization processes in the p.Cys239Phe mutant. 234 

Furthermore, the transfection of the flag-tagged p.Cys239Phe TUBB2B-mutated construct in 235 

COS7 and HeLa cells revealed both a detectable incorporation of the protein into 236 

microtubules and in contrast to controls, a diffuse high background of label that reflects 237 

presence of unpolymerized cytosolic tubulin heterodimers , suggesting a partial impairment of 238 

the remaining heterodimer ability to incorporate into the cytoskeleton (Figure 5C). 239 

Effects of p.Cys239Phe TUBB2B mutation on the dynamical microtubule behavior in fetal 240 

fibroblasts 241 

In order to assess the behavior of the microtubules in vivo, we analyzed the response of the 242 

cytoskeleton to cold-induced depolymerization treatment followed by a repolymerization step 243 

at 37°C in fibroblasts extracted from amniotic liquid from control and affected patient. 244 

Following cold-induced depolymerization, TUBB2B p.Cys239Phe displayed a normal rate of 245 

microtubules disintegration (Figure 5C). However, repolymerization experiments, consisting 246 

in a completed cytoskeleton depolymerization at 4°C and a gradual repolymerisation at 37°C, 247 
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revealed that p.Cys239Phe TUBB2B mutant microtubules are more repolymerized after 248 

5min at 37°C than controls (Figure 5C). These experiments show that with p.Cys239Phe 249 

mutant, the repolymerization rate to renew its cytoskeleton network is accelerated, provoking 250 

a defect of the depolymerization/repolymerization balance necessary for a proper dynamic 251 

behaviour of microtubules. 252 

DISCUSSION 253 

We report here the first case of Fetal Akinesia Deformation Sequence with 254 

microlissencephaly related to TUBB2B mutation, expanding the phenotype of ever-growing 255 

family of tubulin associated malformations. The diagnosis of FADS can be approached 256 

algorithmically, based on the presence of neurological symptoms and associated features 257 

[19,6]. Developmental abnormalities affecting the forebrain (e.g., hydranencephaly, 258 

microcephaly, or forebrain neuronal migration disorders), either due to primary genetic 259 

factors or to a consequence of fetal central nervous system infection or vascular insult, are 260 

sometimes associated with arthrogryposis [6 ,20]. In such cases, joint contractures are thought 261 

to be related to diminished corticospinal tract activation of spinal cord motor neurons. 262 

Sometimes, however, the underlying disease also directly affects spinal cord motor neurons, 263 

contributing to fetal akinesia or hypomotility. In addition to these classical causes, our report 264 

demonstrates that tubulin related microlissencephaly should be considered within the 265 

algorithm for diagnosis.  266 

Microlissencephaly is a rare entity characterized by severe congenital microcephaly with 267 

absent sulci and gyri leading most of the time to an early fatal outcome during the foetal or 268 

the neonatal period. We have previously underlined the importance of microlissencephaly in 269 

the spectrum of tubulinopathies [14]. There are emerging molecular data to suggest that 270 

NDE1 mutations [21,22] and more recently KATNB1 mutations [23] are involved in the 271 

autosomal recessive forms. Tubulin mutations, particularly TUBA1A and less frequently 272 
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TUBB2B and TUBB3 are significant causes of sporadic cases of microlissencephaly. 273 

Tubulin related microlissencephaly share common features consisting in corpus callosum 274 

agenesis, extremely reduced or absent cortical plate, hypertrophic germinal zones and 275 

ganglionic eminences, hypoplastic and disorganized striatum and thalami. In our case, the 276 

striatum and thalami were absent, along with germinative zones in which radial glial cells and 277 

radial glia had early disappeared, representing the most severe end of the spectrum. At the 278 

infratentorial level, our case also showed common signs of tubulin related 279 

microlissencephaly, i.e. severe cerebellar and brainstem hypoplasia, axon tract defects with 280 

absent corticospinal tracts. To our knowledge, 13 foetal cases with tubulin related 281 

microlissencephaly [14,24] and 4 living patients [24,25] have been reported so far. Of these, 8 282 

exhibited non specific dysmorphic features including retrognathia and hypertelorism, as well 283 

as adducted thumbs, extremely long fingers, and rocker bottom feet related to poor fetal 284 

mobility. The case reported here represents the extreme severe end of the spectrum due to 285 

extremely severe spinal cord hypoplasia with absent anterior and posterior horns and virtually 286 

indiscernible motoneurons at the histological level. In this context, fetal akinesia deformation 287 

sequence undoubtedly represents a neurogenic form, reminiscent of akinesia observed in 288 

Spinal Muscular Atrophy or fetal Pontocerebellar Hypoplasia type 1 [9-11]. 289 

The precise molecular function of TUBB2B in cortical development still remains unclear. Our 290 

analysis suggests that the aminoacid substitution in the p.Cys239Phe TUBB2B mutant leads 291 

to an impairment of tubulin heterodimerization processes and heterodimer ability to 292 

incorporate into the cytoskeleton. Morever, this mutant alters the microtubule dynamics with 293 

an accelerated rate of repolymerization, that is has been also predicted with another TUBB2B294 

related microlissencephaly mutation (p.Asp249His) [26]. In the literature, we already 295 

demonstrated that two TUBA1A and TUBB2B mutants’ cells p.Pro263Thr and p.Ser172Pro, 296 

respectively) display an opposite phenotype consisting of a defect to renew their cytoskeleton 297 
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network after total depolymerization, we assume that the two types of repolymerization 298 

impairments lead to abnormalities of the depolymerization/repolymerization balance 299 

necessary for a proper dynamic behaviour of microtubules [27 ,28]. As suggesting in the 300 

literature, a default in microtubules dynamics could lead to dramatic impairments of a 301 

numerous cellular processes including proliferation, migration and differentiation that are 302 

crucial steps for the brain development [28 ,29 ,30]. Therefore, we assume that this alteration 303 

of microtubule dynamics might affect brain and spinal cord development at distinct 304 

developmental steps, i.e. neurogenesis, neuronal migration and long tract formation, leading 305 

to the association of FADS and microlissencephaly. According to structural molecular 306 

models, the mutant p.Cys239Phe is predicted to alter tubulin folding. This extreme phenotype 307 

contrasts with our previous observations in which tubulin mutations predicted to impair 308 

tubulin folding but tended to be associated with milder cortical malformations [26] and 309 

emphasizes on the fact that comprehensive overview of tubulinopathies spectrum will require 310 

further investigations, including understanding of spatial and temporal consequences of 311 

tubulin mutations on MT-dependent cellular functions and early neuro-developmental 312 

processes. 313 

In conclusion, this fetal case recapitulates the phenotypic features of tubulin related 314 

microlissencephaly expands the phenotype due to early severe arthrogryposis and underlines 315 

the importance of considering tubulin gene TUBB2B in the diagnosis of arthrogryposis with 316 

microlissencephaly. 317 

AKNOWLEDGMENTS 318 

We would like to thank Prof. Beldjord for their careful reading and constructive comments, 319 

Dr Lascelles for her advice on improving the manuscript, and Dr Sandrine Vuillaumier-Barrot 320 

and Odile Philippon. The research leading to these results was funded by the European Union 321 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
14

Seventh Framework Programme FP7/2007-2013 under the project DESIRE (grant 322 

agreement n°602531). KP, NBB and JC were supported in part by a « Rare Diseases 323 

Foundation » grant. 324 

REFERENCES 325 

1. Hall JG (1981) An approach to congenital contractures (arthrogryposis). Pediatric annals 10 326 
(7):15-26 327 
2. Haliloglu G, Topaloglu H (2013) Arthrogryposis and fetal hypomobility syndrome. 328 
Handbook of clinical neurology 113:1311-1319. doi:10.1016/B978-0-444-59565-2.00003-4 329 
3. Fahy MJ, Hall JG (1990) A retrospective study of pregnancy complications among 828 330 
cases of arthrogryposis. Genetic counseling 1 (1):3-11 331 
4. Hammond E, Donnenfeld AE (1995) Fetal akinesia. Obstetrical & gynecological survey 50 332 
(3):240-249 333 
5. Pena SD, Shokeir MH (1974) Autosomal recessive cerebro-oculo-facio-skeletal (COFS) 334 
syndrome. Clin Genet 5 (4):285-293 335 
6. Bamshad M, Van Heest AE, Pleasure D (2009) Arthrogryposis: a review and update. The 336 
Journal of bone and joint surgery American volume 91 Suppl 4:40-46. 337 
doi:10.2106/JBJS.I.00281 338 
7. Navti OB, Kinning E, Vasudevan P, Barrow M, Porter H, Howarth E, Konje J, Khare M 339 
(2010) Review of perinatal management of arthrogryposis at a large UK teaching hospital 340 
serving a multiethnic population. Prenatal diagnosis 30 (1):49-56. doi:10.1002/pd.2411 341 
8. Laquerriere A, Maluenda J, Camus A, Fontenas L, Dieterich K, Nolent F, Zhou J, Monnier 342 
N, Latour P, Gentil D, Heron D, Desguerres I, Landrieu P, Beneteau C, Delaporte B, 343 
Bellesme C, Baumann C, Capri Y, Goldenberg A, Lyonnet S, Bonneau D, Estournet B, 344 
Quijano-Roy S, Francannet C, Odent S, Saint-Frison MH, Sigaudy S, Figarella-Branger D, 345 
Gelot A, Mussini JM, Lacroix C, Drouin-Garraud V, Malinge MC, Attie-Bitach T, Bessieres 346 
B, Bonniere M, Encha-Razavi F, Beaufrere AM, Khung-Savatovsky S, Perez MJ, Vasiljevic 347 
A, Mercier S, Roume J, Trestard L, Saugier-Veber P, Cordier MP, Layet V, Legendre M, 348 
Vigouroux-Castera A, Lunardi J, Bayes M, Jouk PS, Rigonnot L, Granier M, Sternberg D, 349 
Warszawski J, Gut I, Gonzales M, Tawk M, Melki J (2014) Mutations in CNTNAP1 and 350 
ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects. 351 
Human molecular genetics 23 (9):2279-2289. doi:10.1093/hmg/ddt618 352 
9. Banker BQ (1986) Arthrogryposis multiplex congenita: spectrum of pathologic changes. 353 
Human pathology 17 (7):656-672 354 
10. Vuopala K, Ignatius J, Herva R (1995) Lethal arthrogryposis with anterior horn cell 355 
disease. Human pathology 26 (1):12-19 356 
11. Vuopala K, Makela-Bengs P, Suomalainen A, Herva R, Leisti J, Peltonen L (1995) Lethal 357 
congenital contracture syndrome (LCCS), a fetal anterior horn cell disease, is not linked to the 358 
SMA 5q locus. J Med Genet 32 (1):36-38 359 
12. Devisme L, Bouchet C, Gonzales M, Alanio E, Bazin A, Bessieres B, Bigi N, Blanchet P, 360 
Bonneau D, Bonnieres M, Bucourt M, Carles D, Clarisse B, Delahaye S, Fallet-Bianco C, 361 
Figarella-Branger D, Gaillard D, Gasser B, Delezoide AL, Guimiot F, Joubert M, Laurent N, 362 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
15

Laquerriere A, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S, 363 
Pelluard F, Perez MJ, Rouleau C, Triau S, Attie-Bitach T, Vuillaumier-Barrot S, Seta N, 364 
Encha-Razavi F (2012) Cobblestone lissencephaly: neuropathological subtypes and 365 
correlations with genes of dystroglycanopathies. Brain 135 (Pt 2):469-482. 366 
doi:10.1093/brain/awr357 367 
13. Witters I, Moerman P, Fryns JP (2002) Fetal akinesia deformation sequence: a study of 30 368 
consecutive in utero diagnoses. American journal of medical genetics 113 (1):23-28. 369 
doi:10.1002/ajmg.10698 370 
14. Fallet-Bianco C, Laquerriere A, Poirier K, Razavi F, Guimiot F, Dias P, Loeuillet L, 371 
Lascelles K, Beldjord C, Carion N, Toussaint A, Revencu N, Addor MC, Lhermitte B, 372 
Gonzales M, Martinovich J, Bessieres B, Marcy-Bonniere M, Jossic F, Marcorelles P, Loget 373 
P, Chelly J, Bahi-Buisson N (2014) Mutations in tubulin genes are frequent causes of various 374 
foetal malformations of cortical development including microlissencephaly. Acta 375 
neuropathologica communications 2:69. doi:10.1186/2051-5960-2-69 376 
15. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by 377 
electron crystallography. Nature 391 (6663):199-203. doi:10.1038/34465 378 
16. Tian G, Huang Y, Rommelaere H, Vandekerckhove J, Ampe C, Cowan NJ (1996) 379 
Pathway leading to correctly folded beta-tubulin. Cell 86 (2):287-296. doi:S0092-380 
8674(00)80100-2 [pii] 381 
17. Tian G, Lewis SA, Feierbach B, Stearns T, Rommelaere H, Ampe C, Cowan NJ (1997) 382 
Tubulin subunits exist in an activated conformational state generated and maintained by 383 
protein cofactors. J Cell Biol 138 (4):821-832 384 
18. Guihard-Costa AM, Larroche JC, Droulle P, Narcy F (1995) Fetal Biometry. Growth 385 
charts for practical use in fetopathology and antenatal ultrasonography. Introduction. Fetal 386 
diagnosis and therapy 10 (4):211-278 387 
19. Kalampokas E, Kalampokas T, Sofoudis C, Deligeoroglou E, Botsis D (2012) Diagnosing 388 
arthrogryposis multiplex congenita: a review. ISRN obstetrics and gynecology 2012:264918. 389 
doi:10.5402/2012/264918 390 
20. Chen CP (2012) Prenatal diagnosis and genetic analysis of fetal akinesia deformation 391 
sequence and multiple pterygium syndrome associated with neuromuscular junction 392 
disorders: a review. Taiwanese journal of obstetrics & gynecology 51 (1):12-17. 393 
doi:10.1016/j.tjog.2012.01.004 394 
21. Alkuraya FS, Cai X, Emery C, Mochida GH, Al-Dosari MS, Felie JM, Hill RS, Barry BJ, 395 
Partlow JN, Gascon GG, Kentab A, Jan M, Shaheen R, Feng Y, Walsh CA (2011) Human 396 
mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected]. Am J Hum 397 
Genet 88 (5):536-547. doi:10.1016/j.ajhg.2011.04.003 398 
22. Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, Yilmaz S, 399 
Caglayan O, Dincer A, Nicholas AK, Quarrell O, Springell K, Karbani G, Malik S, Gannon 400 
C, Sheridan E, Crosier M, Lisgo SN, Lindsay S, Bilguvar K, Gergely F, Gunel M, Woods CG 401 
(2011) The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J 402 
Hum Genet 88 (5):523-535. doi:10.1016/j.ajhg.2011.03.019 403 
23. Hu WF, Pomp O, Ben-Omran T, Kodani A, Henke K, Mochida GH, Yu TW, Woodworth 404 
MB, Bonnard C, Raj GS, Tan TT, Hamamy H, Masri A, Shboul M, Al Saffar M, Partlow JN, 405 
Al-Dosari M, Alazami A, Alowain M, Alkuraya FS, Reiter JF, Harris MP, Reversade B, 406 
Walsh CA (2014) Katanin p80 regulates human cortical development by limiting centriole 407 
and cilia number. Neuron 84 (6):1240-1257. doi:10.1016/j.neuron.2014.12.017 408 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
16

24. Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, Yates L, Robb S, 409 
Uyanik G, Mancini GM, Rees MI, Harvey RJ, Dobyns WB (2010) TUBA1A mutations cause 410 
wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration 411 
pathways converge on alpha tubulins. Human molecular genetics 19 (14):2817-2827 412 
25. Cushion TD, Dobyns WB, Mullins JG, Stoodley N, Chung SK, Fry AE, Hehr U, Gunny 413 
R, Aylsworth AS, Prabhakar P, Uyanik G, Rankin J, Rees MI, Pilz DT (2013) Overlapping 414 
cortical malformations and mutations in TUBB2B and TUBA1A. Brain 136 (Pt 2):536-548. 415 
doi:10.1093/brain/aws338 416 
26. Bahi-Buisson N, Poirier K, Fourniol F, Saillour Y, Valence S, Lebrun N, Hully M, Bianco 417 
CF, Boddaert N, Elie C, Lascelles K, Souville I, Consortium LI-T, Beldjord C, Chelly J 418 
(2014) The wide spectrum of tubulinopathies: what are the key features for the diagnosis? 419 
Brain 137 (Pt 6):1676-1700. doi:10.1093/brain/awu082 420 
27. Tian G, Jaglin XH, Keays DA, Francis F, Chelly J, Cowan NJ (2010) Disease-associated 421 
mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer 422 
assembly pathway. Human molecular genetics 19 (18):3599-3613 423 
28. Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction 424 
underlying neuronal migration defects. Trends Genet 25 (12):555-566 425 
29. Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, 426 
Castelnau-Ptakhine L, Roubertie A, Attie-Bitach T, Desguerre I, Genevieve D, Barnerias C, 427 
Keren B, Lebrun N, Boddaert N, Encha-Razavi F, Chelly J (2010) Mutations in the neuronal 428 
ss-tubulin subunit TUBB3 result in malformation of cortical development and neuronal 429 
migration defects. Human molecular genetics 19 (22):4462-4473. doi:10.1093/hmg/ddq377 430 
30. Saillour Y, Broix L, Bruel-Jungerman E, Lebrun N, Muraca G, Rucci J, Poirier K, 431 
Belvindrah R, Francis F, Chelly J (2013) Beta tubulin isoforms are not interchangeable for 432 
rescuing impaired radial migration due to Tubb3 knockdown. Human molecular genetics. 433 
doi:10.1093/hmg/ddt538 434 

435 
436 

437 

LEGENDS TO THE FIGURES 438 

439 

Figure 1: Macroscopical findings 440 

A. Severe foetal akinesia sequence with multiple deformations, joint contractures and 441 

pterygia, along with severe global amyotrophy 442 

B. Superior view of the brain exhibiting a cobblestone-like appearance with abnormal 443 

meningeal vessels 444 
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C. Inferior view of the brain displaying absent interhemispheric fissure due to fusion of the 445 

meninges, absent olfactory bulbs and tracts and severely hypoplastic cerebellum 446 

D. With absent foliation and almost indiscernible vermis and cerebellar hemispheres. 447 

448 

Figure 2: Main histological lesions 449 

A. Severe hypoplasia of the spinal cord (arrow) (H& E stain, OMx25) 450 

B. With at higher magnification, absent descending (arrow) and ascending tracts (triangle) 451 

and no motoneurons in the anterior horns (H& E stain, OMx250) 452 

C. Global disorganization of the cerebral mantle with no recognizable cortical plate, 453 

intermediate and germinal zones (H& E stain, OMx25)454 

D. Calretinin immunohistochemistry showing aberrant Cajal Retzius cell location, with focal 455 

accumulation of these cells along the persisting glia limitans instead of forming a continuous 456 

streak located at the upper third of the molecular layer (OMx100) 457 

E. Microscopic view of the cortical plate displaying thickened leptomeninges with tortuous 458 

vessels, only a minority of them properly penetrating into the brain parenchyma (arrow) (H& 459 

E stain, OMx100) 460 

F. Absent lamination of the cortical plate replaced by nodules or columns of neurons, some of 461 

them overmigrating into the leptomeningeal spaces (arrow) (H& E stain, OMx250) 462 

463 

Figure 3: Vimentin immunohistochemical studies 464 

A. Irregular thickening of the meninges (OMx100) 465 

B. Compared with an age-matched control brain (OMx100) 466 

C. With immature neurons accumulating just under the fragmented glia limitans (arrow) and 467 

disorganized vascular network (OMx250) 468 

D. With abnormal fibrous walls (arrow) and absent radial glia (OMx400) 469 
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E. And paucity of radial glial cells( arrow) and fragmentation of the radial glia in the  470 

subventricular zone (OMx400) 471 

F. Compared to an age-matched control brain where the neuroepithelium (arrow) and the 472 

subventricular zone are strongly immunolabeled (OMx400) 473 

H&E: Haematoxylin and eosin, OM: original magnification 474 

475 

Figure 4: TUBB2B de novo missense mutation (p.Cys239Phe) responsible of the phenotype 476 

FADS with microlissencephaly.  477 

A. Pedigree of the family and chromatograms showing the de novo occurrence of the 478 

TUBB2B p.Cys239Phe mutation. Square, male; round, female; diamond, fetus. Black colour, 479 

affected individual. 480 

B. Evolution conservation of the p.Cys239 amino acid in orthologues from stickleback to 481 

human. C. Structural representation using Pymol software of the /  heterodimer depicted 482 

without (top left) or with (top right) surface delimitation. p.Cys239 amino acid (in green) is 483 

localized into an helix inside the monomer but outside GTP, GDP and taxol binding sites 484 

(detailed view, bottom). Pdb: 1TUB. 485 

486 

Figure 5: Defects in the /  heterodimerisation process in the microtubule incorporation and 487 

dynamical behaviour in COS7 and fibroblasts expressing the p.Cys239Phe mutation. 488 

A. The p.Cys239Phe TUBB2B mutation results in inefficient /  heterodimer formation in 489 

vitro. Analysis by SDS-Page and non denaturing gel of in vitro translation products conducted 490 

with 35S methionine labeled wild type and p.Cys239Phe mutant. The reaction products were 491 

further chased with bovine brain tubulin to generate /  heterodimers. SDS-Page gel showed 492 

that the mutant was translated as efficiently as the wild type control. Note that in non 493 

denaturing gel condition, p.Cys239Phe mutant generated heterodimers in a diminished yield. 494 
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B. Expression of C-terminal Flag tagged TUBB2B wild type (left column) and 495 

p.Cys239Phe mutant (right column) in transfected COS7 cells revealed by antiflag (top line) 496 

and -tubulin (bottom line) staining. Note that a part of p.Cys239Phe mutant proteins failed to 497 

incorporate into the microtubule network, producing a more diffuse cytosolic labeling pattern 498 

in comparison with WT TUBB2B.  499 

C. In vivo analysis of cytoskeleton behaviour and stability using patient’s fibroblasts from 500 

amiotic liquid. Evaluation of the sensitivity of microtubules to cold treatment and of its ability 501 

to repolymerize was analyzed in control fibroblasts and patient fibroblasts with p.Cys239Phe 502 

mutation after 8 min of cold treatment at 4°C (left graph) or after 20 min at 4°C and 5 min at 503 

37°C (right graph). Note that the fibroblasts of the fetus correctly reacted to cold treatment by 504 

showing an increase in capacity to repolymerize compared to the wild type control.505 

506 
Supplementary figures 507 

Supplementary figure 1: US examination performed at 14 WG showing fetal (A) retrognathia 508 

and dilatation of the fourth cerebral ventricle (B)509 

510 

Supplementary figure 2: Fetal examination displaying arthrogryposis with clenched hands 511 

(A), posterior cleft palate (B), antebrachial C) and axillary pterygia (D).  512 

513 
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