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Abstract 

Hemp concrete is a bio-based material which is currently undergoing a growing development. 

Its hygrothermal behaviour highly depends on the evolution of the moisture content which has 

a significant influence on heat and moisture transfer. Hysteresis phenomenon and temperature 

effects on sorption process make difficult the prediction of the moisture content evolution. 

Hysteresis phenomenon determines the equilibrium moisture content during successive 

adsorption / desorption cycles. Temperature influences also the equilibrium moisture content: 

the warmer the temperature, the lower will be the equilibrium moisture content at the same 

relative humidity. These two phenomena are most often neglected for modelling the moisture 

content evolution in heat and moisture transfer models. This can cause significant 

discrepancies to predict the hygrothermal response of a material subjected to climatic 

variations. 

This paper intents to contribute to the better knowledge of such sorption processes by 

providing new measurements and by analysing and comparing different theoretical 

approaches. Some adsorption and desorption main and intermediate scanning curves are 

measured at two different temperatures. Models taking into account these phenomena are 

presented. The comparison between experimental and numerical results shows that the 

theoretical approaches investigated are promising. 
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1. Introduction

In a context of sustainable development, one of the concerns in the building construction 

sector is the choice of environmentally friendly and healthy materials. In the French climatic 

conditions, bio-based materials appear as a good solution to address energetic and 

environmental issues [1]. Different compositions and methods of manufacturing give to hemp 
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concrete a variety of use: wall, floor and roof. For wall, hemp concrete can be precast, 

moulded in place or sprayed. Because of low mechanical properties [2], it is mainly used as a 

filling material supported on a timber frame. 

Previous studies on hemp concrete showed its interesting hygrothermal properties as building 

materials: a low bulk density from 300 to 500 kg.m−3, a low thermal conductivity of about 0.1 

W.m−1.K−1 and a high vapour permeability of 10−11–10−10 kg.m−1. s−1.Pa−1 [3-7]. Its porous, 

hygroscopic and permeable structure gives high moisture transfer and storage capacities. In 

[8-9], the high moisture buffer value of hemp concrete confirmed its excellent moisture buffer 

performance. In practice, the monitoring of an individual French dwelling-house made of 30 

cm thick sprayed hemp concrete associated with a timber frame structure [10] and of an 

experimental hemp-lime building house in England [11] showed its ability to dampen 

variations of temperature and relative humidity. 

Previous works showed the significant influence of moisture content on heat and moisture 

transfer and storage [7, 12-15]. The derivation of the hygrothermal response to climatic 

variations of a bio-based material like hemp concrete needs thus a thorough knowledge of the 

moisture content evolution. 

As observed for many hygroscopic materials, a significant hysteresis occurs in the hemp 

concrete sorption process [5, 13]. For these materials, the equilibrium moisture content 

depends not only on relative humidity but also on moisture history. 

For hemp concrete, the hysteretic phenomenon was experimentally and numerically studied at 

the reference temperature of 23°C in [13]. In this work, the Huang hysteresis model [16] 

showed its suitability to numerically predict the hemp concrete hysteretic behaviour. 

Numerical results in good agreement with experimental ones showed the relevance to 

consider the hysteresis phenomenon to simulate the transient hygric response of hemp 

concrete [13-15]. 
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These results were obtained at ambient temperature (about 23 °C) but temperature variations 

can also affect the evolution of moisture content [17, 18]. The latest experimental research 

highlights the influence of temperature on moisture content for cement-based materials and 

ordinary concrete [19-23]. Some experimental investigations were also performed on wood 

[24, 25]. These studies were mainly focused on a high range of temperatures over 20°C up to 

80°C for specific applications (durability, drying process…). Others dealt with organic-based 

products in a temperature range close to the one encountered in operative building 

applications between 0°C and 40°C [26-29]. In all studies, the warmer the temperature, the 

lower the equilibrium moisture content at the same relative humidity was. 

In this framework, theoretical and numerical approaches are developed to predict the 

temperature’s effect on moisture content. Three main theories try to explain the influence of 

temperature on sorption isotherms. The modification of the pore structure due to temperature 

is one explication. Determination of specific surface areas and mercury intrusion porosimetry 

tests on cement-based material were performed at different temperatures [30-31]. A 

temperature increase between ambient temperature and 90°C or 100°C results in a reduction 

of the specific surface area. The comparison of the pore size distributions shows the presence 

of pores with larger diameters at 80°C than at 30°C. A modification of the microstructure by 

an enlargement of pores can thus be attributed to a rise of temperature. This can explain the 

modification of the sorption isotherms shapes until a temperature of 60°C [32]. Nevertheless, 

this approach is to be found insufficient to explain the decrease of moisture content at 

saturation observed in a large range of temperature (between 20°C and 80°C) for cement-

based materials [21-23]. To overcome the limitations of the microstructure alteration with the 

increase of temperature, the modification of the water thermophysical properties with 

temperature was also investigated together with coarsening of the pore structure [33, 34] or 

without [35]. Poyet suggested that the microstructure alteration and the water properties 
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evolution had negligible effects and did not fully explain the results obtained for concrete 

[21]. He proposed a new approach based on the thermodynamic evolution of sorption 

mechanism [21]. He based his approach on the exothermic process of adsorption [36] and on 

the principle of Le Chatelier and the rule of Van't Hoff. According to these principles, 

increasing temperature promotes the reverse process of adsorption, namely desorption. This 

approach was validated on cement pastes and concretes [21 37]. 

Research on temperature effects, on hysteresis effects or on the coupling between temperature 

and hysteresis are rather scarce in literature. Rode et al. [38] provided some measurements for 

several building materials (cement paste, spruce, aerated concrete). For the three temperatures 

investigated (10°C, 25°C and 40°C), no significant differences were observed for aerated 

concrete both in adsorption and desorption for a range of relative humidity between 10% and 

80%. For very high relative humidities over 80% and very low below 10%, more differences 

are observed between each sorption isotherms. Furthermore, the results obtained by Rode et 

al. are in accordance with the hypothesis of Ishida [39] which assumes that an increase of 

temperature results in a reduction of the hysteresis loop. 

This paper aims to provide some experimental measures to identify the influence of both 

temperature and hysteresis on the moisture content evolution in hemp concrete. The range of 

relative humidity between 20%RH and 85%RH chosen in this paper is supposed to be 

representative of the variations in France for a hemp concrete wall in typical configuration. 

Hysteresis phenomenon is modelled using the Huang hysteresis model. The theoretical 

approach (thermodynamic equilibrium move) used for concretes and cement-based materials 

is applied in the case of hemp concrete. The performance of the thermodynamic model is 

compared with experimental results collected on hemp concrete at two different temperatures. 

This approach is extended to model the influence of both hysteresis and temperature and the 

results are discussed. 
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2. Theory

2.1. Sorption isotherm modelling 

Different approaches are to be found in literature to model the sorption isotherms. In this 

paper, two models are chosen and compared: the GAB model based on the physical sorption 

mechanism [40-44] and the Van Genuchten (VG) model based on the moisture transport [45]. 

The GAB equation is described by Eq. (1): 

������ = ��	��
���1 − 	�����1 + ��� − 1�	���� = �������1 − 	���1 + ��� − 1�	�� �1 − 	�����1 + ��� − 1�	����
� = ��� �� ���

(1) 

where uads [kg/kg] and udes [kg/kg] represent the main adsorption and desorption functions, 

respectively, RH [%] the relative humidity. um [kg/kg] is the molecular moisture content, usat 

[kg/kg] is the saturated moisture content, aj and bj depend on the molar heat of adsorption and 

the molar latent heat of vaporization. In practice, parameters are derived to fit experimental 

data. 

The VG model was initially developed to predict the unsaturated hydraulic conductivity in 

soils and the equation of the model was then adapted for building materials by using relative 

humidity instead of capillary suction as state variable. It mathematically describes the main 

adsorption and desorption curves with a single relation given by Eq. (2) : 

������ = ���� ��1 + ��� � !"# $%�����&'()�*) +,'(- , � = ��� �� ��� (2) 

usat [kg/kg] is the saturated moisture content. R [8.314 J.mol-1.K-1] is the ideal gas constant, Ml 

[18 g.mol-1] the molar water mass, g [9.81 m2.s-1] the gravity acceleration and T [296.15 K] 

the reference temperature. Parameters αj and ηj are calculated by fitting experimental data. 

2.2. Hysteresis modelling 

Fig. 1 provides a schematic view of a hysteresis loop for a desorption / adsorption cycle.
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Fig. 1 Schematic view of main and intermediate scanning curves 

According to Huang’s model, equations (3) and (4) describe respectively the adsorption and 

desorption scanning curves after a series of alternating processes of desorption and 

adsorption: 

����, /� = �0�/� + ����/� − �0�/�� ��1� �������� (3) 

����, /� = �0�/� + ����/� − �0�/�� �12� �������� (4) 

i represents the number of switches between adsorption and desorption phases. ur(i) and us(i) 

represent the residual and the saturated moisture contents, respectively. The calculation of 

these parameters is based on the perfect closure of the scanning curve at reversal points: 

scanning curve indexed i includes the last reversal point (RHi,ui) and the penultimate reversal 

point (RHi-1,ui-1). 

2.3. Thermodynamic model 

The integration of the Clausius-Clapeyron relation [36] between two equilibrium states (pv1, 

T1) and (pv2, T2) gives the expression of isosteric heat qst involved in a sorption process: 
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3����� = �!"
 * 4 4 −  * $% 567� 4, ��67� *, ��8 (5) 

pv = RH.psat(T) [Pa] is the vapour pressure with psat [Pa] the saturated vapour pressure and T 

[K] the temperature. The isosteric heat qst is determined from the experimental data of 

sorption isotherms at two temperatures T1 and T2 and from equation (5). 

In this paper, two approaches are presented. The first one proposed by Powers and Brownyard 

[46] consists in fitting the values of qst(u) thanks to the PB equation: 

3����� = $7 + ��	 − ��9 (6) 

lv [J.kg-1] is the latent heat of condensation and a, b and c are the fitting parameters. 

The second approach consists in first fitting the two experimental isotherms with a sorption 

model and then express the function qst(u) according to equation (5) [37]. This approach is 

thereafter named ThD model. 

Whatever the chosen approach, the sorption isotherm at any temperature T is finally defined 

from a known sorption isotherm RH(Tref ,u) (with Tref = T1 or T2) and as follows: 

��� , �� = ��� 02:, �� 6���� 02:�6���� � �;<=�>�?@A BCDCEFGHCEFGC (7) 

3. Material and methods

3.1. Composition 

The material studied in this paper is a compacted precast hemp concrete manufactured by the 

French SME Easy Chanvre. The manufacturing process consists in mixing quicklime with 

water and in adding hydraulic lime and defibered hemp shiv. Fresh hemp concrete is filled 

into moulds and compacted by vibration to produce hemp concrete blocks. The size of the 

blocks is 30 cm×30 cm×16 cm. Hemp concrete formulation is reported in Table 1. Samples 

are cut in hemp concrete blocks stored for 2 years in a climatic room at 23°C and 50%RH to 
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ensure ageing. A total of 12 cubic samples representative of the material (4.5×4.5×4.5 cm3) 

are used. 

Hemp shiv 374 kg 

Unslaked lime 415 kg 

Hydraulic lime 158 kg 

Water 207 kg 

Table 1 Hemp concrete formulation 

3.2. Density and porosity 

The dry bulk density IJ is defined by:

IJ = K�L  (8)

In this relation, ms [kg] refers to the solid mass and V [m3] to the total volume. Each sample is 

oven dried, weighed and measured, giving the mass and the volume. The numerical value 

provided in the paper corresponds to an average of dry bulk densities calculated from the 12 

samples. 

The density of solid part I0is determined by Eq. (9) from the mass composition of the hemp

concrete and the densities of solid part of its components: 

I0 = K�L� = KM + KN�
OPE,O + 
Q<PE,Q<
 (9)

Vs [m
3] is the volume of solid part of hemp concrete. Subscripts b and hs refer to the binder 

and hemp shiv, respectively.The densities of each solid part I0,M and I0,N� are experimentally

determined by the pycnometer method in [5]: binder about 2400 kg.m-3 and hemp shiv about 

1670 kg.m-3. 
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The total porosity n [%] is the ratio of the pores volume to the total volume and is expressed 

by the relation: 

% = I0 − IJI0  (10)

The open porosity n0 [%] of porous materials is usually determined by hydrostatic weighting. 

This experimental method was impossible to implement for the studied hemp concrete: the 

immersion of the samples caused their decomposition. Chamoin used a hemp concrete with 

the same mix design but which differed in bulk density because of a higher compaction [5]. 

The hydrostatic weighting on this hemp concrete gave n0 = 68% with ρ0 = 450 kg.m-3. 

An alternative approach is proposed in this paper to determine the open porosity for the 

studied hemp concrete. Based on MEB views [9], this approach assumes that the closed pores 

are the micropores embedded in the binder. This implies that the closed pores / binder volume 

ratio is constant whatever the compaction of the hemp concrete: 

L9"R�21 SR02�LM �TN�
RUV = L9"R�21 SR02�LM ���>1U21 N2
S 9RV902�2 (11) 

The open porosity is thus deduced from the relation: 

%J = % − L9"R�21 SR02�L (12) 

The saturated moisture content usat [kg/kg] is given by the relation: 

���� = %J IWIJ (13) 

ρw [kg.m-3] is the liquid water density. 

The mass specific surface SGAB [m2.g-1] is determined from the relation: 

XYZ[ = XW\Z �
!" (14) 
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Sw [≈ 10 _4̀] represents the surface of one adsorbed water molecule, NA [6.02·1023 mol-1] the

Avogadro’s number. um is determined from the GAB model by fitting the experimental data 

(Eq.1). 

3.3. Sorption isotherms 

The glass jar method is applied to determine sorption isotherms and sorption cycles in 

compliance with the EN ISO 12571 procedure. Two temperatures are investigated: 10°C and 

the reference temperature of 23°C. 

A balance with a resolution of 0.1 mg is used to monitor the samples masses. Equilibrium is 

reached when the change in a sample mass is less than 0.1% within 24 hours. All samples are 

first dried under vacuum in silica gel to constant mass. 

After conditioning, samples are placed into glass jars above a saturated salt solution. The 

following salts are used as shown in table 2. 

Temperature 

Equilibrium relative humidity 

Potassium 

acetate 

Potassium 

carbonate 

Magnesium 

nitrate 

Potassium 

bromide 

10°C 23% 43% 57% 85% 

23°C 23% 43% 53% 81% 

Table 2 Salts used in desiccators and their equilibrium relative humidity at 10°C and 23°C 

The temperature of 23°C is ensured by a climatic room. The measurements are performed at 

four relative humidity levels: 23%, 43%, 53% and 81%. The samples are divided into two 

batches of 6 samples each. Six samples are taken stepwise from dry state to 23%RH and 

53%RH to determine main adsorption curve data points. These samples are then taken 

stepwise from 53%RH to 23%RH and back to 53%RH to determine intermediate scanning 
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curve data points (primary desorption and secondary adsorption). The other six samples are 

taken stepwise from dry state to 81%RH to determine main adsorption curve data point. These 

samples are then taken stepwise from 81%RH to 43%RH and 23%RH and back to 43%RH 

and 81%RH to determine intermediate scanning curve data points (primary desorption and 

secondary adsorption). 

At 10°C, dry samples masses were the same as those obtained before the test at 23°C 

(variations less than 0.03%). The temperature of 10°C is obtained in a refrigerator. Because of 

its regulation system, temperature inside the refrigerator varies by a few degrees. To keep 

constant the temperature of the samples at 10°C, desiccators are placed in an insulating box 

made with a 3 cm thick styrodur® polystyrene (Fig 2). Temperatures inside and outside the 

insulating box are monitored with thermocouples of type K. During the tests, temperature 

variations inside the box do not exceed ± 0.5°C. The main adsorption data points were 

obtained increasing relative humidity from dry state to 23%, 43%, 57% and 85%. Then the 

primary desorption curve was determined decreasing relative humidity from 85% to 23%. 

Fig. 2 Desiccators in the insulating box 

4. Results and discussion

4.1. Density and porosity 
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Table 3 presents the physical characteristics of the studied hemp concrete. The physical 

properties obtained are consistent with the literature data [3, 5, 7, 9]. Hemp concrete is a 

lightweight concrete in which open porosity accounts for a large part of the total porosity. The 

pore network consists of pores interconnected to the external surface. 

Although the few experimental points at very low relative humidities provide a rough 

estimation of the specific area, the numerical value is consistent with the data found in 

literature, between 20 and 60 m2.g-1 for hemp concrete [3, 5]. 

Density of solid part ρr 2100 kg.m-3 

Dry density ρ0 396 kg.m-3 

Open porosity n0 72% 

Total porosity n 81% 

Saturated moisture content usat 1.805 kg/kg 

Specific surface area estimated from the GAB model at 23°C 59 m2.g-1 

Table 3 Physical properties of hemp concrete 

4.2. Results at the reference temperature of 23°C 

The parameters of VG and GAB equations for the main adsorption curve are derived to fit the 

experimental data with the least squares method. 

The saturated state is difficult or even impossible to achieve for porous bio-based materials 

(appearance of moulds at very high relative humidities, quick emptying of large pores at 

saturation). Usually, only experimental data of moisture content between 0% and 97% are 

known. An original approach, largely developed and validated in [13], is used in this paper. 

By using the Huang hysteresis model (HH), the parameters of VG and GAB equations for the 
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main desorption curve listed in table 4 are derived with the least squares method to fit the 

experimental data (here 81-43-23%) as a primary desorption curve. Fig. 3 a) and b) provide 

experimental data, the fitted main adsorption and the primary desorption curve 81-43-23%RH 

determined from VG and GAB equations, respectively. In these figures, the predicted main 

desorption curve, primary desorption curve 53-23%RH and secondary adsorption curves 23-

43-81%RH and 23-53%RH are also plotted. 

Temperature Model Parameter Value 

23°C VG αads 0.0319 

ηads 1.8096 

αdes 0.0151 

ηdes 1.4058 

GAB aads 25.985 

bads 0.9950 

ades 26.159 

bdes 0.5982 

10°C VG αads 0.006956 

ηads 2.0008 

GAB aads 7.7810 

bads 0.9916 

Table 4 Parameters of VG and GAB equations for hemp concrete 
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Fig. 3 Experimental (bullets) and numerical results (lines) at the reference temperature of 

23°C with VG equation a) and GAB equation b) 

Associated with VG equation or with GAB equation, the HH model is in very good agreement 

with experimental data. It shows its relevance to predict scanning curves in hemp concrete at 

the reference temperature of 23°C. It gives also hygric capacities (slopes of the curve) close to 

the experimental ones. The main desorption curve obtained from the GAB equation reaches 

higher moisture contents than from the VG equation on a large range of relative humidity. 

Differences are about one order of magnitude. 
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Associated with the HH model, VG and GAB equations are suitable to predict any scanning 

curve for the studied relative humidity range. 

4.3. Influence of temperature on sorption isotherms 

4.3.1. Sorption isotherm at 10°C 

Fig. 4 Experimental primary desorption and secondary adsorption measurements (dashed 

lines and crosses) and experimental main adsorption measurements (solid lines and filled 

circles) 

The experimental results at 10°C and at 23°C are compared in Fig.4. As expected, moisture 

content decreases when the temperature increases over the studied relative humidity range. 

The deviation between moisture content at 10°C and 23°C is slight at high relative humidity. 

Whatever the temperature, the hygric capacities for the intermediate scanning curves are 

lower than the hygric capacities for the main adsorption isotherms. The reduction of hygric 

capacities is significant at low temperature: the average hygric capacity of the primary 

desorption curve (calculated over the range [23%RH - 81%RH]) is reduced by 38% at 23°C 
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instead of 58% at 10°C (over the range [23%RH - 85%RH]). These experimental results 

highlight the temperature influence on the hysteretic sorption process in hemp concrete. 

4.3.2. Isosteric heat of sorption 

Mass isosteric heat of sorption qst is plotted on a dual scale u and ratio u/um in Fig. 5. 

Unlike previous studies [21, 23, 37], no maximal value is highlighted at low moisture contents 

because the studied range of relative humidities does not cover the range [0%-23%]. 

For the studied hemp concrete, isosteric heat decreases and tends to the latent heat of 

condensation lv (2.45 MJ.kg-1) at a moisture content about 5%, approximately (note that due 

to experimental uncertainty qst at u = 4.88 % is slightly below the value of lv). This value of 

5% is similar to those found in literature for cementitious materials or concrete [21, 23, 37], 

for example Poyet found qst → lv for u≈ 4.5 % [37]. 

This can be explained by similar specific surface areas for these materials: 59 m2.g-1 at 23°C 

for the studied hemp concrete and 41 m2.g-1 at 30°C for the concrete studied by Poyet (in 

accordance with the values found in literature for cementitious materials between 20 and 200 

m2.g-1 [47-48]). 

The main difference between cementitious materials or concretes and hemp concrete comes 

from the degree of saturation (=u/usat) for which qst tends to the latent heat of condensation. 

Whereas Poyet found a degree of saturation about 1 when qst tends to lv, this value for hemp 

concrete is about 0.027. This difference is due to the open porosity, very different for both 

concrete: 72% for the studied hemp concrete and 10-15% for Poyet’s concrete. 

The three parameters of the PB equation (6) are derived to fit the experimental data: a = 0.697 

J.kg-1, b = 0.0886 kg/kg and c = 6.443. For the ThD model, the fitting parameters of the VG 

equation and the GAB equation are provided in table 4. 

Fig. 5 provides the evolution of the isosteric heat for the three numerical approaches: the PB 

equation, the ThD model associated with the VG equation and the ThD model associated with 
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the GAB equation. Over the studied range, numerical results performed with the PB equation 

and the ThD model associated with the VG equation are very close. The ThD model with the 

GAB equation predicts values of qst slightly higher than the previous models. Over the range 

[0%RH-23%RH], the deviations are noticeable, especially for ThD model associated with the 

GAB equation. Numerical results present a maximum value. In accordance with Drouet’s 

assumption for cement-based pastes, the VG equation is unable to represent the maximal 

isosteric heat [23]. 

Fig. 5 Isosteric heat of sorption: experimental and numerical results 

4.3.3. Prediction of sorption isotherms 

By using equation (7) and Tref = 23°C, the main adsorption and desorption isotherms are 

derived for temperatures from 5°C to 35°C and are presented in Fig. 6 a) to d). This range of 

temperatures is representative of the ambient temperature variations in France. In these 

figures, both PB equation and ThD model are compared using respectively VG and GAB 

equations. 
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Figure 6 Main adsorption and desorption isotherms at different temperatures: a) PB equation 

associated with VG equation, b) PB equation associated with GAB equation, c) ThD model 

associated with VG equation and d) ThD model associated with GAB equation 

For all the numerical simulations, it has to be noted that the hysteresis loop is reduced when 

temperature increases. As the logarithmic scale used for the moisture content does not 

highlight this effect of temperature, a no-logarithmic scale in the lower-right corner in Figs. 7 

0,001

0,01

0,1

1

0% 20% 40% 60% 80% 100%
u

 (
k

g
/k

g
)

RHc)

0,001

0,01

0,1

1

0% 20% 40% 60% 80% 100%

u
 (

k
g
/k

g
)

RHd)



21 

a) and d) is provided. This is in accordance with the hypothesis of Ishida [39] on cementitious

materials: the increase of temperature reduces the hysteresis loop. 

In Fig. 6 a) and b), the PB equation for both VG and GAB equations causes a significant 

convergence of the different sorption isotherms at very high relative humidities. This can be 

explained by the shape of the isosteric heat which tends quickly towards the heat of 

condensation at high moisture contents. Fig. 6 c) shows the limits of the VG equation. For 

high temperatures (yellow curve), the VG equation associated with the ThD model is unable 

to predict moisture content at low relative humidities. Over this range of relative humidities, 

the isosteric heat obtained reaches very high values (see Fig. 5) which explains the irrelevance 

of the results. On the contrary, as the GAB equation associated with the ThD model gives an 

isosteric heat of sorption which presents a maximum value at low moisture content, relevant 

sorption isotherms are derived whatever the temperature. 

4.3.4. Hysteresis and temperature 

In this paragraph, the ability of the Huang hysteresis (HH) model associated with the VG and 

GAB equations to predict the hemp concrete hysteretic behaviour is discussed. At 10°C, the 

main adsorption curve was experimentally characterised and numerically modelled. The 

previous section 4.3.3. based on the work of Poyet made possible the determination of the 

main desorption curve at 10°C. From the main adsorption and a primary desorption curves, 

the HH model is able to predict any intermediate scanning curve. In Fig. 7, experimental and 

numerical main adsorption curves and primary desorption curves 85-57-23%RH at 10°C are 

compared. Associated with the HH model, the VG equation gives a primary desorption curve 

closer to the experimental one in comparison with the GAB equation. The discrepancies 

between numerical predictions and experimental results for the GAB equation can be 

explained by an inaccurate fitting of the main adsorption curves at 85%RH. 
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Figure 7 Experimental (bullets) and numerical main adsorption curves (solid lines) and 

primary desorption curves (dotted lines) at the temperature of 10°C 

A comparison between the average experimental and numerical hygric capacities is reported 

in table 5. It shows that some discrepancies remain but also that the results are relevant. As at 

23°C, hysteresis at 10°C decreases the hygric capacity. Both VG and GAB equations 

associated with the HH model are able to take into account this reduction of hygric capacity. 

The hygric capacities obtained with the VG equation are closer to the experimental ones than 

the hygric capacities obtained with the GAB equation. Nevertheless, the reduction of the 

hygric capacity between the main adsorption and the primary desorption is higher with the 

GAB equation (39%) than with the VG equation (25%). 
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5.7 2.4 8.8 6.6 13.0 8.0 
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Table 5 Average experimental and numerical hygric capacities at the temperature of 10°C 

between 23%RH and 85%RH 

This study shows that both VG and GAB equations, associated with the HH model, are able to 

give relevant results. 

5. Conclusion

This paper provides some information concerning both the effects of temperature and 

hysteresis on sorption processes. These effects were assessed separately then jointly. As 

expected, experimental moisture content measured at 10°C and 23°C showed that a decrease 

of temperature results in an increase of moisture content at equilibrium. As at 10°C as at 

23°C, experimental scanning curves achieved on hemp concrete show that the hygric capacity 

is significantly reduced along a scanning curve and point out that hysteresis has a significant 

influence on the storage or release of moisture in hemp concrete. 

The preliminary step to understand the influence of both temperature and hysteresis is to 

identify an accurate sorption isotherm model. In this paper, GAB and VG equations are 

investigated. Associated with the HH model, significant differences between VG and GAB 

equations are observed in the prediction of the main desorption curve but all predicted 

(desorption as well as adsorption) scanning curves are in good agreement with the 

experimental data. 

The comparison of the numerical results for the prediction of sorption isotherms at different 

temperatures shows that PB equation can be used as a first approximation in a limited range 

of temperatures. It has the significant advantage to easily adapt to different sorption models. 

Nevertheless, it is not physically acceptable since it does not allow representing the physical 

evolution of the isosteric heat of sorption. On the contrary, the ThD model is able to do so. 

Associated with the GAB equation, the isosteric heat reaches a maximum value at low 

moisture content. However the ThD model remains dependent on the chosen sorption model. 
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The VG equation fails to predict sorption isotherms at high temperatures for low relative 

humidities. Associated with the ThD model, the GAB equation seems to be the most relevant 

to predict sorption isotherms. 

Finally the use of the HH model associated respectively with VG and GAB equations show 

some discrepancies between experimental and numerical primary desorption curve 85-

23%RH at 10°C. These can be explained by a slight underestimation by the models of the 

experimental moisture content at 85%RH. However, the results remain relevant and show that 

the theoretical approach is promising. 

The consistency of the calculation depends on the quality and quantity of the experimental 

results used for the estimation of the isosteric heat. In this way, complementary experimental 

results at very low and very high relative humidities should improve numerical results. 
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