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Abstract 

Cardiolipin (CL) is a unique mitochondrial phospholipid potentially affecting many aspects of 

mitochondrial function/processes, i.e. energy production through oxidative phosphorylation. 

Most data focusing on implication of CL content and mitochondrial bioenergetics were 

performed in yeast or in cellular models of Barth syndrome. Previous work reported that increase 

in CL content leads to decrease in liver mitochondrial ATP synthesis yield. Therefore the aim of 

this study was to determine the effects of moderate decrease in CL content on mitochondrial 

bioenergetics in human hepatocytes. For this purpose, we generated a cardiolipin synthase 

knockdown (shCLS) in HepaRG hepatoma cells showing bioenergetics features similar to 

primary human hepatocytes. shCLS cells exhibited a 55% reduction in CLS gene and a 40% 

decrease in protein expression resulting in a 45% lower content in CL compared to control 

(shCTL) cells. Oxygen consumption was significantly reduced in shCLS cells compared to 

shCTL regardless of substrate used and energy state analyzed. Mitochondrial low molecular 

weight supercomplexes content was higher in shCLS cells (+60%) compared to shCTL. 

Significant fragmentation of the mitochondrial network was observed in shCLS cells compared to 

shCTL cells. Surprisingly, mitochondrial ATP synthesis was unchanged in shCLS compared to 

shCTL cells but exhibited a higher ATP:O ratio (+46%) in shCLS cells. Our results suggest that 

lowered respiratory chain activity induced by moderate reduction in CL content may be due to 

both destabilization of supercomplexes and mitochondrial network fragmentation. In addition, 

CL content may regulate mitochondrial ATP synthesis yield. 
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Highlights: 

 First validation of HepaRG hepatocyte-like cells as a new alternative model for 

bioenergetics studies in human hepatocytes. 

 First data in human hepatocyte cell lines demonstrating that moderate reduction in 

cardiolipin content reduced mitochondrial oxidative capacities. 

 Cardiolipin content is part of the regulation of ATP synthesis yield since reduction in 

cardiolipin content increases ATP synthesis yield. 

 

Key words: cardiolipin synthase, mitochondrial network, supercomplexes, oxidative 
phosphorylation, hepatocytes 
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Introduction 

Cardiolipin (CL) is a unique phospholipid because of i) its chemical structure consisting of two 

phosphate headgroups, which are attached by a glycerol moiety, and four acyl chains providing 

large diversity in CL molecular species; ii) its specific location in mitochondrial membranes, 

which is also its synthesis site; iii) its interactions with numerous mitochondrial proteins, 

including oxidative phosphorylation complexes, positioning it in many aspects of mitochondrial 

function/processes, including energy production through oxidative phosphorylation [1], 

stabilization of supercomplexes [2,3], mitochondrial fission and fusion [4], protein import [5], 

mitophagy [6–8] and mitochondria-mediated apoptosis [9,10]. CL effects on respiratory 

complexes activity has been shown in silico. CL binds to complex I [11–13], II [14], III 

[11,15,16] and IV [17–19] and ensures their optimal activities. In in vitro/in vivo experiments, 

most knowledge of CL role in these fundamental functions of mitochondria comes from studies 

in the yeast Saccharomyces cerevisiae. Contrary to higher Eukaryotes [20], yeast are viable in the 

absence of CL. For example, the Δcrd1 mutant has been extensively used [1,21–24]. Although 

useful for studying mechanisms of CL metabolism and function yeast models may have limited 

applicability to the mammalian system. In fact, in this unicellular eukaryotic cell the composition 

of the mitochondrial respiratory chain is markedly different between mammals since complex I is 

absent. However supercomplexes, although different in composition, are conserved between 

yeast and mammals.  

Few rigorous studies have examined mitochondrial bioenergetics modulated through an increase 

or a reduction in CL content in mammalian cells. A Chinese hamster ovary (CHO) cell line 

containing a temperature-sensitive mutant of PG synthase provided the first indication of CL 

involvement in mitochondrial bioenergetics in mammalian cells [25]. In alpha-synuclein 

knockout mice, brain CL content was lowered in relation to a reduction in respiratory complex 

I/III activity [26]. Protein Tyrosine Phosphatase localized to the Mitochondrion 1 (PTPMT1) 
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deficient mouse embryonic fibroblasts exhibited a 3.5-fold reduction in CL content and this was 

associated with a reduction in oxygen consumption in all energy states [20]. Others studies in 

mammals cells have used knockdown of cardiolipin synthase (CLS), the specific enzyme of de 

novo CL synthesis [24], but with a focus on apoptosis and not mitochondrial bioenergetics [9,27]. 

The role of CL in mitochondrial bioenergetics has been examined in cellular or animal models of 

Barth syndrome. These models are characterized by not only a reduction in CL content but an 

accumulation in monolysocardiolipin (MLCL). Therefore, the alterations in mitochondrial 

bioenergetics reported in Barth syndrome models may not be exclusively due to reduced CL 

content. In addition, the mitochondrial alterations in Barth syndrome are subject to debate 

[28,29]. Other studies have evaluated the effect of CL enrichment on mitochondrial 

bioenergetics. Direct addition of CL to an oxygraphy chamber induced an increase in oxygen 

consumption in non-phosphorylating and phosphorylating states in isolated liver mitochondria 

[30]. Our group further confirmed these effects with the demonstration that the increase in liver 

mitochondria CL content was associated with a specific increase in energy wasting (in non-

phosphorylating state) and a reduction in ATP synthesis yield [31]. 

Since there is no data that has clearly examined the effect of CL reduction on mitochondrial 

bioenergetics in human cells and that CL content can modulate ATP synthesis yield, the aim of 

the present study was to determine the effects of a partial decrease in CL content on 

mitochondrial bioenergetics in human hepatocytes. 
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Material and methods 

Cell culture  

As previously described [32], HepaRG cells (obtained from Biopredic International, France) were 

cultivated in William's E medium supplemented with 10% fetal bovine serum, 100 U/ml 

penicillin, 100 μg/ml streptomycin, 5 μg/ml insulin, and 50 μM hydrocortisone hemisuccinate. 

After 2 weeks, the medium was supplemented with 2% dimethyl sulfoxide (DMSO) and the cells 

were cultured for 2 more weeks. HepaRG hepatocytic cells from DMSO treated cultures were 

selectively detached using gentle trypsination for experiment use. HepG2 cells (ATCC, USA) 

were cultivated in MEM medium supplemented with 10% fetal bovine serum, 100 U/ml 

penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine and 1% non-essential amino acids. Huh7 

cells (ATCC, USA) were cultivated in DMEM medium supplemented with 10% fetal bovine 

serum, 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM L-glutamine.  

Human primary hepatocytes were obtained from the processing of biological samples through the 

Centre de Ressources Biologiques (CRB) Santé of Rennes BB-0033-00056. The research 

protocol was conducted under French legal guidelines and fulfilled the requirements of the local 

institutional ethics committee. Hepatocytes were isolated from partial liver resections by a two-

step collagenase perfusion procedure. Liver parenchymal cells were seeded at a density of 1.5 x 

105 viable cells/cm2 dish in Williams E medium supplemented with 0.2% bovine serum albumin, 

0.01% insulin, 2 mM of l-glutamine, 100 U/ml of penicillin, 10 μg/ml of streptomycin, 0.1 μM 

hydrocortisone hemisuccinate and 10% FCS. Twenty four hours after plating, the primary human 

hepatocytes were cultured in the William’s E medium supplemented with 2% DMSO used for the 

differentiated HepaRG cells. The medium was renewed daily and hepatocytes were used for 

experiments 2 to 4 days after plating. 

 

Generation of CLS Knockdown Cells 
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CLS shRNA and non-silencing negative control pGIPZ lentiviral particles were purchased from 

Thermo Scientific (Fermentas, Gmbh, Sankt Leon-Rot, Germany). Three pGIPZ viral particles 

(source clone identifications: V3LHS_414357, V2LHS_176631, V2LHS_176630) encoding 

shRNA targeting CLS gene (Fermentas nomenclature: CLRS1) were tested. In our culture 

conditions, the most efficient repression of CLS expression was obtained using the 

V2LHS_176630 viral particles (data not shown), which was kept for the large scale production of 

stable recombinant HepaRG cells. Viral titer of CLS and non-silencing pGIPZ lentiviral particles 

was ~1.2 x 108 Titration Units/mL. For transduction of proliferating HepaRG cells, 105 cells/well 

in 24-well plates were seeded 24h prior infection, which was performed with the multiplicity of 

infection at 5 in the absence of polybrene for 48h. The pGIPZ lentiviral vector contains the 

human cytomegalovirus promoter driving the transgene expression. The transgene includes the 

turboGreen fluorescent protein (tGFP), an internal ribosome entry site (IRES) followed by the 

puromycine selection cDNA and the microRNA-adapted shRNA for gene knockdown. One week 

after infection, the cells were plated in a 60 mm dish and expanded in presence of 250 μg/mL of 

puromycin. Following cell expansion, ~5.106 cells were subjected to cell sorting for enrichment 

of GFP+ cells and selection of cells expressing shRNA. This procedure ensured >80% of GFP+ 

HepaRG cells. 

 

RNA isolation and real time PCR assay 

Total RNA from HepaRG cells were extracted with NucleoSpin® RNA II (Macherey-Nagel) 

following manufacturer’s instructions. Reverse transcription was performed using High capacity 

cDNA reverse transcription kit (Applied Biosystems). The Real-time PCR was performed with 

the StepOnePlus™ System and with the Taqman probe-based assays (Applied Biosystems). 

Human Taqman primers for CLS (Hs00219512_m1) and the housekeeping gene TBP (TATA 

binding protein) (Hs00427620_m1) were provided by Applied Biosystems. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
 

8 
 

Western blotting 

After boiling in Laemmli buffer (20 mM Tris pH 6.8, 2 M β-Mercaptoethanol, SDS 9%, glycerol 

30%), total proteins extract (excepted for DRP1 where mitochondrial proteins were used) were 

resolved by SDS-PAGE, transferred to polyvinylidenefluoride membrane, blocked in 5% non-fat 

milk in phosphate-buffered saline (PBS)/Tween-20, blotted and developed with antibodies 

specific for CLS (14845-1-AP, Proteintech, Manchester, UK), complex I (Grim 19)( ab110240, 

Abcam), complex II anti SDHA (ab14715, Abcam), complex III UQCRFS1 (ab14746, Abcam), 

complex IV anti MTCO1 (ab14705), ATP synthase anti ATP5A (ab14748, Abcam), PGC-1α 

(ab77210, Abcam), mtTFA (ab119684, Abcam), Mitofusin 2 (ab101055, Abcam), DRP1 

(ab56788),  adaptin (sct-58226, Santa Cruz Biotechnology) and Voltage Dependent anion 

channels (VDAC) (ab14734, Abcam) (loading control) followed by horseradish peroxidase-

coupled detection (Pierce ECL Western Blotting Substrate). Secondary antibodies were obtained 

from SantaCruz. The protein band intensities were analyzed by densitometry (MF-ChemiBIS 3.2, 

DNR Bioimaging Systems, MultiGauge software, Fujifilm). 

 

Phospholipid classes quantitation 

Mitochondria were extracted from HepaRG cells by differential centrifugation. Then 

mitochondrial lipids were extracted following the protocol of Bligh and Dyer [33]. In order to 

quantify mitochondrial phospholipids (cardiolipin [CL], phosphatidylethanolamine [PE], 

phosphatidylinositol [PI], phosphatidylcholine [PC], phosphatidylserine [PS] and sphingomyelin 

[SM]), standards and samples were loaded on silica plates using Linomat V sample applicator 

(CAMAG, Muttenz Switzerland). After migration, the plates were immersed into the following 

solution (10% wt/vol) copper sulfate in 8% (vol/vol) phosphoric acid solution and then heated at 

160°C for 15 min to stain all of the phospholipids. Quantification was performed using Thin 
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Layer Chromatography-visualizer Reprostar 3® and WinCats VideoScan® software (CAMAG, 

Muttenz Switzerland). Results were expressed in percent of total mitochondrial phospholipids.  

 

CL fatty acid molecular species Analysis by LC-MS/MS 

Lipids were extracted from 6 to 8x 106 cells according to the method of Folch et al.[34]. In brief, 

cells were spiked with (14:0)4-CL used as internal standard (250 ng, Avanti Polar Lipids, Coger, 

Paris, France). Lipids were extracted with 1 ml of saline and 3.5 ml of CHCl3/MeOH (2/1) for 10 

min followed by addition of 1.25 ml CHCl3 for 10 min and finally 1.25 ml of distilled water for 5 

min. Organic phase was collected and dried under vacuum. Lipid extracts were further 

solubilized in 100 μl of CHCl3/MeOH /H2O (60/30/4.5) and LC-MS/MS analysis of cardiolipins 

was conducted as previously described [35]. 

 

High-resolution respirometry 

High resolution respirometry was performed using a 2-ml chamber OROBOROS® Oxygraph 2K 

(Oroboros Instruments, Innsbruck, Austria) at 37°C. Respiration rates were calculated as the time 

derivative of oxygen concentration measured in the closed respirometer and expressed per 

million viable cells and corrected by non-mitochondrial oxygen consumption measured with 

antimycin A 2 μM. Cells were permeabilized with digitonin (11 μg per 106 cells for HepaRG cell 

line and human primary hepatocytes, and 8 μg per 106 cells for Huh7 and HepG2 cell lines). 

Permeabilized cells (0.5 × 106 cells mL) were analyzed in respiration buffer medium (10 mM 

KH2PO4, 300 mM mannitol, 10 mM KCl, 5 mM MgCl2, 1 mM EGTA and 1 mg/ml BSA fatty 

acid free). Oxygen consumption was measured at state 3 or phosphorylating state with 1.5 mM 

ADP, at state 4 or non-phosphorylating state using oligomycin 8 μg/ml and ETS (Electron 

Transfert System) capacity (maximum uncoupled respiration) induced by Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP, 0.8 mM). Experiments were carried out with various 
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combination of substrate: pyruvate and malate (5 mM), succinate (10 mM), or trimethyl 

pentanediol (TMPD) and ascorbate (400 μM and 5 mM respectively). 

 

Efficiency of ATP synthesis by mitochondria  

The kinetic response of oxygen consumption and ATP synthesis was determined at 37°C in a 

respiratory reaction medium (10 mM KH2PO4, 300 mM mannitol, 10 mM KCl, 5 mM MgCl2, 1 

mM EGTA) supplemented with 0.3% (w/v) fatty acid free BSA. The experimental conditions 

were: permeabilized cells (0.5 × 106 cells.ml-1), succinate (10 mM), sodium iodoacetate (2 mM) 

and ADP (1.5 mM). Concomitantly to oxygen consumption measured by OROBOROS® 

Oxygraph 2K (Oroboros Instruments, Innsbruck, Austria), 10 μl of cell suspension were sampled 

every minutes over 6 minutes. Reactions were stopped by adding 10 μl of a solution containing 

10% perchloric acid and EDTA (25 mM) and then neutralized in a buffer (Hepes 25 mM, EDTA 

2 mM, pH 7.75). In order to quantify mitochondrial ATP synthesis, standard ATP solutions from 

10-11 to 10-7 M and samples were quantified using Enliten ATP assay (Promega) kit and Promega 

Glomax 20/20 luminometer (Promega). Results were expressed as mg ATP / pmol oxygen. 

 

Clear Native Electophoresis (CN-PAGE) 

For CN-PAGE, mitochondria were extracted from HepaRG cells by differential centrifugation 

and were then solubilized in digitonin (5%) dissolved into extraction buffer (Hepes 30 mM, 

potassium acetate 150 mM, glycerol 12% 6-aminocaproic acid 2 mM and protease inhibitor 

cocktail) , and the complexes were separated on 5%–10% polyacrylamide gradient gels. The CN-

PAGE strips were cut and supercomplexes denatured. After 10 min incubation in equilibration 

buffer (urea 6 M TrisHCl pH8.8 1.5 M, SDS 2% glycerol 2%), the strips were incubated a second 

time in equilibration buffercontaining dithiotreitiol to reduce the disulfide bonds. The strips were 
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then incubated a third time in the same buffer containing iodoacetamide to avoid disulfide bond 

reformation. The lanes were incubated an extra 10 min in equilibration buffer before loading the 

lanes onto a 12% SDS-PAGE for separation in the second dimension. SDS-PAGE were 

electrotransferred into PVDF membranes, and immunodetection was carried out as described 

above. 

 

Electron microscopy 

Cells were fixed by incubation for 24 h in 4% paraformaldehyde, 1% glutaraldehyde in 0.1 M 

phosphate buffer (pH 7.2). Samples were then washed in phosphate-buffered saline (PBS) and 

post-fixed by incubation with 2% osmium tetroxide for 1 h. Samples were then fully dehydrated 

in a graded series of ethanol solutions followed by a propylene oxide bath. Pre-impregnation step 

was made by a propylene oxyde/Epon resin mixture (Sigma) and finally overnight in pure resin 

for impregnation of the samples. Cells were then embedded in Epon resin (Sigma), which was 

allowed to polymerize for 48 h at 60°C. Ultra-thin sections (90 nm) of these blocks were obtained 

with a Leica EM UC7 ultramicrotome (Wetzlar, Germany). Sections were deposited on gold 

grids and stained with 2% uranyl acetate, 5% lead citrate. Microscopy was performed using a 

JEOL 1011 transmission electron microscope. Images were analyzed using ImageJ software 

(NIH). 

 

Confocal microscopy 

HepaRG hepatocyte-like cells from DMSO treated cultures were cultivated for 24 h in Lab Tek 

slides. In order to stain mitochondrial network, cells were incubated with 0.5 μM MitoTracker 

Red CMX ROS (Invitrogen). The cells were washed with PBS, fixed with 4% paraformaldehyde 

solution. The slides were prepared using Prolong® Gold reagent with DAPI (Life Technologies) 

in order to stain nuclei. MitoTracker Red CMX ROS was excited at 543 nm, and fluorescence 
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emission was detected between 550 and 650 nm. 3D reconstruction was performed using Imaris 

software, permitting quantification of total volume of mitochondria, number of fragments per cell 

and fragment average volume. 

 

Statistical analysis 

Data were expressed as mean ± S.E.M. Statistical analyses were performed using GraphPad 

Prism®. Comparisons between human hepatoma cell lines to primary hepatocytes were 

performed using Kruskal-Wallis non parametric test followed by Dunns post test. The differences 

between shCTL and shCLS cells were evaluated by non parametric Wilcoxon matched-pairs 

signed rank test. Values showing p<0.05 were considered statistically significant unless 

otherwise indicated. 
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Results 

Validation of HepaRG cell line for mitochondrial bioenergetics studies. 

To study CL involvement in hepatic mitochondrial bioenergetics we investigated what would be 

the most appropriate human hepatocyte cell line to perform our experimentation. Primary 

cultured hepatocytes from human liver resection are rare and do not maintain a differentiated 

hepatocyte phenotype for extended periods of time post resection. Thus, we compared oxygen 

consumption in different energy states in three human differentiated hepatoma cell lines: HepG2, 

Huh7 and HepaRG to primary human hepatocytes cultured for 2 to 4 days following liver 

resection and hepatocyte isolation (figure 1A). In phosphorylating condition (state 3) oxygen 

consumption was significantly higher in HepaRG and primary human hepatocytes (125.4 and 

144.8 pmol oxygen. min-1 per 10-6 cells, respectively) than in Huh7 and HepG2 (41.8 and 54.8 

pmol oxygen. min-1 per 10-6 cells, respectively). Oxygen consumption in state 3 was similar 

between HepaRG and primary human hepatocytes cells. In non-phosphorylating condition (state 

4), oxygen consumption of primary human hepatocytes was 4.6-, 3- and 1.4-fold higher than 

Huh7, HepG2 and HepaRG cells, respectively. Maximum oxygen consumption, reflecting 

maximal electron transport chain activity, measured in the presence of FCCP was significantly 

higher among HepaRG and human primary hepatocytes (156.7 and 176.7 pmol oxygen. min-1 

per10-6 cells, respectively) than Huh7 and HepG2 (38.4 and 73.3 pmol oxygen. min-1 per 10-6 

cells, respectively). These results demonstrated that HepaRG hepatocyte-like cells exhibited 

similar oxygen consumption in different energy states when compared with primary human 

hepatocytes. 
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Figure 1: HepaRG is the closest cellular model to mimic primary human hepatocyte 

mitochondrial bioenergetics and CL content. 
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Mitochondrial phospholipid composition of the three cell lines was compared to primary human 

hepatocytes with a specific interest for CL (figure 1B). CL content was significantly lower in 

human hepatocytes (8.5% of total mitochondrial PL) than in Huh7 (17.2%), HepG2 (16.1%) and 

HepaRG (13.1%). PE content was not significantly different between human hepatocytes and the 

three hepatocytes cell lines. However Huh7 cells had significant higher PE content than HepG2 

and HepaRG cells. Primary human hepatocytes had a significantly higher content in PI (14.8% of 

total mitochondrial PL) than the three cell lines (6%). PC + PS content was significantly lower (-

9%) in Huh7 and (-9%) in primary human hepatocytes compared to HepaRG cell line. There 

were no significant differences in SM content between the hepatoma cell lines and the primary 

human hepatocytes (figure 1B). We chose to use the HepaRG cell line to generate CLS 

knockdown hepatocytes due to its similarity in mitochondrial bioenergetics and CL content. 

  

Characterization of shCLS recombinant HepaRG cells 

CLS mRNA was reduced 55% in shCLS compared to shCTL cells (p = 0.014, figure 2A). The 

reduction in gene expression was associated with a lower CLS protein expression in shCLS 

(40%, p=0.028, figure 2B) compared to shCTL. In addition, CL content was reduced in shCLS 

cells (45%, p<0.05) compared to shCTL (figure 2C). There was no difference in the content of 

other phospholipids. CL molecular species were analyzed by LC-MS/MS in shCLS and shCTL 

cells. Several differences in CL molecular species were observed (figure 2D). (18:2)3-(16:1), 

which represents 15% of CL molecular species in shCTL cells, was reduced (-9%; p=0.028) in 

shCLS cells compared to shCTL. In addition, (16:1)-(18:1)2-(18:2), which represents 5% of the 

molecular species in shCTL cells, was reduced by -21% (p=0.028) in shCLS cells compared to 

shCTL. Several modifications in less abundant (from 2% to 0.05%) CL molecular species content 

were observed in shCLS compared to shCTL. 
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Figure 2: Characterization of cell line with shRNA targeting cardiolipin synthase. 
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± S.E.M. shCTL HepaRG cells (white bars) and shCLS HepaRG cells (black bars) with N = 6 per group. * 

= p<0.05. 
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Mitochondrial bioenergetics is altered in shCLS recombinant HepaRG cells 

We determined the effect of lowered CL on mitochondrial bioenergetics in HepaRG cells. The 

oxygen consumption measurements were performed on permeabilized cells in order to control the 

nature of the substrates and the respiratory complexes involved. 

 

Figure 3: Decrease in CL content affect overall respiratory chain function  

 

Oxygen consumption measured on permeabilized cells using (A) succinate, (B) pyruvate + malate 

and (C), ascorbate + TMPD as substrates. Values represent the mean ± S.E.M. shCTL HepaRG cells 

(white bars) and shCLS HepaRG cells (black bars) with N = 6 per group. * = p<0.05, ** =p< 0.001 and 

*** = p<0.0001. 

 

In phosphorylating state (state 3), shCLS cells exhibited a significant decrease in oxygen 

consumption with all the substrates used compared to shCTL (26% with succinate, 21% with 

pyruvate+malate and 40% with ascorbate+TMPD) (figure 3A, B and C). In non-phosphorylating 

(state 4) oxygen consumption was significantly decreased by 33% (p=0.018) with succinate and 

42% (p=0.018) with TMPD+ascorbate in shCLS cells (figure 3A and C). With pyruvate+malate 

oxygen consumption was unchanged (figure 3B and C). Finally, uncoupled state related-oxygen 

consumption was decreased in shCLS cells compared to shCTL cells (16% (p=0.015) with 

succinate, 23% (p=0.015) with pyruvate+malate and 40% (p=0.015) with ascorbate+TMPD. 
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Mitochondrial respiratory supercomplexes organization is altered in shCLS recombinant 

HepaRG cells 

We examined mitochondrial respiratory supercomplexes organization in these cells. There was 

no difference in complex I, II, III and IV protein levels in shCLS cells compared to shCTL cells 

(figure 4A).  

 

Figure 4: Increased low molecular weight supercomplexes in cells with reduced CL content  

  

 

 

 

 

 

 

 

 

 

(A) Respiratory complexes were quantified in ShCTL and ShCLS cells by densitometry after SDS-PAGE 

(N = 6 per group), (B) Digitonin-solubilized isolated mitochondria from shCTL and shCLS cells were 

analyzed by 2D CN/SDS-PAGE (N = 3 per group). Antibodies against Grim19, SDHA, UQRFS1, and 

MTCO1 were used to detect complexes I, II, III, and IV, respectively. Values represent the mean ± S.E.M. 

shCTL HepaRG cells (white bars) and shCLS HepaRG cells (black bars). Black arrows: highlighted 

modifications on complex III related supercomplexes. 
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The supercomplexes composition was then investigated using two-dimensional electrophoresis 

with CN-PAGE followed by SDS-PAGE. In shCTL and shCLS cells supercomplexes were 

mainly composed of I/III/IV. However shCLS cells had higher content of low molecular 

supercomplexes such as III/IV and III than shCTL (figure 4B). Quantification of complex III 

band intensity revealed that III/IV and III were 60% higher in shCLS than in shCTL, without 

reaching statistical significance (p=0.06, figure 4B). In contrast, supercomplexes I/III/IV did not 

differ between shCLS and shCTL cells (p=0.64). 

 

Mitochondrial network is fragmented in shCLS recombinant HepaRG cells 

Mitochondrial network status, which is a balance between fusion and fission processes, can be 

modified by CL and can regulate mitochondrial bioenergetics [36]. Mitochondrial network was 

analyzed by confocal microscopy. Images obtained after 3-D reconstruction indicated that shCLS 

cells had a fragmented mitochondrial network compared to shCTL (figure 5A).  

This difference was confirmed by several quantitative parameters. Total mitochondrial volume 

per cell was similar between shCTL and shCLS cells (figure 5B). In shCLS cells, mitochondrial 

network fragment number was 2.8-fold higher (p<0.0001) than in shCTL cells (figure 5C). 

Average volume of the fragments was 3-fold lower (p<0.0001) in shCLS cells than in shCTL 

cells (figure 5D). Protein expression of Drp1 a protein involved in fission and Mfn2 involved in 

fusion were quantified (figure 5E and F). A 35% increase in Drp1 protein expression in 

mitochondria was observed in shCLS compared to shCTL cells (p= 0.042). Mfn2 expression was 

similar between shCTL and shCLS cells. 
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Figure 5: Decrease CL content induced mitochondrial network fragmentation 

 

 

 

 

 

 

 

 

 

 

 

Mitochondrial network analysis by confocal microscopy after mitotracker red staining 

Three dimension reconstruction in shCTL (white bars) and shCLS (black bars) HepaRG cells was 

performed using Imaris software (nucleus in blue, and mitochondria in red). Representative mitochondrial 

network is shown in (A). Mitochondrial volume (B), mitochondrial fragment (C) and average fragment 

volume (D) were measured. Drp1 (E) and Mfn2 (D), proteins involved in fission and fusion were 

quantified by densitometry after SDS-PAGE. VDAC was used as loading control (N = 6). Values represent 

the mean ± S.E.M. * = p<0.05; **** = p<0.0001. 
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Reduced CL content increases ATP synthesis yield 

ATP synthesis rate was unaffected by a decrease in CL content in shCLS compared to shCTL 

cells (figure 6A). However ATP:O ratio reflecting ATP synthesis yield was significantly 

increased by 46% (p=0.0156) in shCLS cells compared to shCTL cells (figure 6B). ATP synthase 

protein expression was similar between shCLS and shCTL cells (figure 6C).  

Figure 6: Decrease in CL results in increased mitochondrial ATP synthesis efficiency 

without effects on ATP synthesis rate and ATP synthase protein 

 

 

 

 

 

 

 

 

 

 

(A) Mitochondrial ATP synthesis rate, (B) ATP synthesis efficiency expressed as the ratio of ATP 

synthesized and oxygen consumed were measured with succinate as substrate and (C) ATP synthase 

protein content with significant western blot tent. Values represent the mean ± S.E.M. shCTL HepaRG 

cells (white bars) and shCLS HepaRG cells (black bars) with N = 6 per group. * = p<0.05. 
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Decrease in CL content does not alter mitochondrial biogenesis or structure.  

A reduction in respiratory chain capacities can be compensated by an increase in mitochondrial 

biogenesis. Protein expression of mtTFA (figure 7A) and PGC-1  (figure 7B), involved in 

mitochondrial biogenesis, were unchanged between shCTL and shCLS cells.  

Figure 7: Decrease CL content did not affect mitochondrial biogenesis nor mitochondrial 

ultrastructure 

 

 

 

 

 

 

 

 

 

Biogenesis protein marker (A) mtTFA and (B) PGC-1  were quantified by densitometry after western 

blotting. (C) Mitochondrial ultrastucture parameters and (D) Representative EM images of HepaRG cells 

and mitochondria from shCTL and shCLS cells. Bar is 2 μM for the lower panels and 0.2 μM for the 

upper panels. Values represent the mean ± S.E.M. shCTL HepaRG cells (white bars) and shCLS HepaRG 

cells (black bars) with N = 6 per group. OMM: outer mitochondrial membrane. 
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was similar between shCTL and shCLS cells (figure 7 C). As CL content can affect mitochondria 

ultrastructure [37], mitochondrial cristae and outer mitochondrial membrane (OMM) lengths 

were quantified. Neither cristae length nor cristae/OMM length ratio were altered by reduction in 

CL content in shCLS compared to shCTL cells (figure 7C and D).   
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Discussion 

The overall aim of the present study was to investigate the involvement of CL content on 

mitochondrial bioenergetics in hepatocytes. We previously demonstrated that an increase in CL 

content in liver mitochondria led to a reduction in ATP synthesis yield. These data brought for 

the first time a direct causality between the increase in mitochondrial membrane CL content and 

reduction in efficiency of ATP synthesis [31]. In order to improve our understanding of the 

mechanisms related to mitochondrial bioenergetics modulation by CL, the effect of moderate 

decrease in CL content on mitochondrial bioenergetics in human hepatocytes were investigated. 

We first compared three hepatoma cell lines to primary human hepatocytes, obtained from liver 

resection, in order to use the most relevant hepatic cellular model. Primary cultured hepatocytes 

from human liver resection are difficult to obtain. Moreover, primary human hepatocytes did not 

keep the hepatocyte phenotype for sufficient duration in order to perform our study. We chose to 

compare primary human hepatocytes to the most used human hepatocyte cell lines initially 

isolated from primary liver carcinomas: Huh7, HepG2 and HepaRG. Huh7 and HepG2 are 

commonly used as a model for liver cancer studies whereas the HepaRG cell line was defined as 

a new tool to study drug metabolism [38]. HepaRG appears to be an alternative to primary human 

hepatocytes because they retain a differentiated hepatocyte-like morphology and most liver 

functions, including cytochrome P450 drug-metabolizing and liver specific proteins such as 

aldolase, haptoglobulin and albumin [38]. However, to our knowledge there had been no analysis 

of HepaRG mitochondrial bioenergetics in comparison with primary human hepatocytes. Thus, 

we measured mitochondrial phospholipid content and oxygen consumption in different energy 

states with different substrates in permeabilized Huh7, HepG2, HepaRG and primary human 

hepatocytes. We observed that HepaRG mitochondrial oxygen consumption was closer to 

primary human hepatocytes than the two other cells lines at each respiratory state. Indeed both 

HepaRG and primary human hepatocytes exhibited significant oxidative phosphorylation 
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activity. In contrast, Huh7 and HepG2 cells had a much lower oxygen consumption. Under 

normal conditions, cells rely on mitochondrial oxidative phosphorylation to provide energy for 

cellular activities. Cancer cells are often characterized by increased “lactic” glycolysis and 

reduced mitochondrial respiratory function [39]. Here, the differentiated hepatocyte-like HepaRG 

cells appeared to have lost their cancer cell energy metabolism characteristics. Mitochondrial 

phospholipid composition was more heterogeneous between the different cell lines and primary 

human hepatocytes. However, HepaRG and primary human hepatocytes had a lower amount of 

CL than Huh7 and HepG2 cells. These data suggest that HepaRG may serve as a useful cell line 

for bioenergetics studies as an alternative to primary human hepatocytes. 

In order to investigate the effect of reduction in CL content on mitochondrial function a 

recombinant HepaRG expressing shRNA for CLS was established. The decrease in CL content 

observed in shCLS HepaRG cells (-45%) was similar to that observed in primary rat neurons 

transfected with CLS RNAi [40] and in human lung carcinoma A549 cells transfected with 

shRNA encoding CLS [27]. The alteration in CL fatty acid composition observed in shCLS 

HepaRG cells indicated that reduction in CL content may alter CL remodeling processes. CL 

remodeling by MLCLAT 1 has previously been shown to be regulated in concert with CL content 

either in hyper or hypothyroid rat heart [41]. Furthermore, previous studies have reported acyl 

chain specificity for CLS. In fact, oleoyl and linoleyl species seem to be preferentially used as 

acyl donor by the CLS [42,43]. We can then speculate that in shCLS cells reduction in CLS was 

associated with changes in CL acylation. Changes in CL acylation mediated by CLS and in 

remodeling processes could be implied by the observed modifications in the CL fatty acid 

composition in shCLS cells. However, this fatty acid composition was still characteristic of 

mammalian mitochondria (major species are composed of linoleic acid 70 to 90% of CL fatty 

acid in rats[44]).  
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Reduction in CL content in shCLS HepaRG cells induced profound modifications in 

mitochondrial bioenergetics. Regardless of the substrate used and the energy state (non-

phosphorylating, phosphorylating and uncoupled states) examined, oxygen consumption was 

significantly reduced from 16% to 41% suggesting a global decrease in respiratory chain activity. 

There are few studies in mammalian cells that have utilized RNAi to reduce CL content, and 

most of these have not considered mitochondrial bioenergetics [10,27,40]. Several studies in 

yeast have been focused on bioenergetics and CL content using Δcrd1 mutant yeast [1,21,22,45]. 

In these studies, reduced CL resulted inreduction in oxygen consumption in different energy 

states and resulted in mitochondrial uncoupling. In contrast, no alteration in oxygen consumption 

was observed in intact Barth syndrome fibroblasts which exhibit reduced CL levels [28]. 

However a reduction in oxygen consumption in phosphorylating and in uncoupled states in 

isolated mitochondria from Barth syndrome fibroblast indicated a compensatory increase in 

mitochondrial mass/cell [28]. A strong reduction in oxygen consumption was observed in 

induced pluripotent stem cells derived from Barth syndrome patients [29]. Comparison of our 

data with these studies should be considered with caution since Barth syndrome is characterized 

by not only a lower CL content but an increase in MLCL content [37]. A CHO cell line 

containing a temperature-sensitive mutant of PG synthase provided the first indication of the 

potential involvement of CL in mammalian mitochondrial bioenergetic [25]. At the non-

permissive temperature (40°C) mutant CHO cells exhibited a decrease in oxygen consumption 

and ATP production. However, since PG synthase mutation induced a reduction in both PG and 

CL content, it is not possible to attribute the mitochondrial bioenergetics defects to CL alone. 

More recently, in alpha-synuclein knockout mice a 22% reduction in CL content in brain was 

associated with a 15% reduction in complex I/III activity without changes in individual 

complexes activities [26]. In addition, PTPMT1 KO mice and cells exhibited a 3.5-fold reduction 

in CL content associated with a large decrease in oxygen consumption [20]. Our results on 
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impairment of mitochondrial respiratory chain activity in shCLS HepaRG cells are in agreement 

with these studies. 

We investigated the mechanisms potentially responsible for the observed reduction in respiratory 

chain function in shCLS cells.  

Organization of respiratory complexes into supercomplexes facilitates electron transfer through 

oxidative phosphorylation (OXPHOS) and leads to a better functioning of the mitochondrial 

respiratory chain [46]. Since CL may be required for supercomplexes stability [2,3,47,48], 

reduction in CL content in shCLS HepaRG cells could potentially affect supercomplexes and 

consequently OXPHOS. A lower amount of supercomplexes organization with a higher content 

in low molecular supercomplexes such as III/IV and III were observed when CL content was 

reduced in shCLS cells. These defects could explain the overall decrease in respiratory chain 

activity. Supercomplexes destabilization have been observed in cells from a Barth syndrome 

patient [28]. However, as indicated above the supercomplexes alteration may have been due to 

reduction in CL and/ or an increase in MLCL. A recent study in an αTFP knock out mouse model 

did not demonstrated alteration in supercomplexes organization in liver [49]. This difference 

could be due to a lower reduction in CL content (-20%) in the αTFP knock out mouse compared 

to shCLS HepaRG cells used in the present study (-45%).  

Alteration in mitochondrial network by reduction in CL content in shCLS cells was explored 

using confocal microscopy. shCLS cells had a largely fragmented mitochondrial network in 

comparison to shCTL cells. Dissipation of the mitochondrial membrane potential using 

pharmacologic agents such as FCCP have been shown to induce mitochondrial network 

fragmentation [50,51]. Moreover, a fragmented mitochondrial network was observed when CL 

content was reduced in Saccharomyces cerevisiae [52]. However, the mechanisms that explain 

how disrupted CL content could affect mitochondrial dynamics are not well understood. Using In 

silico analysis, it was reported that CL can mediate DRP1 fixation into the liposome and 
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stimulate the GTPase activity of DRP1 [4,53]. In the present study, DRP1 protein expression in 

mitochondria of shCLS was increased without a modulation in Mfn2 expression. To our 

knowledge this is the first study reporting mitochondrial network modulation by reduced CL 

content in mammals. The present results are in agreement with those of Joshi et al. obtained in 

yeast [52]. However, increase DRP1 recruitment to mitochondria with lower CL content is not 

intuitive since DRP1 oligomerization and GTPase activity require CL. As suggested by Joshi et 

al., CL content reduction could affect fusion related protein and disturb fission/fusion balance 

[52]. Elucidation of this specific point will need further investigation. 

In the present study, increased fission without opposed fusion has the potential to result in 

fragmentation of the mitochondrial network in shCLS cells. Fragmented mitochondrial network 

in shCLS cells could explain, in part, the decrease in respiratory chain activity induced by CL 

loss.  

Since oxidation and phosphorylation are coupled a decrease in oxygen consumption can affect 

ATP synthesis. The ATP synthesis rate was similar between shCTL and shCLS cells. In the same 

way ATP synthase expression was unchanged in shCTL compared to shCLS cells. Thus, ATP 

synthesis was not maintained by an increase in ATP synthase protein expression. Results 

obtained in other models of decreased CL content are contradictory. Human lung carcinoma 

A549 cells transfected with shRNA targeting CLS had a 60% reduction in the total cellular ATP 

level [27]. However, it is important to point out that mitochondrial ATP production was not 

measured, which is a central parameter in cancer cells using lactic glycolysis for ATP supply. On 

the contrary, lymphoblasts generated from Barth syndrome patients did not exhibit modification 

of ATP content or ATP synthesis rate despite decreased oxygen consumption [28]. Despite 

decreased mitochondrial membrane potential, mitochondrial ATP synthesis was enhanced in 

lymphoblasts from Barth syndrome patients compared to control subjects. Increased 
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mitochondrial biogenesis has been found to be a compensatory mechanism for OXPHOS 

dysfunction in Barth syndrome [28] [54]. However, in the present study we did not observe an 

increase in mitochondrial mass and the mitochondrial biogenesis protein markers PGC1  and 

mtTFA. Thus, mitochondrial biogenesis could not explain how mitochondrial ATP synthesis rate 

was maintained in shCLS HepaRG cells. Moreover, we explored mitochondrial cristae since 

several studies suggested a role of CL in cristae ultrastructure [55–57]. We did not observe 

modification of the mitochondrial cristae ultrastructure, contrary to data reported in yeast [58]. 

However alteration in cristae morphology has not be consistently observed in Δ TAZ yeast [59].  

Defects of mitochondrial organization could lead to ATP synthesis disturbances as ATP synthase 

is localized in the cristae and participates in increasing the efficiency of OXPHOS, ensuring 

proximity between ANT and ATP synthase. We examined ATP synthesis rate to oxygen 

consumption (ATP:O ratio) which is reflective of ATP synthesis yield. ATP:O ratio was 

significantly increased by 46% in shCLS compared to shCTL cells indicating that shCLS cells 

were more efficient in ATP synthesis. This is in agreement with data reported in liver 

mitochondria from hypothyroid rats, where oxygen consumption is reduced [60] associated to 

lower CL content [61] and higher ATP synthesis efficiency [60]. However, the present data are 

not in agreement with yeast and that observed in Barth syndrome cells. CLS null yeast, as 

explained in the introduction, exhibit several bioenergetics differences in the respiratory chain, 

moreover the effect of total absence of CL compared to a moderate decrease in CL content can be 

entirely different. Barth syndrome is defined by an increase in the MLCL/CL ratio. Indeed, most 

of the effects of TAZ mutation are due to the increase in MLCL content in mitochondria. 

Moreover most data published on Barth syndrome utilize cells with a low metabolic activity 

(leucocyte, lymphoblast, mouse embryonic fibroblast). This may explain the differences observed 

between these cells and the results reported in the present study. A recent publication in 

immortalized lymphoblasts from Barth syndrome patients suggested an increase in mitochondrial 
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content as a mechanism to compensate for reduction in respiratory chain activity [28]. This is a 

good illustration of the variability in mitochondrial adaptation mechanisms to respiratory chain 

reduced activity. Finally, Zhang et al. using PTPMT1 KO mice, showed that reduction in CL 

content and respiratory chain was associated with an increase in glycolysis to compensate for 

lower mitochondrial activity [20]. The present study was performed in the HepaRG hepatocyte 

cell line, which exhibit a high content in mitochondria indicating highly metabolic activity which 

is much different from mouse embryonic fibroblasts. It seems apparent that reduction in oxidative 

capacities in mouse embryonic fibroblast cannot be compensated by an increase in ATP synthesis 

efficiency, but by glycolysis. 

Interestingly, in our previous work on liver mitochondria an increase in CL content 

resulted in the exact opposite effect, a reduction in ATP synthesis yield [31]. These two 

experimental models clearly demonstrated a direct regulation of ATP synthesis yield by CL 

content. 

In conclusion, the present study makes important advancements in our understanding of 

the role of CL in human cell mitochondrial bioenergetics. A moderate reduction in CL content in 

shCLS cells resulted in lowered respiratory chain activity that could be due to both 

supercomplexes destabilization and mitochondrial network fragmentation. The reduction in 

mitochondrial oxidative capacities in shCLS cells was not associated with lower ATP synthesis 

but induced an increase in ATP synthesis yield. Compensatory mechanism leading to maintained 

ATP synthesis rate needs to be further investigated. The present study, with our previous 

published data, demonstrate that the cellular CL content is part of the regulation in mitochondrial 

ATP synthesis yield. 
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