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The classic understanding of organisms focuses on genes as the main source of
species evolution and diversification. The recent concept of genetic accommodation
questions this gene centric view by emphasizing the importance of phenotypic plasticity
on evolutionary trajectories. Recent discoveries on epigenetics and symbiotic microbiota
demonstrated their deep impact on plant survival, adaptation and evolution thus
suggesting a novel comprehension of the plant phenotype. In addition, interplays
between these two phenomena controlling plant plasticity can be suggested. Because
epigenetic and plant-associated (micro-) organisms are both key sources of phenotypic
variation allowing environmental adjustments, we argue that they must be considered in
terms of evolution. This ‘non-conventional’ set of mediators of phenotypic variation can
be seen as a toolbox for plant adaptation to environment over short, medium and long
time-scales.

Keywords: plant plasticity, phenotypic plasticity, microbiota, epigenetics, rapid adaptation

Evolution is driven by selection forces acting on variation among individuals. Understanding
the sources of such variation that has led to the diversification of living organisms, is therefore
of major importance in evolutionary biology. Diversification is largely thought to be controlled
by genetically based changes induced by ecological factors (Schluter, 1994, 2000). Phenotypic
plasticity, i.e., the ability of a genotype to produce different phenotypes (Bradshaw, 1965;
Schlichting, 1986; Pigliucci, 2005), is a key developmental parameter for many organisms and
is now considered as a source of adjustment and adaptation to biotic and abiotic constraints
(e.g., West-Eberhard, 2005; Anderson et al., 2011). However, many current studies still focus on
genetically generated plasticity to predict and model biodiversity response to a changing climate
(Peck et al., 2015), omitting considerable individual variability. In addition, it is striking how poorly
the variability is integrated and that both experiments and models most often measure population
averages (Peck et al., 2015).

Because of their sessile lifestyle, plants are forced to cope with local environmental conditions
and their survival subsequently relies greatly on plasticity (Sultan, 2000). Plastic responses may
include modifications in morphology, physiology, behavior, growth or life history traits (Sultan,
2000). In this context, the developmental genetic pathways supporting plasticity allow a rapid
response to environmental conditions (Martin and Pfennig, 2010) and the genes underlying these
induced phenotypes are subjected to selection (Pfennig et al., 2010). If selection acts primarily on
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phenotype, the environmental constraints an organism has
to face can lead either to directional selection or disruptive
selection of new phenotypes (Pfennig et al., 2010). Thus, novel
traits can result from environmental induction followed by
genetic accommodation of the changes (West-Eberhard, 2005).
These accommodated novelties, because they are acting in
response to the environment, are proposed to have greater
evolutionary impact than mutation-induced novelties (West-
Eberhard, 2005). The links between genotype and phenotypes are
often blurred by factors including (i) epigenetic effects inducing
modifications of gene expression, post-transcriptional and post-
translational modifications, which allow a quick response to an
environmental stress (Shaw and Etterson, 2012) and (ii) the
plant symbiotic microbiota recruited to dynamically adjust to
environmental constraints (Vandenkoornhuyse et al., 2015). We
investigate current knowledge regarding the evolutionary impact
of epigenetic mechanisms and symbiotic microbiota and call
into question the suitability of the current gene-centric view in
the description of plant evolution. We also address the possible
interactions between the responsive epigenetic mechanisms and
symbiotic interactions shaping the biotic environment and
phenotypic variations.

GENOTYPE-PHENOTYPE LINK: STILL
APPROPRIATE?

In the neo-Darwinian synthesis of evolution (Mayr and
Provine, 1998), phenotypes are determined by genes. The
underlying paradigm is that phenotype is a consequence of
genotype (Alberch, 1991) in a non-linear interaction due
to overdominance, epistasis, pleiotropy, and covariance of
genes (see Alberch, 1991; Pigliucci, 2005). Both genotypic
variations and the induction of phenotypic variation through
environmental changes have been empirically demonstrated,
thus highlighting the part played by the environment in
explaining phenotypes. These phenotypes are consequences of
the perception, transduction and integration of environmental
signals. The latter is dependent on environmental parameters,
including (i) the reliability or relevance of the environmental
signals (Huber and Hutchings, 1997), (ii) the intensity of the
environmental signal which determines the response strength
(Hodge, 2004), (iii) the habitat patchiness (Alpert and Simms,
2002) and (iv) the predictability of future environmental
conditions with current environmental signals information (Reed
et al., 2010). The integration of all these characteristics of the
environmental stimulus regulates the triggering and outcomes of
the plastic response (e.g., Alpert and Simms, 2002). In this line,
recent works have shown that plant phenotypic plasticity is in fact
determined by the interaction between plant genotype and the
environment rather than by genotype alone (El-Soda et al., 2014).
Substantial variations in molecular content and phenotypic
characteristics have been repeatedly observed in isogenic cells
(Kaern et al., 2005). Moreover, recent analyses of massive datasets
on genotypic polymorphism and phenotype often struggle to
identify single genetic loci that control phenotypic trait variation
(Anderson et al., 2011). The production of multiple phenotypes

is not limited to the genomic information and the idea of a
genotype–phenotype link no longer seems fully appropriate in
the light of these findings. Besides, evidence has demonstrated
that phenotypic variations are related to genes-transcription
and RNAs-translation, which are often linked to epigenetic
mechanisms, as discussed in the following paragraph (Rapp and
Wendel, 2005).

EPIGENETICS AS A FUNDAMENTAL
MECHANISM FOR PLANT PHENOTYPIC
PLASTICITY

“Epigenetics” often refers to a suite of interacting molecular
mechanisms that alter gene expression and function without
changing the DNA sequence (Richards, 2006; Holeski et al.,
2012). The best-known epigenetic mechanisms involve DNA
methylation, histone modifications and histone variants, and
small RNAs. These epigenetic mechanisms lead to enhanced or
reduced gene transcription and RNA-translation (e.g., Richards,
2006; Holeski et al., 2012). A more restricted definition applied
in this paper considers as epigenetic the states of the epigenome
regarding epigenetic marks that affect gene expression: DNA
methylation, histone modifications (i.e., histone amino-terminal
modifications that act on affinities for chromatin-associated
proteins) and histone variants (i.e., structure and functioning),
and small RNAs. These epigenetic marks may act separately or
concomitantly, and can be heritable and reversible (e.g., Molinier
et al., 2006; Richards, 2011; Bilichak, 2012). The induction of
defense pathways and metabolite synthesis against biotic and
abiotic constraints by epigenetic marks has been demonstrated
during the last decade mainly in the model plant species
Arabidopsis and tomato (e.g., Rasmann et al., 2012; Slaughter
et al., 2012; Sahu et al., 2013). Epigenetics is now regarded as a
substantial source of phenotypic variations (Manning et al., 2006;
Crews et al., 2007; Kucharski et al., 2008; Bilichak, 2012; Zhang
et al., 2013) in response to environmental conditions. More
importantly, studies have suggested the existence of epigenetic
variation that does not rely on genetic variation for its formation
and maintenance (Richards, 2006; Vaughn et al., 2007). However,
to date, only a few studies have demonstrated the existence of
pure natural epi-alleles (Cubas et al., 1999) although they are
assumed to play an important role in relevant trait variation
of cultivated plants (Quadrana et al., 2014). Similarly to the
results observed in mangrove plants (Lira-Medeiros et al., 2010),
a recent work on Pinus pinea which exhibits high phenotypic
plasticity associated with low genetic diversity, discriminated
both population and individuals based on cytosine methylation,
while the genetic profiles failed to explain the observed phenotype
variations (Sáez-Laguna et al., 2014). Epigenetics can provide
phenotypic variation in response to environmental conditions
without individual genetic diversity. It could hence provide
an alternative way or an accelerated pathway for adaptive
‘evolutionary’ changes (Bossdorf et al., 2008). Epigenetic marks
could also ‘tag’ a site for mutation: it is known that methylated
cytosine is more mutable increasing the opportunity for random
mutation to act at epigenetically modified sites.
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EPI-ALLELES, GENETIC
ACCOMMODATION AND ADAPTATION

Even if totally independent epigenetic variations (i.e., pure
epi-alleles) are scarce and still need to be investigated, the
evolutionary significance of the resulting epigenetically induced
phenotypic variations is being increasingly debated (Schlichting
and Wund, 2014). Assuming that selection acts on phenotypes
and that these phenotypes are not always genetically controlled,
it can be argued that new phenotypes arising from adaptive
plasticity are not random variants (West-Eberhard, 2005).
Changes in the trait frequency then correspond to a ‘genetic
accommodation’ process (West-Eberhard, 2005; Schlichting and
Wund, 2014) through which an environmentally induced trait
variation becomes genetically determined by a change in
genes frequency that affects the trait ‘reaction norm’ (West-
Eberhard, 2005; Crispo, 2007). It may also be suggested that
genetic accommodation can result from the selection of genetic
changes optimizing the novel variant’s adaptive value through
modifications in the form, regulation or phenotypic integration
of the trait.

In the “adaptation loop,” the effect of environment on
plant performance induces the selection of the most efficient
phenotype. The epigenetic processes are not the only engines
of plant phenotypic plasticity adjustment. Indeed, plants also
maintain symbiotic interactions with microorganisms to produce
phenotypic variations.

PLANT PHENOTYPIC PLASTICITY AND
SYMBIOTIC MICROBIOTA

Plants harbor an extreme diversity of symbionts including fungi
(Vandenkoornhuyse et al., 2002) and bacteria (Bulgarelli et al.,
2012; Lundberg et al., 2012). During the last decade, substantial
research efforts have documented the range of phenotypic
variations allowed by symbionts. Examples of mutualist-induced
changes in plant functional traits have been reported (Streitwolf-
Engel et al., 1997, 2001; Wagner et al., 2014), which modify
the plant’s ability to acquire resources, reproduce, and resist
biotic and abiotic constraints. The detailed pathways linking
environmental signals to this mutualist-induced plasticity have
been identified in some cases. For instance, Boller and Felix
(2009) highlighted several mutualist-induced signaling pathways
allowing a plastic response of plants to virus, pests and pathogens
initiated by flagellin/FLS2 and EF-Tu/EFR recognition receptors.
Mutualist-induced plastic changes may affect plant fitness by
modifying plant response to its environment including (i) plant-
resistance to salinity (Lopez et al., 2008), drought (Rodriguez
et al., 2008), heat (Redman et al., 2002) and (ii) plant nutrition
(e.g., Smith et al., 2009). These additive ecological functions
supplied by plant mutualists extend the plant’s adaptation ability
(e.g., Vandenkoornhuyse et al., 2015), leading to fitness benefits
for the host in highly variable environments (Conrath et al.,
2006) and therefore can affect evolutionary trajectories (e.g.,
Brundrett, 2002). In fact, mutualism is a particular case of
symbiosis (i.e., long lasting interaction) and is supposed to be

unstable in terms of evolution because a mutualist symbiont is
expected to improve its fitness by investing less in the interaction.
Reciprocally, to improve its fitness a host would provide fewer
nutrients to its symbiont. Thus, from a theoretical point of
view, a continuum from parasite to mutualists is expected in
symbioses. However, the ability of plants to promote the best
cooperators by a preferential C flux has been demonstrated both
in Rhizobium/ and Arbuscular Mycorrhiza/Medicago truncatula
interactions (Kiers et al., 2007, 2011). Thus, the plant may play
an active role in the process of mutualist-induced environment
adaptation as it may be able to recruit microorganisms from soil
(for review Vandenkoornhuyse et al., 2015) and preferentially
promote the best cooperators through a nutrient embargo toward
less beneficial microbes (Kiers et al., 2011). In parallel, vertical
transmission or environmental inheritance of a core microbiota
is suggested (Wilkinson and Sherratt, 2001) constituting a
“continuity of partnership” (Zilber-Rosenberg and Rosenberg,
2008). Thus the impact on phenotype is not limited to the
individual’s lifetime but is also extended to reproductive strategies
and to the next generation. Indeed, multiple cases of alteration
in reproductive strategies mediated by mutualists such as
arbuscular mycorrhizal fungi (Sudová, 2009) or endophytic
fungi (Afkhami and Rudgers, 2008) have been reported. Such
microbiota, being selected by the plant and persisting through
generations, may therefore influence the plant phenotype and
be considered as a powerhouse allowing rapid buffering of
environmental changes (Vandenkoornhuyse et al., 2015). The
idea of a plant as an independent entity on the one hand and
its associated microorganisms on the other hand has therefore
recently matured toward understanding the plant as a holobiont
or integrated “super-organism” (e.g., Vandenkoornhuyse et al.,
2015).

HOLOBIONT PLASTICITY AND
EVOLUTION

If the holobiont can be considered as the unit of selection
(Zilber-Rosenberg and Rosenberg, 2008), even though this idea
is still debated (e.g., Leggat et al., 2007; Rosenberg et al., 2007),
then the occurrence of phenotypic variation is enhanced by the
versatility of the holobiont composition, both in terms of genetic
diversity (i.e., through microbiota genes mainly) and phenotypic
changes (induced by mutualists). Different mechanisms allowing
a rapid response of the holobiont to these changes have been
identified (1) horizontal gene transfer between members of the
holobiont (i.e., transfer of genetic material between bacteria;
Dinsdale et al., 2008) (2) microbial amplification (i.e., variation
of microbes abundance in relation to environment variation)
and (3) recruitment of new mutualists within the holobiont
(Vandenkoornhuyse et al., 2015). In this model, genetic novelties
in the hologenome (i.e., the combined genomes of the plant
and its microbiota, the latter supporting more genes than the
host) are a consequence of interactions between the plant
and its microbiota. The process of genetic accommodation
described in Section “Epi-Alleles, Genetic Accommodation and
Adaptation,” impacts not only the plant genome but can also
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FIGURE 1 | (A) Plant phenotypic plasticity is triggered by environmental constraints. Phenotypic changes induced are not solely genetically controlled but are also
based on either epigenetic marks or plant microbiota by recruitment of mutualists. This plant ‘toolbox’ allows a rapid response to environmental constraints. (B) The
control over plant phenotypic plasticity may cross-talk or synergistically interplay with different possible interactions. (1) Co-evolution plant-symbiont (2) Interplay
genetic/epigenetics (3) Interaction between epigenetics and microbiota. These mechanisms also act at the modular scale of plant structure.

be expanded to all components of the holobiome and may
thus be enhanced by the genetic variability of microbiota. In
the holobiont, phenotypic plasticity is produced at different
integration levels (i.e., organism, super-organism) and is also
genetically accommodated or assimilated at those scales (i.e.,
within the plant and mutualist genomes and therefore the
hologenome). The holobiont thus displays greater potential
phenotypic plasticity and a higher genetic potential for mutation
than the plant alone, thereby supporting selection and the
accommodation process in the hologenome. In this context, the
variability of both mutualist-induced and epigenetically induced
plasticity in the holobiont could function as a “toolbox” for
plant adaptation through genetic accommodation. Consequently,
mechanisms such as epigenetics allowing a production of
phenotypic variants in response to the environment should be of
importance in the holobiont context.

DO MICROBIOTA AND EPIGENETIC
MECHANISMS ACT SEPARATELY OR
CAN THEY INTERACT?

Both epigenetic and microbiota interactions allow plants to
rapidly adjust to environmental conditions and subsequently
support their fitness (Figure 1). Phenotypic changes ascribable
to mutualists and mutualists transmission to progeny are
often viewed as epigenetic variation (e.g., Gilbert et al.,
2010). However, this kind of plasticity is closer to an
“interspecies induction of changes” mediated by epigenetics
rather than “epigenetics-induced changes” based solely on
epigenetic heritable mechanisms (see section on epigenetics for a
restricted definition). Apart from the difficulty of drawing a clear

line between epigenesis and epigenetics (Jablonka and Lamb,
2002), evidence is emerging of the involvement of epigenetic
mechanisms in mutualistic interactions. An experiment revealed
changes in DNA adenine methylation patterns during the
establishment of symbiosis (Ichida et al., 2007), suggesting an
effect of this interaction on the bacterial epigenome or at least,
a role of epigenetic mechanisms in symbiosis development.
Correct methylation status seems also to be required for efficient
nodulation in the Lotus japonicus – Mesorhizobium loti symbiosis
(Ichida et al., 2009) and miRNA “miR-397” was only induced
in mature nitrogen-fixing nodules (De Luis et al., 2012). As
epigenetic mechanisms are involved in the development of
symbiosis, we assume that epigenetic phenomena may have
significant effects on mutualist associations. As yet, little is
known about the epigenetic effects and responses underlying
host–symbiont interactions. These epigenetic mechanisms and
microbiota sources of plant phenotypic plasticity may act
synergistically although this idea has never convincingly been
addressed. As far as we know, different important issues
bridging epigenetic mechanisms and microbiota remain to be
elucidated such as (1) the frequency of epigenetic marking in
organisms involved in mutualistic interactions, (2) the range
of phenotypic plasticity associated with these marks either in
the plant or in microorganisms, (3) the consequences of these
marks for holobiont phenotypic integration, (4) the functional
interplay between epigenetic mechanisms and microbiota in
plant phenotype expression, (5) the inheritance of epigenetic
mechanisms and thus their impact on symbiosis development,
maintenance and co-evolution. To answer these questions, future
studies will need to involve surveys of plant genome epigenetic
states (e.g., methylome) in response to the presence/absence of
symbiotic microorganisms. Recent progress made on bacteria
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FIGURE 2 | A plant’s phenotypic variations can be inherited even in the case of a phenotypic trait not controlled by a gene/genome variation. This
rapid response to environmental change involves epigenetic mechanisms and/or microorganisms recruitment within the plant microbiota. Heritable transgenerational
plasticity mediated by epigenetic mechanisms and/or mutualists could be followed by genetic accommodation and long term adaptation.

methylome survey methods should represent useful tools to
design future experiment on this topic (Sánchez-Romero et al.,
2015).

Although research on the interaction between microbiota and
epigenetics is in its infancy in plants, recent works mostly on
humans support existing linkages. Indeed, a clear link has been
evidenced betweenmicrobiota and human behavior (Dinan et al.,
2015). Other examples of microbiota effects are their (i) deep
physiological impact on the host through serotonin modulation
(Yano et al., 2015) and (ii) incidence on adaptation and evolution
of the immune system (Lee andMazmanian, 2010). Such findings
should echo in plant-symbionts research and encourage further
investigations on this topic.

More broadly, and despite the above-mentioned knowledge
gaps, our current understanding of both epigenetic mechanisms
and the impact of microbiota on the expression of plant
phenotype, invites us to take those phenomena into consideration
in species evolution and diversification.

‘EXTENDED PHENOTYPE’ AND
‘HOLOGENOME THEORY’

Microbiota and epigenetic mechanisms play different but
complementary roles in producing phenotypic variations which

are then subjected to selective pressure. Diversification of traits
is suggested to depend on evolutionary time (necessary for the
accumulation of genetic changes, i.e., Martin and Pfennig, 2010)
but rapid shifts in plant traits, as allowed by both microbiota
and epigenetics, would provide accelerated pathways for their
evolutionary divergence. In addition, such rapid trait shifts
also permit rapid character displacement. Induction of DNA
methylation may occur more rapidly than genetic modifications
and could therefore represent a way to cope with environmental
constraints on very short time scales (during the individual’s
lifetime; Rando and Verstrepen, 2007). In parallel, microbiota-
induced plasticity is achieved both at a short time scale (i.e.,
through recruitment) and at larger time scales (i.e., through
symbiosis evolution; Figure 2). Because of the observation
of transgenerational epigenetic inheritance, the relevance of
epigenetically induced variations is a current hot topic in the
contexts of evolutionary ecology and environmental changes
(Bossdorf et al., 2008; Slatkin, 2009; Zhang et al., 2013; Schlichting
and Wund, 2014). This has stimulated renewed interest in
the ‘extended phenotype’ (Dawkins, 1982). The central idea of
Dawkins ‘extended phenotype’ (Dawkins, 1982) is that phenotype
cannot be limited to biological processes related to gene/genome
functioning but should be ‘extended’ to consider all effects
that a gene/genome (including organisms behavior) has on
its environment. For example, the extended phenotype invites
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us to consider not only the effect of the plant genome on
its resources acquisition but also the effect of the genome
on the plant symbionts as well as on nutrient availability
for competing organisms. More recently the development of
the ‘hologenome theory’ (Zilber-Rosenberg and Rosenberg,
2008) posits that evolution acts on composite organisms
(i.e., host and its microbiome) with the microbiota being
fundamental for their host fitness by buffering environmental
constraints. Both the ‘extended phenotype’ concept and
‘hologenome theory’ admit that the environment can leave
a “footprint” on the transmission of induced characters.
Thus, opportunities exist to revisit our understanding
of plant evolution to embrace both environmentally

induced changes and related ‘genetic accommodation’
processes.
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